A Hybrid Finite Element Method for
Conductors with Thin Dense Coatings

William E. Boyse
Andrew A. Seidl
Lockheed Palo Alto Research Laboratory
0/91-60 B/256
3251 Hanover Street
Palo Alto, CA 94304-1191

Abstract

A hybrid method of using finite elements and boundary integral methods to compute
scattering from two dimensional coated conductors is presented. Finite elements are used
in and around an electrically dense coating where high sampling rates are required. Since
the matrix equations they generate are sparse, they can be quickly solved. The finite
element sampling rate is reduced with distance from the scatterer to a very low rate where
the boundary integral method provides the exact near field radiation condition. The
boundary integral generates a dense matrix which is small due to the reduced sampling,.
This technique is compared for accuracy and efficiency with series solutions and with

method of moments.
I. Introduction

Research into hybrid finite element methods is actively pursued because of their ability to
efficiently and accurately model wave propagation problems with Sommerfeld’s radiation
conditions at infinity. Conventional methods for using finite elements, or finite differences,
for these types of problems requires that the numerical boundary be far enough from the
scatterer to make approximate radiation boundary conditions accurate [1] - [2]. This intro-
duces many additional unknowns into the problem, especially in three dimensions, making
a difficult problem worse. Silvester and Hsieh [3], McDonald and Wexler [4] introduced a
method of coupling the finite element method to a boundary integral equation. This pro-
vided a way of terminating the numerical grid, with a boundary integral equation which
satisfies the exact near field radiation condition.

Implementations of this idea can be grouped into two categories. Those employing
explicit boundary integrals on arbitrary surfaces surrounding the scatterer [3] - [8], and

those making use of separable geometries, circular or spherical, to reduce the boundary
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integral to an algebraic equation for the modal expansion of the exterior solution [2], [9]
- [11). The modal methods have the advantage of obviating the need for a boundary
integral equation, solution of which requires procedures similar to the method of moments.
An advantage of the boundary integral method is that it keeps the numerical boundary
close to the scatterer, thereby minimizing the number of finite element equations.

In this paper we investigate the latter method as applied to the solution of two dimen-
sional scattering problems where a very high sampling rate is required on the scatterer.
As an example, we model perfectly conducting circular cylinders coated with a thin dense
material for which accurate series solutions are available for comparison. This method uses
finite elements not only on the scatterer, where very high sampling rates are required, but
also in a surrounding free space annulus in which the sampling rate is allowed to decrease
gradually until it reaches quite a low value on the outer boundary to which the radiation
condition is applied. The finite element matrix is sparse and can be solved rapidly using
banded LU decomposition with partial pivoting for stability. The boundary integral can
then be applied efficiently on a smooth surface in free space where the field, too, is smooth.
While the matrix representing the boundary equations is dense, its dimension is small due
to the low sampling rate. We compare this method with respect to accuracy with a series
solution, and with respect to efficiency with a moment method.

The format of the paper is as follows. In section II, the mathematical formulation
of the scattering problem and derivation of the weak form of the equations will be given.
Section III will address the discretization of the finite element and boundary integral
equations. Practical considerations and efficiency are discussed in section IV. Finally,

numerical procedures and examples are presented in sections V and VL

II. Analytical Foundations

Mathematical Formulation

The geometry for the two dimensional electromagnetic scattering problem considered here
is depicted in Fig. 1. The region inside I'; is a perfect electrical conductor while the region
between I's and I'; contains a smoothly varying inhomogeneous isotropic material. The
region exterior to I'; is free space. The formulation of the scattering problem requires that
Maxwell’s equations be satisfied inside I'; and that the scattered field radiates to infinity.
The saskiation conditinn fakes the, farm of of 3 howndary ntegral equation relating, total
and incident field points on I" and I's.
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Figure 1. Geometry for hybrid finite/boundary element formulation.

We formulate both TE and TM polarized configurations in terms of a generic longi-
tudinal field F, which represents the magnetic field for the TE case and the electric field
for TM. Thus F has the form F = f(z,y) 2, where % is the unit vector in the z direction,

and satisfies the wave equation
V x a(z,y) VxF - k5 f(z,y) F=0, (1)

wherever o and 3 are smooth.

For TE we have
F ~ magnetic field,

a(m’ y) = 60/6(1, y)a

B(z,y) = p(z,y)/po, and
AXVXF=0onTl,

(2)

while for TM,
F ~ electric field,

Ol(CC,y) = /"'0/”(1:7 y))
B(z,y) = e(z,y)/€, and
F=0onTI,

(3)
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Here a time dependence of e~*! is assumed, k2 = w?eyuo, and 7 is a unit normal to the
y vQ )

surface. On the material interface, I'y, where o and § are discontinuous, we require that

(F —F_)=0and (4a)
n X (a+V X F+ —a_V x F_) = 0. (4b)

where ay, Fy, a— and F_ denote quantities on either side of the interface. This states
that the tangential components of the electric and magnetic fields are continuous across
the material interface.

To specify the scattering problem we express the field on I's in terms of the incident
field and the Kirchoff integral of the field on T'.

R = F(r) + [ (3 T BEOGIr = 1) + (2 x F) x VGl = 1)) ds,  (5)

where r = (z,y) is on I3, F' is the incident field, 7 is the outward unit normal to I', and
G(Ir|l) = £ Hj (ko|r]|), the zeroeth order Hankel function of the first kind.

