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Abstract:  In this paper we present a novel Finite Difference Time Domain (FDTD) model 
of transient wave propagation in general dispersive bi-isotropic media. Much attention has 
been focused recently on the behavior of these materials and their potential applications in 
microwave and millimetre–wave technology. While these materials have been extensively 
studied in the frequency domain, their time domain behavior has only been modeled so far 
for special sub-classes or time harmonic operation. To validate our method we have 
computed the behavior of electromagnetic waves traveling through a bi-isotropic medium 
and compared it with theoretical results. Agreement is typically better than one percent. 

1 Introduction 
Bi-isotropic materials contain two additional parameters in their constitutive equations, 

namely the Tellegen and chirality parameters, that relate the electric field E with the 
magnetic flux density B, and the magnetic field H with the electric displacement D. 
Electromagnetic waves in bi-isotropic media show the following interesting behavior [1]: 

a) Optical Rotatory Dispersion causing a rotation of polarization; 
b) Circular Dichroism, which modifies the nature of field polarization (lossy case); 
c) Non-orthogonality of electric and magnetic field vectors and dependency of the 

phase velocity on the Tellegen parameter. 
Two subclasses of general bi-isotropic media are Tellegen and Chiral media, in which 

only one of these two parameters is taken into account in the constitutive equations. Several 
time domain models of bi-isotropic media have been published [2] [3] [4] for special cases, 
such as chiral media, non-dispersive bi-isotropic media, or time-harmonic operation. 
However, no transient time domain formulation has been developed to date that models 
general bi-isotropic dispersive media. In this work a full time-domain model of general bi-
isotropic dispersive media is presented.  It is based on the FDTD technique, where the basic 
Yee cell has been modified to include the special relationships between the field vectors in 
bi-isotropic media. To validate our method we have computed the characteristic behavior 
of electromagnetic waves traveling through a bi-isotropic medium and obtained very good 
agreement with theory.   

2 Time Domain Constitutive Equations in Bi-Isotropic Media 
The constitutive equations for bi-isotropic media in frequency domain are given by [1]: 
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where χ is the Tellegen parameter and κ(ω) is the frequency-dependent chirality parameter. 
The frequency behavior of the chirality parameter is assumed to follow the Condon [1], 

[5] model with one dominant resonance that lies far away from other molecular transitions. 
Hence, the frequency dependence of the chirality parameter can be written as: 
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where ω0, is a characteristic resonant frequency, τ a time constant and ξ a damping factor. 
In order to obtain a time domain expression for the chirality parameter, the imaginary 

unit that appears in the constitutive equations (1) is introduced in the chirality parameter 
expression (2), and the time-dependent chirality parameter is obtained by inverse Laplace 
transform: 
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where the new chirality parameter κ’(ω) is defined as κ’(ω)=j κ (ω). 
For the lossless case (ξ=0) the chirality parameter simplifies to: 

 2
0 0'( ) cos( )t tκ τω ω=   (4) 

In time domain the relationship given in eq. (1) becomes a convolution: 
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If we discretize these equations and make the approximation that all the field quantities 
are constant over each discrete time interval, and if we assume that all fields are zero for 
t<0, then the integration becomes in part a summation [6]: 
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In the lossless case the time dependence of the chirality parameter κ’(t) given in (4) is 
not in a form such that the corresponding discrete convolution can be updated recursively. 
However, if we define a complex time domain chirality [7]: 
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where the caret denotes complex quantities and Re( ) is the real operator. Using the 
notation: 
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and since ˆ '( 1)mκ +  can be written as a function of its previous value  as 

tjemm ∆−=+ 0)('ˆ)1('ˆ ωκκ , the convolution summation can be computed recursively. We denote 
( )E nψ  the convolution summation of the electric field with the chiral response of the 

material to an impulse, at the instant n∆t:   
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Therefore, we can also define a complex summation convolution as follows: 
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The convolution summation ( )ˆE nψ can be computed by updating ( 1)ˆE nψ −  [7]: 
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the final updating equation obtained is: 
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In the same way, the convolution summation for the magnetic field is also updated 
recursively from previous values. In the computer program, this will require four complex 
numbers per cell, two for the x and y components of the convolution with the electric field, 
and two for the x and y components of the convolution with the magnetic field. 

Finally, we substitute these expressions in the discretized time domain constitutive 
equations (6): 
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3 New FDTD Formulation. 

