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Abstract

Different high frequency methods are used to analyze the backscat-
ter and bistatic scattering from a flat plate and a cube. The results
are compared and their validity is checked against method of moments
and measurements. A newly developed far zone corner diffraction co-
efficient based on the latest equivalent current and PTD solutions cast
in UTD form is discussed.

I Introduction

The validity of various methods for determining the far zone bistatic scat-
tering from a flat plate and convex flat plate structure such as a cube is
presented in this paper. This is accomplished by comparing the meth-
ods in various basic situations. The specific techniques to be compared
in this study are the classical equivalent currents with “stripping” [1], the
previous corner diffraction coefficient (1], the newly developed equivalent
currents by Michaeli [2], and an extension to this method cast in the form of

*This work was supported in part by Contract No. F33615-86-K-1023 between Wright
Patterson Air Force Base and The Ohio State University Research Foundation.
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a Uniform Geometrical Theory of Diffraction (UTD) far zone corner diffrac-
tion coefficient [3]. In addition, the Method of Moments (MOM) using the
Electromagnetic Surface Patch (ESP) code [4] and measurements from The
Ohio State University ElectroScience Laboratories compact range are used
to further validate the results.

A recent paper by Ludwig [5] compares three methods for backscatter-
ing from a cube, that is, the MOM using the Numerical Electromagnetics
Code (NEC-MOM), physical optics (PO), and the previous UTD corner
diffraction solution. In this paper, it will be shown that methods which
give comparable results for backscatter can differ for bistatic scattering.
The emphasis here is to present basic examples that can be used to val-
idate existing codes and to suggest a numerically efficient and accurate
method for convex flat plate structures to first order.

An approximate expression for the far zone field scattered by the ver-
tex of a finite perfectly conducting wedge is presented in this regard. The
solution is cast in the form of the UTD and is based on asymptotic equiv-
alent currents found using modified Physical Theory of Diffraction (PTD)
concepts [2,3]. The faces of the wedge must be flat (the normal to each
individual face is a constant everywhere on the face except at the edge)
and the edges must be straight. For plane wave incidence from an arbi-
trary direction, the first order contribution from each vertex to the far zone
scattered field is obtained.

Since diffraction is a local phenomena at high frequencies the results
obtained for a finite wedge may be applied to much more complex bodies
made up of simple shapes. The field scattered by a three-dimensional shape
constructed from flat plates may be approximated to first order as the sum
of the contributions from each individual corner. The first order solution
should be reasonably accurate in or near the specular regions as long as
the object is convex. A convex body is defined here as a closed surface
made up of flat plates such that all of the exterior wedge angles, taken
between faces and exterior to the surface, are greater than 180 degrees. A
simple example of an object that does not meet this requirement is a corner
reflector. In this case, the effect of the interaction between the faces must
be taken into account. Higher order effects such as double diffraction (6]
and edge waves [7] are not considered here.

Note that the results presented in this paper are for a parallel ray type
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solution, that is, for a radar cross section result. The NEC - Basic Scat-
tering Code (NEC-BSC)(8] is a near zone formulated code, that is it has
a finite range involved. The UTD solutions are slightly different for this
non-parallel ray case. The capabilities of the NEC-BSC and a comparable
far zone code called the RCS-BSC are discussed in Reference [9].

II Theoretical Background

There are many approximate solutions to the scattered field from a finite
perfectly conducting wedge. Physical Optics and its extension the Physical
Theory of Diffraction [10] is surface and edge current based. Geometri-
cal Optics (GO) and its extensions the Geometrical Theory of Diffraction
(GTD) [11] and the Uniform Geometrical Theory of Difiraction [12] are ray
based. The Method of Equivalent Currents (MEC) [13] is an intermediate
type solution that was developed to handle caustic regions in the GTD.
This has been augmented with the concept of stripping to provide better
answers for flat plate problems [1]. Recently, Michaeli [14] showed a more
rigorous approach in deriving equivalent currents. This was shown to be re-
lated to the incremental length method of Mitzner [15] by Knott [16]. These
equivalent currents still had singularity problems that have been remedied
by Michaeli [2] using a skewed coordinate system. Ufimtsev also derived a
similar solution [17,18].

The above solutions can be cast in a corner diffraction coefficient form.
These UTD ray type solutions have the advantage of being efficient for
far zone flat plate problems since only the fields scattered from the corners
need to be added. It also has the advantage that the results correlate to the
scattering centers seen in high resolution measurements. Just the corner
diffraction coefficient forms are outlined in this section.

