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ABSTRACT

The equivalent circuit of a microstrip crossover is found.
Integral equations are obtained for the densities of excess charge,
and these equations are solved by the method of moments. Introduction
of a specified transverse distribution of charge, which satisfies the
edge condition, reduces the computing time dramatically while the
accuracy remains excellent. Several plots of the excess charge densities

are provided along with numerical values of lumped excess capacitances.
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1. INTRODUCTION

A microstrip crossover inside one dielectric layer consists of two
nonintersecting striplines perpendicular to each other above a ground plane
Both the striplines have infinite lengths and their widths are 2ul and 2a2
for lines 1 and 2 respectively. This structure is referred to as homogeneo
since there is no transverse variation of the material properties of the
dielectric. The dominant mode is then TEM and the analysis can be carried
out using electrostatics (Collin, 1960). The geometry of the problem and
the equivalent circuit sought are shown in Figs. 1 and 2 respectively. The
microstrip crossover is found in digital circuit boards and in microwave an
millimeter wave integrated circuits. 1In the analysis presented here the
proximity of the two striplines produces the so-called excess charges near
the discontinuity. These excess charges are related to the line potentials
through a pair of coupled integral equations. These equations are then
solved via the method of moments with point matching (Harrington, 1968). T
results that were obtained were compared to the ones reported by Giri et al
(1980) and an excellent agreement was found. We then introduced known char
distributions along the widths of the striplines. This resulted in a dra-

matic reduction of the computing time, while the accuracy remained excellen

2. THEORY
Called Ql and Q2, respectively, the position dependent charges per

unit area on lines 1 and 2 can be expressed as

Ql(x,y) = QlO(X) + ql(x,y) (1

and
Qz(x,y) = on(y) + qz(x,y) (2

70



If ¢1 is the potential of line 1, then QlO is the charge density required
wo to maintain ¢l in the absence of the other line. on(y) is defined similarly.
lane. As for 4 and Uy they exist in excess of QlO and on and they are called
% excess charge densities. Assuming potentials ¢l and ¢2 for lines 1 and 2

2
eneous we can write
e ),
= 1 1

i=l g

d 1
and
The 2
¢, = } JQ.(X',Y') K,. (4)
> and 2 j=1 j J 2j
i

Here, S, and S, are the surfaces of strips 1 and 2 respectively, and K.,
lear 1 2 ij

is the Green's function kernel given by
als

1 1 1
Kij = e R’ R...] )
The o ij ij
al. where Rij is the distance between the source point on line j and the field
harge point on line i. Similarly Rij' is th? distance between the source point
1= on the image of line j and the field point on line i, i,j = 1,2. We can
lent. write (3), (4) in a symbolic form as
6 = 6(Q) 0K ) + 8(apaK )+ 6(Q,y0.K,) + 6(a,,K,,) (6)
and
(1) From the definitions of QlO and Q20 we have
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So that expressions (6)-(7) above become
8(a)Ky) + 0(ay0K,,) = = 8(QKy,) (11)

The net excess charge of each line is obtained by integrating each
excess density over the area of the corresponding strip

o 6

1
Qi = f dy' J dx' ql(x',y') (12)
Q§ = f dx’ J dy' q,(x'y") (13)

Now we relate these total charges to the line potentials through the

coefficients of capacitance and induction (Plonsey and Collin, 1961)

e
Q = et ca® (14)
Q= c, ¢, +c. .o (15)
2 2171 2272
The lumped excess capacitances are given by
“1 711 T 12 (16)
C22 = C21 + C22 (17)
C =-c (18)

m 12
In Papatheodorou (April 1988), it is shown that €19 = CSop-

Our objective is to evaluate Cll’ C22, and Cm. From (8) it is

evident that
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(10)

(11)

ch

(12)

(13)

(14)

(15)

(16)

(17)

