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Abstract

A Galerkin method-of-moments (MM) formulation is developed for the problem
of electromagnetic scattering from a conducting body with a thin coating. The
formulation incorporates both the electric-field integral equation (EFIE) and
magnetic-field integral equation (MFIE) formulations on the conductor and the
dielectric surfaces. The formulation is developed in terms of generalized
Galerkin matrix operators which allow for straightforward implementation into
existing computer codes for coated bodies. The analysis allows a surface
coating of nonuniform thickness that is characterized by complex permeability
and permittivity; the analysis can be easily extended to the case of a2 thin
multilayered body.

Standard MM formulations for coated bodies, based on either the EFIE or
the MFIE at the conductor surface, fail as the coating thickness approaches
zero. The combined-field integral equation (CFIE) also fails in the limit of
zero thickness. The present thin-coating formulation (TCF) will be shown to
remain valid as the coating thickness approaches zero. In the limit, the
matrix equation for the TCF reduces to a self-consistent set of equations for
scattering from a conducting body, independent of the dielectric coating
parameters.

The TCF has been implemented for the case of scattering by a conducting
body of revolution (BOR) with a thin dielectric layer. Examples are presented
comparing the present formulation to other MM formulations. The TCF is
demonstrated near internal resonant frequencies, and for some limiting cases

for both bistatic and monostatic scattering.

*This research was conducted under the McDonnell Douglas Independent Research
and Development program.
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Introduction

The method-of-moments (MM) has been applied to the problem of
electromagnetic (EM) scattering from conducting bodies by numerous
investigators. In [1] the electric-field integral equation (EFIE) is solved
for an arbitrary conducting body of revolution (BOR), and in [2] the magnetic-
and combined-field integral equations (MFIE and CFIE) solutions are obtained.
Analogous formulations were developed for coated conducting bodies by applying
the PMCHW (after Poggio, Miller, Chu, Harrington, and Wu) formulation [3] at
the coating surface and solving either the EFIE [4] or the CFIE [5] at the
conducting surface. The formulations are valid for coatings which have
nonuniform thickness and are characterized by complex permeability and
permittivity. However, in the limit as the coating thickness approaches zero,
both the EFIE and MFIE formulations fail. Numerical implementations of the
formulations fail for small nonzero thicknesses due to the approximations
inherent in the MM solution procedure.

In this paper a new formulation is presented for conducting bodies with
thin coatings. The formulation incorporates both the EFIE and MFIE
formulations at the conducting surface, and remains valid in the limit of zero
thickness. Representative numerical results are presented to validate the

present approach.

Formulation
Consider the coated conducting body in Fig. 1. The coating region R2 is

homogeneous with permittivity €, and permeability By Starting with the

2
symmetric form of Maxwell’s equations, incorporating electric and magnetic

charges and currents for a homogeneous region with electric and magnetic

sources, the fields in each of the regions in Fig. 1 can be written as
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Fig. 1. Coated conducting body geometry.

- +
follows. In region Rl’ the total electric and magnetic fields E1 and Hl can

be written as

+3 i 4 + + 3
9(1:)E1 = E"(r) - LlJl(r) + KlMl(r) (1)
and
ST - 3 + 1 +
9(1’)H1 = H (r) - KlJl(r) - 775 LlMl(r) , (2)
1

*1 *i .. . , . .
where E° and H™ are the incident electric and magnetic fields and the function

Y
6(r) is defined as

1 for -r.t ER
+ + 1
6(r) = 1/2 for r EaRl (3)

0 otherwise ,

where aRl is the boundary of region Rl. The electric and magnetic surface

currents on the region boundaries in general are

+ ~ - -+ +
J, =n, xH , (4a) M, = -n, xE, s (4b)
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Time variation of ejwt is implied and suppressed in this discussion. The

integro-differential operators Li and Ki are defined as

> + + -+ 2 4 + +, .
L X(r) = jwpf (x(x) + L oy X(r')) d(r - ') ds (5)
OR, W pE
and
+ f + 3, + +, ,
K.X(r) = X(r') x Vo(r - ') ds , (6)
i
OR,
i
where for ; = ;', the operators are interpreted as Cauchy principal-value

integrals.
. -’ . - .
The vector function X is in the domain of the operators Li and Ki and is

defined on aRi. The Green's function is ¢, with ¢, €, and § defined in region

R..
i
The fields in region R2 can be expressed likewise as
O(H)E, = LI (3) - KM (1) - LI (% 7
(r)E, = L,J,(r) - K, 1(r) = Lyd,(r) (7)
and '
O =K I (5 + LM (D - kI (z 8