A previous diffraction coefficient for a corner formed by the intersection
of two straight edges was derived by Burnside and Pathak [1]. It is based on
the asymptotic evaluation of the radiation integral containing the equivalent
currents of Ryan and Peters [13]. The result was then empirically modified
so that the diffraction coefficient would not change sign abruptly as it passes
through the false shadow boundaries. It was derived for spherical wave
incidence and remains valid for cases when the diffraction point is near the
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corner since the integral was evaluated for a saddle point near an end point;
however, only the far zone result is shown here. The corner diffracted field
due to one corner and one edge in the case of plane wave incidence and a
far zone receiver is given by
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where the angles are shown in Figure 1. The sign on the diffraction coei-
ficient may be plus or minus depending on which endpoint of the edge is
being considered. The correct sign in front of the C, » terms in Equation 1
:s chosen based on the direction edge vector shown in Figure 1.

It is assumed that the incident field, and therefore the scattered field,
is a time harmonic field with time dependence given by e’“t, which is sup-
pressed.

The new far zone corner diffraction solution is based on the PTD and
cast into the form of the MEC and then into a UTD diffraction coefficient.
The details of this procedure are given in (3], while a brief outline of how this
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Figure 1: Definition of angles for the Previous Corner Diffraction Coeffi-
cients.

is done follows. The PO is first used to approximate the currents resulting
in a double integral over the surface. Stokes theorem is then applied to
reduce the equation to a line integral (19,20]. The Michaeli currents are
added to produce a total first order MEC result. This integral is then
evaluated using the method of stationary phase to obtain the contribution
from each corner [21].

The new corner diffraction coefficients are given in a form similar to
previous expressions for diffraction coefficients:
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where the plus or minus sign is chosen depending on which endpoint con-
tribution is being calculated. The minus sign is used for the corner con-
tribution associated with the negative t-axis, while the plus sign is used
for the corner contribution associated with the positive t-axis. The edge
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fixed coordinates shown in Figure 2 are chosen such that 7 is the outward
normal of the O-face, f is tangent to the edge, the positive b-axis lies on

the O-face, and { = b x #. The expressions for d;}9, dJ17,

given by (O-face contribution only)
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while the — sign is associated with the d1F°, dYTP and dF° terms. The

functions c,, cx, and c, are given by
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Figure 2: Definition of the Angles used in the New Corner Diffraction
Coefficients.

from which v and a are determined using
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Notice that ¥ and a do not correspond to physical angles and become
complex for some cases. The angles B, ¢', B, and ¢ are defined in Figure 2.
Since only convex structures are considered here proper shadowing of the
rays is fairly simple. The shadowing of the incident field is accounted for
by E—"E,, and E;, which are the components of the GO incident field. The
shadowing of the diffracted ray is more complicated. The contributions
from the LPO and PO components, d,l"fg and df, ,0_2, are present everywhere.
The UTD components, dj 5, are shadowed like diffracted fields. They do
not contribute if the observation point is inside the wedge (¢ > n).

For the special case of a flat plate (n = 2) the contribution from both
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faces may be found using
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where 7, @, and the other variables have been defined previously.

It is interesting to note that by writing the equations for the Michaeli
equivalent currents and the new corner diffraction coeffients in cotangent
form provide more insight into the connection of the new solutions with the
previous methods. The new parameters separate out the optics currents and
diffraction currents. This separation manifests itself in new parameters for
the o angles. They arise from the asymptotic evaluation of the currents in
the skewed coordinate system chosen in physically meaningful directions.
The LPO factor (7) is related to the projection of the average of the incident
and diffraction planes on to the plane of the plate [3]. The PO and UTD
factor (a) relates to the projection of the Keller diffraction cone on to the
place of the plate. It is easy to see in this form that in the Keller directions
the LPO and PO cancel, leaving the UTD result formally used in many

golutions.
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(y axis into page)

Figure 3: Two wavelength plate in the x-z plane.

III Comparisons

The first example compares the Ryan and Peters equivalent currents, the
previous and new corner diffraction solutions. The simple example of
backscatter from a two wavelength square plate lying in the x-z plane,
as shown in Figure 3, is used. This illustrates that for backscatter these
different methods produce very similar results, except for the very low level
regions.