(18)

where 610 satisfies

1l = ¢(610’Kll) s

from (9), it is evident that

~

¢2on

Q0

where 620 satisfies

Let now

a; = 9857 + 98,

Ay = 91957 * 959y

Using (19), (21), (23) and (24) in (10), (11) we find
38y, Ky )) + 0(dy oK ) = 0

$(all:K21) + ¢(6213K22) == ¢(Q10’K21)

and

B(@ypoK 1) + 6(d,0:K,) = = 6(Qy0.K )

On the other hand, use of (23)-(24) in (12)-(13) gives (14)-(15) with

o0 o
f (1

- ' [ ' '

14 J dy j dx qli(x AD)
and - el
o [

= ' r oA Vo,

Chy ] dx J dy QZi(x,y )

-0 —u

2
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(25)

(26)

(27)

(28)

(29)
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3. DEVELOPMENT OF MOMENT SOLUTION

To solve (20) for 610, we let

A Ny
Qo) =} a P (x)
n=1

where Pn(x) is the pulse fuiction defined by

1 on £
P (x) = { n
n

0 elsewhere

Here, £ 1is the interval that extends from X to x » With
n n n+1

s no=1,2,...,N +1.

x = (n—l)Al -0 1

1
Zal
where Al = E?—-and Nl is the number of subsections along the width of
1

strip 1. In an analogous manner we let

A N2
Qo) = 17 b P (v)
n=1

(3

(3

(3

where now N2 is the number of subsections along the width of strip 2. Pn(y:

is the pulse function defined by

1 on 2
n
P (y) = {
0 elsewhere
Here ? is the interval that extends from y to§¥ where
n n n+l
§n = (n—l)A2 - a,, n-= 1,2,...,N2+1
20
where A2 =5 Note that throughout this paper circumflexed X and Y,
2

will indicate coordinates for strip 2.
We substitute (31) and (34) into (20) and (22) respectively and

enforce (20) at points
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(31)

(32)

(33)

(34)

h(y)

(35)

(36)

{x = x+, m=1,2, N}
m 1
where A (37)
1
(2m—l) —2—‘ - OLl
and (22) at points
AF
{y = ym’ m=1,2, Nz}
where Az
= (m1) 5 -, (38)
Then we obtain
Nl
I f_a =1, ms= 1,2,...,N;
n=1
where < .
+1 f
1 . 1
fmn T 4me J dy" I
° X ~c0 V/(x -X ) '2
L ] (39)
+ 432 02 2
V/kxm x'")" + y + 4h1
and
R
17 g b =1 . m=1,2,...N,
n=1
where
1 ¥n+l % 1
= d 1 d 1 [
fun " e ) ¢ Vo2 2
A~ _ F Ll | ]
v, oo (Ym y") T+ x
- e ] (40)

Vietouin? o 12 2
(ym vy")T + x + 4h2
Expressions (39), (40) can now be solved for the unknowns a s bn and

then via (31), (34) we evaluate QlO’ 620 respectively.
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The excess densities q7s 4, vary along the width and length of the
corresponding strip. To solve equations (25)-(28) we partition the domain
of q; and 9, into rectangular subsections of sides Ai’ and Ai, i=1,2.

If 2Li is the length of strip i outside of which 9y is assumed to vanish,
then along the length of strip i we have Ni intervals of length

2Li
R p—...
Ai Ni (41)

The n'th interval extends from Yo to Yorel for strip 1 and from & , to
n

X 14 for strip 2. Note that
= L v _
yoo = @'-DA! -1, (42)
and
2 = 1 '
X (n l)A2 L2 (43)

As it is suggested by Mautz and Harrington (1984) a total length of about

2h2 will give satisfactory results.