7,

Applying the boundary conditions at each interface Si yields a set of coupled

integral equations for the unknown electric and magnetic currents. At the
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dielectric-dielectric interface.Sl, continuity of the tangential fields is

enforced, i.e.,

> +
E1 tan S, EZ tan S )
1 1
and
- -
H1 tan S1 = H2 tan S1 ‘ (10)

Substituting (1), (2) and (7), (8) into the above boundary conditions yields

two integral equations on surface S1

+ -+ + 31
[, + L)Jdy - Ry + KoMy - LZJZ]tan 5 = Elian s, (11)
and
N 1 1 -+ 2 21
[(K1 M R e I TR L SN A s = Blians (12)
r)l 72 1 1

>
where, for convenience, the field point r has been omitted. Similarly on the
dielectric-conducting interface SZ’ the tangential electric field vanishes.

Substituting the boundary condition into Eq. (7) and n cross Eq. (8) yields

two integral equations on surface Sz:

-+
[_ L2 1 * KZMl * 2 Z]tan 82 =0 (13)
and
_’
o oLl o+k31 - 2 _ 0 14
n, x [- KJ, - R =0 . (14)
2

If we apply the MM technique, the four integral equations (11-14) are

transformed into a system of linear algebraic equations. Once the form of the
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current expansion and testing procedure is specified, the MM technique
transforms the integral operators L and K to the corresponding matrix
operators & and . A . The resulting MM matrix operators are defined as
#(S,S";R) and 4#(S,S';R), where S specifies the surface where the testing is
performed, S’ specifies the surface on which the current is defined, and R
identifies the region where the Green’s function is evaluated. Similarly, one
can defined X;Z and x;&'as the matrix operators that result from testing the
integral operators ; x L and ; x K. The matrix operatorj%’(S) results from
testing the expansion functions directly. Similarly, &(S) and . #(S) are the
column vectors which result from testing the incident electric and magnetic
fields, respectively. Using this notation [6], the integral equations (11-14)

are transformed into the following matrix equation:

. — Y1 .
g(sl’sl’Rl) L(Sl’sl’Rl)
+ -2(5,8,5R,) | | I, E(sp) | (15)
. - s
E1r
H(S|,S 5R)) e Z(S15S,3R))
1r
+ + - H(S,8,3R,) M, JO(S) (16)
EZr N
2r
L— @(5,,85R,) | H(S,,8)5R,) P(5,,5,3R,) 3, 0 (17)
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- (S8 3R,) | = T H(SS R 0 (18)

H(S,)

When the coating thickness is zero (i.e., Sl = Sz), the solution should

3 -+ 3
reduce to the solution for a conducting body (i.e., J1 = J2 and Ml = 0). The

electric current should be a solution of either thé/ﬁ{}E or MFIE:

-+ +4
Ll J1 tan S = E tan S (19)
1 1
Y
n, x KlJl + 7 = n, x H (20)

The two E-field Eqs. (11) and (13) are consistent with the above; however, the
two H-field Egs. (12) and (14) are not. Solving any three of the equations
(11-14) for the three unknown currents will yield a solution which will fail
as the coating thickness approaches zero. Combining Egs. (13) and (14) on
surface S2 (i.e., the CFIE formulation in [5]) does not circumvent the
problem.

A new, thin-coating formulation (TCF) which overcomes ﬁhese failings is
obtained by combining the two H-field matrix equations (16) and (18). First,
Eq. (18) is written in a different form by applying the MM technique to Eq.