The co-polarized fields, in the principal plane, calculated using the three
different methods are shown in Figures 4 and 5. All three methods give
essentially the same results for the principal plane pattern cuts shown here.
This is not surprising since the major contributions to the fields are the
scattering from the two edges in their Keller cone directions. The new cor-
ner diffraction solution reduces to the Ryan and Peters equivalent current
solution for points on the Keller cone [3], and the previous corner diffraction
solution is essentially the same as Ryan and Peters equivalent current solu-
tion for most regions of space. The results in Figure 5 are for the horizontal
(04¢) polarization. For a knife edged plate such as this, the scattered field
should be zero in the plane of the plate. Note that this is not the case in
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—— New Corner Diffraction
---- Ryan/Peters Equiv. Currents
-.— Prev. Corner Diffraction

Figure 4: Backscatter from a 2 wavelength plate (§ = 90° pattern).

—— New Corner Diffraction
---- Ryan/Peters Equiv. Currents
-.— Prev. Corner Diffroction

"~

Figure 5: Backscatter from 2 wavelength plate (§ = 90° pattern).
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—— New Corner Diffraction
---- Ryan/Peters Equiv. Currents
--— Prev. Corner Diffraction

Figure 6: Backscatter from 2 wavelength plate (§ = 60° pattern).

these first order results. The higher order terms (i.e. the double, triple etc.
diffractions) produce the null for this polarization when they are included.

For patterns away from the principal plane, the higher levels are the
same but the lower levels differ. This is illustrated by taking a conical cut
(8§ = 60°) for the two wavelength plate. The results for the same three
methods used previously are shown in Figures 6 and 7. In this case the
methods agree well for the main lobe, however, they differ in the lower
levels of the pattern.

The differences in the three methods mentioned earlier are greatly in-
creased for bistatic scattering problems. The bistatic scattering from a
square plate two wavelengths on a side is examined to illustrate the point.
The complete scattering matrix (all four values of o) is found for a plate
in the x-y plane with a fixed source located at 8* = 45° and ¢' = 0° as
shown in Figure 8. The results for the ¢ = 60° pattern cut are compared
with the previous corner diffraction solution and Method of Moment calcu-
lations for co-polarized fields in Figures 9 and 10. Similarly the results for
the cross-polarized fields are given in Figure 11 and Figure 12. Overall the
new solution agrees well with the Method of Moment calculations and does
not exhibit the discontinuities which appear near 8 = 240° and § = 300°
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Figure 7: Backscatter from a 2 wavelength plate (§ = 60° pattern).

o O%=450 6

Edge 4

Figure 8: 2 square plate in the x-y plane with a fixed source at 6" = 45°
and ¢ = 0.
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o — New Corner Diffraction
----- Method of Moments
--—- Prev. Corner Diffraction

.[.

180
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360

Figure 9: Co-polarized RCS in the ¢ = 60° plane of a 2\ square plate with
a @' polarized fixed source at §° = 45°, ¢' = 0°.

| —— New Corner Diffraction
---- Method of Moments
--—- Prev. Corner Diffraction

' T T ' ;
0 60 120 180 240 300 360
O (deg.)

Figure 10: Co-polarized RCS in the ¢ = 60° plane of a 2 square plate with
a @' polarized fixed source at * = 45°, ¢* = 0°.
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—— New Corner Diffraction
-=—- Method of Moments
-.— Prev. Corner Diffraction
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Figure 11: Cross-polarized RCS in the ¢ = 60° plane of a 2A square plate

with a §* polarized fixed source at g = 45°, ¢' = 0°.

—— New Corner Diffraction
-——- Method of Moments
-.— Prev. Corner Diffraction

Figure 12: Cross-polarized RCS in the ¢ = 60° plane of a 2) square plate
with a @' polarized fixed source at §' = 45°, ¢' = 0°.
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in the previous corner diffraction solution. The discontinuities in the pre-
vious corner diffraction solution are caused by the so called false shadow
boundaries where the associated two-dimensional problem passes through
a shadow boundary, but the three-dimensional problem in reality does not.
The Ryan and Peters equivalent current results are not shown here, but
they behave differently for similar reasons; that is, the solution still con-
tains two dimension information in regions that it should not. In the region
from 8 = 60° to 120° (i.e. near the plane of the plate) the new solution and
the Method of Moments solution differ by more than 20 dB. It is suspected
that most of these differences are due to the effects of higher order terms
(double and triple diffraction, edge waves) which are not included in the
new solution.