Next let
N N!
N _ ¢l 1 .
994 7 z Z qli,nn' Pnn' (44)
n=l n'=1
N N!
A 2 2 A
a,, = Y 4. P, (45)
2i o=l n'=1 2i,nn nn
1 on s, i=1,2
Here P ,={
nn

0 elsewhere

and Asnn, is the nn'th rectangular subsection with domain

< .
(xn < x < X 10 Yoo <y yn,+l) for strip 1

and domain
(X , <x < Ry o ¥ <y« yn+1) for strip 2.



he

nain

(41)

(42)

(43)

it

(44)

(45)

We then substitute (44), (45), (31), and (34) into (25)-(28) and enforce

(25), (27) at points

+  +
{(x,y) = (xm, ym,) , m = 1,2,...Nl and m' = 1,2,...Ni}

+ . ; . .
where now Vot i the midpoint of the subsection that extends from V! to

Yo'+l and is given by
A'
+ 1) L _
Yo = (2m'-1) 5 Ll (46)
Similarly we enforce (26), (28) at points
{(x,y) = (ﬁ+ §+) m=1,2,...N, and m' = 1,2,...N'}
* m" m s s b . 2 b ] 2
where ﬁ;, is now the midpoint of the subsection that extends from ﬁm'
to X 141 and given by
AI
At 11y 2 _
X = (2m'-1) 5 L2 47)
?; is the midpoint along the width given by (38), which is repeated for
convenience
A
Yo = (2m-1) > oy (48)
We thus obtain the systems
q 0
91
(k] = (49)
3 -2 13
(921 | Ciela ]
N r > ]
;4 -[glb
(k] = (50)
-5
922 0
. - b p

Here 3, B are the vectors formed by the coefficients as bn of (31), (34)
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respectively. The elements of the system matrix k and the forcing matrice

% and g are given in Appendix A.

4. MODIFIED SOLUTION

The systems of equations given by (49) and (50) contain a large
number of unknowns. If we could eliminate the unknowns that describe the
variation of the charge densities along the width of each stripline we
would reduce to size of the system matrix substantially. To this end
we introduce an edge behavior proposed by Butler and Wilton (1980).

Then (31) and (34) are replaced by

Qo (x) = —1 (51
72
l X

and

A G2

8,0 (y) 5 — 2 (52
2 2
5=y

respectively. Introducing (51), (52) into (20), (22) we obtain after a

straightforward integration

4 dx" (x-—x')2 + 4hf
4me =G j 1n [ ] (53
o 1 > 12
- 0(,2 - x!' (X‘X )
1 1
and
a, 2 pA
L \ Gy ¥ Wa
bme_ = G, } — & 40 —4 (54
/2 2 (y=y")

—0y oy =y
Gl’ G2 are constants that can be computed from relations (53), (54) above.

This is shown in Appendix B.
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rices

(51)

(52)

(53)

(54)

W
0

In a similar manner expressions (44) and (45) are replaced by

Nl

Q. =———— ) 8. 4 P_,(y) (55)

1i 3 7 n'=1 li,n n
oy - X
and 1
NI
1 .
4y = ——= I Qi ,n' P ®) » 1=1,2 (56)
2 l=1 s
JZ

respectively. Then we substitute (55), (56), (51), and (52) into (25)-(28)

and enforce (25), (27) at points
+ ]
{(x,y) = (0, ym,) , m' = 1,2,...N1} (57)
and (26), (28) at points

(Goar) = €, 0, @' =1,2,...0)) (58)

At , .
Note that y;,, X 1 are still given by (46), (47) respectively. Thus

the system of equations that is obtained now is of the form

-_)‘ - r -
91 0
(k'] = (59)
3 c.%
[ 927 7ot
and e -
[ [ >
9 C,8
[k'] = (60)
q 0
L 975 | L i

The new system matrix has now considerably fewer elements which along with

> -
the forcing vectors % and g are described in Appendix B.
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5. NUMERICAL RESULTS AND DISCUSSION

Giri et al. (1980) presented a solution for two skewed wire lines
above a ground plane. For the sake of comparison we have solved the same
problem when the two wires were perpendicular to each other, that is, the
wire crossover (Papatheodorou et al., April 1988). When we compare the
excess density plots the agreement is excellent. We then solved the
strip crossover using the theory presented in Section 3 of this paper.
The widths of the strip were chosen according to Butler (1582) who shows
that a narrow strip line is equivalent to a wire line when the strip has

width equal to four times the wire radius (equivalent radius). Therefore

for a wire crossover with wire radius equal to 10—2h1 the strips had widths
h
equal to 4 x 10 2hl. The height ratio Ez-was taken equal to 1.5 and each
1

subsection across the length of both the wire and the strip was taken equal

to 5 X 10—2h . We chose L, = L_ = 5h Figures 3-6 show the plots of the

1 1 2 1°

excess densities versus the normalized distance from the center of symmetry.