In order to model bi-isotropic media, we have modified the traditional FDTD method. 
Although we present in this paper only the implementation of a one-dimensional mesh and 
algorithm, this formulation can be extended to the two- and three-dimensional cases as 
well. We assume one-dimensional uniform wave propagation in the z-direction. In order to 
capture the rotation of the fields (caused by the chirality parameter) and their non- 
orthogonality (caused by the Tellegen parameter) in the transversal plane, we model the x- 
and y-components of both the electric and magnetic fields. 
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The peculiar constitutive equations of bi-isotropic media that relate the electric and 
magnetic fields in the same point and at the same time instant, require a modification of the 
Yee cell and the traditional FDTD algorithm. Our new cell includes four quantities in each 
node, namely E, D, H and B, related by the constitutive equations, and we distinguish two 
different kinds of nodes, the x-nodes where we define the x-components of the fields (Ex, 
Dx, Hx, Bx), and the y-nodes with the y-components (Ey, Dy, Hy, By). The x-nodes and the y-
nodes are staggered in space and time, as shown in Figure 1. 

 

Figure 1. Modified FDTD mesh for bi-isotropic media. 

In the following, the updating algorithm for this mesh will be developed. First, we 
update the x-components of the electric displacement D and the magnetic flux density B 
everywhere in the mesh by means of the standard FDTD update equations, then, within the 
same time step, the x-components of the electric field E and the magnetic field H are 
calculated using the x-component of the vectorial constitutive equations in time domain 
(16) derived in the previous section: 
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At one half time step later, the y-components of D and B are computed using the same 
standard FDTD update equations and, at the same time step, we calculate the y-components 
of the electric and magnetic fields using the y-component of the vectorial constitutive 
equations that relate the quantities in our y-node: 

 

 

 (18) 

 

4 Results 
To validate our formulation, we have computed the characteristic behavior of 

electromagnetic waves traveling through a bi-isotropic medium, and compared it with 
known theoretical results[1]. As mentioned in the introduction, electromagnetic waves in 
bi-isotropic lossless media exhibit the following interesting properties [1]:  

Optical Rotatory Dispersion causes a rotation of polarization due to different phase 
velocities of the right- and left-handed circularly polarized waves. The sense and angle of 
rotation depend on the real part of the chirality parameter. 
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Figure 2.  Rotation of the polarization of a wave
propagating in a chiral medium. The figure
shows the orientation of the electric field in part
of the computational domain at time t=4000 ps 

Non-orthogonality of electric and magnetic field vectors due to the non-zero 
Tellegen parameter 

These properties were simulated in a 1-D computational domain 10,000 cells (∆z = 
1/3 mm) long. The excitation was applied at the point 4000 ∆z, the mesh boundaries were 
thus far enough so that no reflection appeared in the simulation. 

In the first simulation we have computed the rotation of the polarization of an 
electromagnetic wave propagating in a bi-isotropic medium characterized by the following 
parameters: µr =1, εr =2, χ =0, τ =4 ps, ω0 =2π 109 rad/s and ξ=0 (lossless case). To allow 
comparison with analytical frequency domain results we have injected a time-harmonic 
electric field (f = 3 GHz) linearly polarized at 45 degrees with respect to the x- and y-axes. 
At 3 GHz, the value of the chirality is κ = - 9.42 ·10-3+j0. Since the chirality parameter is 
real, the wave keeps its linear polarization as it propagates, but due to its negative value, 
the polarization rotates clockwise when looking in the direction of propagation (+z 
direction) as shows Figure 2. The theoretical angle of rotation of the polarization in a bi-
isotropic medium is given by α = -Re(κ)k0 z, where Re(κ) is the real part of the chirality 
parameter, k0 the wave number in free space, and z the distance traveled in the medium.  

  

 

 

In this simulation, we extracted the fields at 1 ∆z, 1500 ∆z and 3000 ∆z from the source, 
with ∆z = 1/3 mm and ∆t = 1ps. The angle of rotation in these three points is shown in 
Figure 3. Theoretical and simulated values of the rotation angle are compared in Table 1. 

 
Distance  

from the source 
Theoretical angle of 
rotation (degrees) 

Angle obtained with our 
FDTD simulation (degrees) 

Relative Error 
in Percent 

1500∆z 16.965 17.127 +0.95 
3000∆z 33.929 34.158 +0.67 

Table 1 Comparison of theoretical and simulated values of the polarization angle rotation in a bi-isotropic 
medium for two different distances from the source. 