(14) after taking the cross product with the unit normal vector, to yield

€
% . _g.g 4 . oy o ar -
LA(SZ,SI,RZ)J1+ #Zr °[(SZ’SI’R2)M1 UA(SZ’SZ’RZ)J2+ ﬁh (SZ)J2 0 (21)

21



This new equation is then subtracted from Eq. (16) to yield the system of

equations shown below:

_ g . - | e
+ Z(51,8,3R,) I &(S)) (22)
6lr
P . —_— .
€
. . _2r . . -
HS SR | PEELSS Ry | S8Ry |y | =S (2
H(S,,S 3R,) | - - H (s
€
2t ., .
#Zr Z(Sz,Sl,Rz)

Since the TCF, is obtained by combining the H-field equations at the matrix-
equation level, the two surfaces S1 and 52 must be discretized with the same
number of points. This restriction is not severe since the formulation is
only intended for conducting bodies with thin coatings. In the limit as S1 -+

SZ’ the TCF remains valid and is consistent with the solution for a conducting

surface, independent of the dielectric properties of the coating.

Results

The present thin-coating formulation was implemented (using the Galerkin

method of testing) in a computer code for conducting bodies of revolution with
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nonuniformly thick coati;gs. In Fig. 2, the computed backscatter cross-
section of an air-coated sphere is compared with the Mie series solution. The
EFIE, MFIE, and CFIE formulations all diverge from the Mie solution as the
coating thickness decreases, while the present TCF solution remains valid. A
similar calculation is shown in Fig. 3 for a dielectrically coated sphere.
Again, the TCF solution remains valid and the standard formulations fail as
the coating thickness decreases.

In Fig. 4, the EFIE and TCF backscatter calculations are shown for a
conducting cylinder when the coating thickness is zero. These results are
compared with the computed results for an uncoatéd cylinder. The EFIE results
are grossly in error, while the TCF results nearly overlap those for the
uncoated conducting cylinder. k

In Fig. 5, the computed bistatic cross section for an air-coated sphere
near an internal resonance is given. Using the EFIE formulation, the

numerical resonance occurs at ka = 2.768 when the sphere is discretized with

e=1
ka=3
5 T T T 1 T 5 T T T T T
— Mie — Mie
o EFIE O Present
0 o MFIE B 04 formulation 4
s CFIE (a=112) °
=]
] a o o -
o’ _5 - 2 = i—g > _s a—= : 7]
(dB) ° @B) |
[+]
o]
-10 . 4 - -10 4 —
-15 -15
X4 ' 3 ' 2 ' -1 X4 ! 3 ' 2 ' -1
Log, 0(?/7») Log, 0()‘J)»)

Fig. 2. Backscatter cross-section as a function of coating thickness (t) for an air-coated sphere.

23



T T T

— Mie
a EFIE
° o MFIE

& CFIE (a=1/2)

he
5
\
[+]
0-
7
c;/k2 -S4
(dB)
-10 4
-15
S -4

20

1l 0

Log, ,(VA)

o

e=4—"

-1

—t—i

d=04322

¢¢-polarization

0 (deg)

e=4
ka=3
5 T T T T T
— Mie
C  Present
04 formulation —
00\.2 -5 .
(dB)
a o o o a
~10 4 ]
-15 i T _13 T _12 T A
Log,((VA)

Fig. 3. Backscatter cross-section as a function of coating thickness (t) for a dielectrically coated sphere.
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Fig. 4. Backscatter calculations for a coated cylinder when S, = S,5.
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Fig. 5. Bistatic cross section for a resonant coated conducting sphere.

31 points (14 triangle functions). The EFIE solution is in error while the
TCF solution is in good agreement with the Mie series solution. The TCF
N

solution was also compared with the Mie series solution as a function of ka in

the vicinity of the true resonance (ka=2.744) and remained stable.

Summary

A new thin-coating formulation was presented for scattering from coated
conductors. The H-field equations on the conducting and dielectric surfaces
are combined at the matrix equation stage of the MM technique. The
formulation was shown to remain valid in the limit as the coating thickness
goes to zero. Representative numerical examples have confirmed the
formulation for conducting bodies of revolution with thin coatings and have

shown that the formulation remains valid near resonant frequencies.
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