For the wire lines we have plotted

9y q
C%l and E%i , i=1,2,
i i

where Ci is the capacitance per unit length of the ith isolated line. On

the other hand, for the strip lines we have plotted g%i where
%y ’
4 = J 4, (xy) dx (61)
.. 4
and E%&-where
i %
4y () = f q,;(xy) dy , 1=1,2 . (62)
-a,

80




Vi

ime

e

iths

ual

he

try.

61)

62)

In Figs. 3-6 the strips were divided along the widths into 6 subsections.
The agreement between the wire and the strip solution is very good and the

lumped normalized excess capacitances found are

Ca €1 20
hlcé =1.013 , q‘c‘{ = -0.853 , and W = ~-0.792 for the wire
and
c C c
m 11 2
M 0.991, —i = -0.836 , and —=5% = -0.777
h, Gy h Gy h G,

for the strip crossover. The strip results are even closer to those for
the wire when more subsections along the width of the strips are used.
For example when 12 instead of 6 subsections are used the capacitances

are found to be

c c c
M _ 1,002, 2 = -0.844 , and E—ZCZ—.—
12 1% 1©2

nC el = -0.785

However, the price that we paid was an increase in the CPU time from one
hour and fourteen minutes to more than five hours on a VAX 8810.

When the solution of Section 4 was used the CPU time reduces down
to a minute and forty eight seconds, while the accuracy remains excellent.
The strip parameters were kept the same and Fig. 7 shows the charge
densities for this solution. The normalized capacitances in this case

were found to be

C C C
m 11 22
=1.014 , — = -0.853 , and —=+
h,C hlcl th2

T = -0.792 ,
172

which are almost identical to the capacitances of the wire crossover. It
should be emphasized however, that this excellent agreement happens only

for narrow strips.
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APPENDIX A

The system matrix of relations (49) and (50) is of the form

11 12
(k7] (k7]
(k] = (A-1)
21 22
(k"] (k7]
The submatrices kll, klz, k21 and k22 have mm'nn'th elements given by
11 Xn+l In'+1 1
= dx' dy' { 1 -
mm 'nn Vot 1y 2 ¥ 2 o F_ 2 ¥ 2
—_! P ) —_ ! -y !
X Y (xm x")" + (ym, v') (xm x")" + (ym, y ')A
(A-2)
12 o+l ol L
K , = dy" dx' [
mm'nn Voot 2 ¥ 2
~ A - L — ' -
yn xnl (Xm x')" + (ymv y') + (hZ hl)
1
- ] (A-3)
+‘ 2 + ot 2
Vidtxn? + ohyh? + @)
)1 o+l In'+1 L
kK™=, = dx' dy' [
fim oo s 2 ¥ 2 2
A _ [ ~ - 1 _
X Yy X ,xD)" + G -y + (h,=h))
- . ] (A-4)

At a2 ~t 12
(xm' x')" + (ym y') T+ (h2+h1)

and

82



(4-2)

(A-3)

A-4)

mm'nn'

X
22 ~ +1 ‘ n'+l ‘ 1
k = dy dx
J
X

i
Vi<t ghyn?

- 1 1 (A-5)

F 2 L otan2 2
v/z*m' x')" + (ym y"T o+ 4h2

respectively.

The evaluation of the above elements is straightforward but tedious
and is given in Appendix A of Papatheodorou, Harrington, and Mautz (April,
1988).