4.1 Rotation of the Polarization and Non-Orthogonality of the Field Vectors 

Figure 3. Polarization of the electric field
at 1∆z, 1500∆z and 3000∆z from the
source. The polarization rotates clockwise
as the wave propagates in the medium 
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We have performed a second simulation in which we have computed the angle between 
the electric and magnetic field vectors of a wave in a bi-isotropic medium. This angle is 
determined by χ, and we have computed it for a bi-isotropic medium with parameters: 
µr=1, εr=2, τ=3 ps, ω0= 2π•109 rad/s and ξ=0 (lossless case) and three different values of 
the Tellegen parameter χ=0.1, χ=0.2, and χ=0.3. Table 2 shows the theoretical and 
simulated values of the angle between E and H in the xy-plane for the different values of χ. 

 
Tellegen  
parameter 

Theoretical angle 
between E H (degrees) 

Angle obtained with our 
FDTD simulation (degrees) 

Relative Error 
in Percent 

χ=0.1   94.055     93.979 -0.08 
χ=0.2   98.130     97.985 +0.14 
χ=0.3 102.247 102.38 +0.12 

Table 2. Comparison of theoretical and simulated values of the angle between the electric and magnetic field 
vectors in the xy-plane in a bi-isotropic medium for three values of the Tellegen parameter. 

In one last numerical experiment we have chosen a value of χ=0.3 for the Tellegen 
parameter; the other parameters of the medium and the excitation are the same than in the 
previous simulation. The result of this experiment is presented in Figure 6, which 
simultaneously shows the two basic properties of waves propagating in general lossless bi-
isotropic media, namely rotation of the polarization and non-orthogonality of E and H.This 
figure shows E and H (multiplied by Zc) at the points 1∆z, and 3000 ∆z from the source.  
 

 

In bi-isotropic media, fields can be decomposed into two eigenwaves E+, H+ and E-, H- 
where “+” designates right-handed circular polarization (CP+) and “-” left-handed circular 
polarization (CP-). Each of these eigenwaves has a different phase velocity what yields to 
the rotation of the polarization shown in the previous simulations. 

In this experiment we have simulated the phase velocities of the CP+ and CP- 
eigenwaves separately. The  medium  is  described by  the parameters: µr =1, εr =3, χ =0.2, 
τ =3 ps, ω0 =2π 109 rad/s and ξ=0 (lossless case), and the source excites a left- and right-

4.2 Phase Velocity of the Eigenwaves 

Figure 6.  Rotation of the polarization and non-
orthogonality of E and H at the points 1∆z, and 3000∆z
from the source. The polarization is rotated clockwise
(looking in the direction of propagation) as the wave
propagates in positive z-direction. The Tellegen
parameter fixes the angle between E and H to 102
degrees 

             Non-Orthogonality of E,H and 
 Rotation of their Polarization in a BI medium 
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handed circularly polarized electric field (ω0 =2π ·3·109 rad/s), respectively. Table 3 
compares the theoretical and simulated values of both phase and velocities. 

 
 Theoretical value 

(m/s) 
Value obtained with our 
FDTD simulation (m/s) 

Relative Error 
in Percent 

Phase velocity CP+ 2.152·108=0.718·c 2.144·108=0.715·c -0.41 
Phase velocity CP- 2.131·108=0.711·c 2.142·108=0.714·c +0.54 
Table 3. Comparison of theoretical and simulated values of the phase velocity of the right- and left-handed 

circularly polarized eigenwaves in a bi-isotropic medium. 

5 Conclusions 
We have presented a novel time domain model of wave propagation in general 

dispersive bi-isotropic media, assuming a Condon model for the chirality parameter, and 
formulating the constitutive relationships by recursive convolution. To model the peculiar 
constitutive equations of bi-isotropic media we have modified the traditional FDTD method 
and Yee cell such that the new formulation presented here involves updating electric and 
magnetic fields in the same point and at the same time step. While this model has been 
implemented and validated here for the 1-D case only, it can easily be extended to the two- 
and three-dimensional cases as well. To our knowledge this is the first time domain 
formulation that allows full transient modeling of general dispersive bi-isotropic media. 

The validity and accuracy of the proposed algorithm have been tested in a series of 
numerical experiments where we have successfully simulated the characteristic behavior of  
wave propagation in general dispersive bi-isotropic media. Simulated rotation angles and 
phase velocities agree with theoretical values within typically less than one percent. 
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