In this example the new solution is compared to backscatter measure-
ments [22] made at 10 GHz on a 6” cube. The geometry of the cube, tilted
45° in the x-z plane, is illustrated in Figure 13. The results for the H-plane
and E-plane patterns taken in the x-y plane are given in Figures 14 and 15,
respectively. The results agree well to first order over most regions of the
pattern. The discrepancies are probably due to a combination of higher
order terms not being included in the analysis and in measurements errors.
The error in the measurements is likely two fold. First the faces of the
cube model were misaligned slightly so they did not form edges as sharp
as may be required. Secondly, it seems that there was some deviation from
the desired pattern cuts as can be seen from the lack of symmetry in the
measured patterns. In any case, they confirm the validity of the new corner
diffraction solution within first order accuracy for wedge type structures.

IV Discussion

The new corner diffraction coefficient in the above examples has been shown
to provide improved results over other methods, especially in bistatic sit-
uations. The Michaeli equivalent currents have not been shown since they
provide the same results as the new corner diffraction coefficient. Certain
properties of these new solutions, however, may still cause patterns taken

in some regions of space to be discontinuous.
It has been shown [2,3] that D5 and Dj do not tend to definite limits
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45°
X
Figure 13: 6” Cube tilted 45° in the x-z plane.
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Figure 14: H-plane pattern for 6” cube tilted 45° in the x-z plane.
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——  Corner Diffraction
--- Measurements
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Figure 15: E-plane pattern for 6” cube tilted 45° in the x-z plane.
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—  Corner Diffraction
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Figure 16: RCS for the § = 89° cut of a 2) square plate with a ¢ polarized
fixed source at 6 = 45°, ¢* = 0°.

as § — 6 (i.e. the intersection of the associated half-plane and the Keller
cone), where & = tsinf@ + bcos 3, but they remain bounded. In practice,
this means that both DS and Dj, and therefore Ej and Ej, are discontin-
uous at this point in the pattern. A simple example illustrates how this
discontinuity can affect a pattern. The bistatic RCS from the flat plate
shown earlier in Figure 8 is considered. The source, linearly polarized in
the ¢ direction, remains fixed at §' = 45° and ¢' = 0° while the pattern is
taken near the x-y plane (8 = 89°). The bistatic RCS is given in Figures 16
and 17 for the co-polarized and cross polarized fields, respectively. The
abrupt null at ¢ &~ 135° in the co-polarized pattern and the spike at the
same location in the cross-polarized pattern are due to discontinuities in
the contribution from edge 4 (indicated in Figure 8). The point ¢ ~ 135°
coincides with 84 = 8, and ¢4 ~ 0 where B4, 3}, and ¢4 are the edge fixed
coordinates for edge 4. Due to the geometry ,54 ~ ¢ and ¢y = 8 so the
discontinuity in o4y is due to the discontinuity in Dj and, likewise, the
discontinuity in o4y is due to the discontinuity in Dj.

Therefore, the discontinuity in the new diffraction coefficients at the
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Figure 17: RCS for the 8 = 89° cut of a 2] square plate with a ¢* polarized
fixed source at §° = 45°, ¢' = 0°.

intersection of the Keller cone and the infinite half plane associated with
the edge (3 = B’ and ¢ = 0) may be expected to cause discontinuities
or narrow spikes depending on the polarization and the pattern cut. As
the examples illustrate these disturbances only affect a typical pattern cut
for around 5° to 10°. In addition, they are in the low level regions of the
returns. _

It is easily seen that the diffraction coefficients D5 and Dj are discon-
tinuous as the source passes through the half plane ¢’ = 7. In the general
case of bistatic scattering, these discontinuities in the sign of the field scat-
tered by a corner will result in discontinuities in the total scattered field.
However, the diffraction coefficients are continuous here (¢’ = m) for the
special case of backscatter.
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V Conclusions

The objective of this paper has been to compare different methods for
the analysis of the high frequency far zone scattering from flat plate and
convex flat plate type structures. Ryan and Peters equivalent currents and
the previous corner diffraction coefficient are compared with the Michaeli
equivalent currents and the new corner diffraction coefficient. The method
of moments and measurements are also used to validate the solutions.

It has been shown that for backscatter all the methods compare rea-
sonably within engineering accuracy. For bistatic scattering, however, the
two dimensional nature of the old methods lead to inaccuracies. The newer
methods, based on more rigorous three dimensional analysis, remove most
of these problems.

A new corner diffraction coefficient is presented that provides an efficient
and accurate solution to within first order. It provides the same level of
accuracy as the Michaeli equivalent currents with the added benefit of not
needing integrations for flat plates. All the optics and edge scattering
effects have been lumped into the corners of the plate with nice physical
interpretations.
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