The m'nth element of the forcing matrix % is given after a
straightforward integration by

En+l (R

% =J dx' fn [
m n. A
(X

2 2
x'")" + (h2+h1)

2

' 5] (A-6)
v X )T+ (hz_hl)

8 +8 +

X
n

Using Dwight (1961) this becomes

x+(hyth))’ 4
2, =[x In (;ilz;—:;—;f) + 2(h,+h)) tan (h2+h1)
2 M
x .-k,
- Z(hz—hl)tan—l (E—§E—)] n+l n (A-7)

The m'nth element of forcing matrix g is given by a similar expression.
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APPENDIX B

i) Evaluation of constant Gl’ G2

The integrals that appear in relations (53) and (54) are solved
numerically using an efficient algorithm, the Gauss-Chebyshev quadrature
(Carnahan, Luther, and Wilkes, 1969). However, the denominator in the
argument of &n can become singular and needs special attention. To handle

this we enforce (53) at x=0 and after a simple variable transformation we

write
1
4re_ = G, Jf . S [(oclx')z + 411%]
-1v1- x'2
1
- G, f —ﬁ‘—'-; n (OL]_x')2 (B-1)

1v1-x'
a

Using Dwight (1961) the second integral is simply equal to 27Tin (7%).
Applying the Gauss-Chebyshev algorithm for the first integral we find

that Gl is given by

4e
G, = ~ S OL (B-2)
1 z Qn[(ocx)2+4h2]—2£n—l
o+l Lo 154 1 2

Here n is the number of points used in the quadrature formula and Xy is

given by

(21 + l)W]

(n 2y » 1=01,.m (B-3)

x, = cos [
i

G2 is given by (B-2) if we replace 0y and hl with 0y and h2 respectively.
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ii) The system matrix k

Again the system matrix in (59) and (60) is of the form given in

(A-1). However, the submatrix elements are simpler. So we have

Y o
g1 Tl dx’' +1dy, : 1 1 :
e m'n' - e - U,
2 2 /2 442 2 ) 2
—alx/ocl x'"y '+ (v YD) Vol s (v +=y') +4hy
dle (B-4)
o 54
we 12 dy' rn'+1 . 1
m'n' B ] J ax \[/ﬁ
2 24 ) ¥ 32 h2
—a, Vo, =¥ X x'C 4 (yy')T + (hymhy)
- 1 ] (B-5)
/42 2 2
'+ (v -y O+ (h2+h1)
(B-1)
o
- 1 In'+1 1
m'n' J F v [f
2 _ 42 ot ' 2
—a,Vo0q L S (xm, x")" + vy O+ (hz—hl)
- 1 ] (B-6)
vV (ﬁ;,-x')z +y'" + (h§+hl)2
B-2)
o %
2 n'+1
et
_ 2 _ '2 ~ ~t ! |2
aM oy -y X (X x') +vy
B-3)
_ 1 ] (B-7)
v/(ﬁz,—x')z + y'2 + Ahg
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After a straightforward integration expressions (8-5), (B-6) can be
evaluated numerically using the same algorithm as in (i). However, in
expressions (B-4), (B-7) we should be more careful due to occurring
singularities. The explicit evaluation of these relations is shown

in Appendix B of Papatheodorou, Harrington, and Mautz (July, 1988).

iii) The forcing vectors T and §
. >
The m'th element of the forcing vector { is of the form

o A+ 2
(va = X')

F
-0, o, - X (Xm'
1

2
+ (h2+h1)

' 2
-x"" + (hz—hl)

After a simple variable transformation, Qm' can be easily evaluated using

the Gauss-Chebyshev quadrature, which gives

At 2 2
) n (xm. - alxi) + (h2+h1)

m' nil L in [— 2 2
i=0 (xm, - alxi) + (hz—hl)

) (8-9)
L . . ~t .
As for 8 it is obtained from Qm' by replacing al and X with 0y and

+ . . . . .
Yo' respectively. Again n is the number of points used in the quadrature

formula and X is given by (B-3).
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