Weak Form

Formulation of the weak statement of the above problem, following Hughes [12], re-
quires the weak form of (1) and two sets of functions, the solution space S and the test
function space V. The weak form is found by multiplying (1) by a test function ¢ and in-
tegrating by parts over € while neglecting any boundary terms. This transfers one spatial
derivative from the field to the test function. The function spaces, S and V, are chosen to
make the weak equation well defined and to satisfy boundary conditions. We now derive
the weak form of (1), show that under certain assumptions the weak solution is also a
strong solution, determine the function spaces S and V to satisfy the boundary conditions
and apply the radiation condition.

The weak statement of the problem is: F is a weak solution of (1) if f is in S and
/ (Vo x aV x F+ k¢ B¢F)dzdy = 0, for all ¢ in V (6)
Q

where ) is the region between I'; and I'; in Fig. 1. For our purposes, we chose functions in
S and V which are continuous with piecewise continuous bounded derivatives. Therefore
(4a) is satisfied by construction. The weak formulation allows one to approximate the
solution of a second order differential equation by functions having only one derivative.

If F is a solution of (6), we assume that F is continuous and has continuous first and

second derivatives except at discontinuities of a or 3. Therefore, integrating (6) by parts
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again, we obtain
— /{;(Vcb x aV x F + k% B¢F)dzdy =0
= /qu(V x aV x F — k28F)dzdy

+ | é(nx aVxF)ds (7)
T

+ | ¢(Ax (a4 VxFy—a VX F_))ds
T,

+ | ¢(Ax a VxF)ds
T's

To see that F is indeed a solution of the strong form of (1), consider a point in {} not
on 'y, Ty or T'3. Choose the test function ¢ to be non zero in a small neighborhood of this
point, and in particular ¢ =0o0nTy, 'y and I's. The surface integrals on the right hand
side of (7) vanish since ¢ vanishes there. Since the integral over {} must vanish for any ¢
meeting these requirements, we must have that V x a V X F + k2GF = 0 at the chosen
point. Therefore (1) is satisfied at all points of continuity of & and B, and F is a strong
solution of (1). As a consequence of this, the integral over  is identically zero since the
integrand vanishes pointwise. This is a standard argument in finite element analysis and
can be made very precise [12], but the details will not be presented here.

In a similar manner, one can show [12] that the integrands of the three surface in-
tegrals in (7) must also vanish. From the integral over I'1, we see that either ¢ must
vanish or 7 X aV x F = 0. The latter case is called the natural boundary condition at
this surface, and corresponds to a perfect electric conductor for TE, (2), and a perfect
magnetic conductor for TM. The boundary condition for a perfect electric conductor must
be specifically enforced in the TM case, and is called an essential boundary condition. To
accomplish this, we require that for ¢ in V that ¢ =0on 'y, thereby obviating the natural
boundary condition requirement and require that for f in S that f = 0 on Ty, enforcing
the essential boundary condition. The natural boundary condition on T'z is the continuity
of the tangential components of the dual field, (4b), and is satisfied automatically. The
desired boundary condition on I's is the radiation boundary condition as specified by the
integral (5), and is essential. Therefore we must require in both TE and TM polarizations
that ¢ = 0 on I's, and explicitly require that (5) is satisfied there.
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Figure 2. Finite element mesh. Coating thickness = 4.67mm.

III. Discretization

To discretize the problem the region  is divided into finite elements with nodes. Fig. 2
shows one quadrant of the mesh used in the examples presented in section IV. This mesh 1s
made up of a combination of isoparametric bi-quadratic quadrilaterals and triangles, except
for the outermost layer of elements where the boundary integral equation is applied. This
layer of elements is quadratic in the angular direction but only linear radially. Associated
with each node a is a basis function N4(z,y) which equals one at the location of node a
and zero at every other node, making it interpolational, and non-zero only within elements
containing node a. The same basis functions are used to approximate functions in both
S and V ( the Galerkin approximation ). We define the node sets S’ and V' to be those
nodes whose basis functions are used in approximating the spaces S and V, respectively.
Then, for TE we have

S’ = { all nodes }
V' = { nodes not on I's}, ®)
and for TM,
S’ = { nodes not on I'; }
V' = { nodes not on I'y or I's}.

(9)
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If N is the number of nodes in 8’ and M is the number of nodes on I'z, then there are N-M
nodes in V’. For f in S and ¢ in V we have

flz,y) = faNa(,y). (10a)

a€ES’

¢($ay) = Z QSaNa(w’y)' (10b)

a€V’

Substituting (10a) and (10b) into (6), we obtain

Z f,-/ (VNp x a VxN;+k NiN;) dzdy = 0, for all k in V', (11)

which is N-M equations for N unknowns. The other M equations come from the boundary
integral. Substituting (10a) into (5) and demanding equality for nodes on I's, i.e. point

testing, we obtain

fi— ijfr((fzxva,-)G+(ﬁxN,-)xVG)ds=f,§, (12)

JjEes’

for all nodes k on T's, where f; is the incident field at node k and 7 is the outward pointing

unit normal to I'.
IV. Practical Considerations

As mentioned in section I, an advantage of coupling finite elements to a boundary inte-
gral equation is that the numerical boundary of the problem may be placed close to the
scatterer, minimizing the number of finite element equations. This, however, is not always
the most efficient method. Figure 2 represents one fourth of the mesh used in subsequent
numerical examples. The conducting core of radius 0.25 meters is coated with a electrically
dense material occupying the first layer of elements. Here, the sampling rate must be quite
high. If the boundary integral equation were applied just outside this layer, as is done in
[7], the dense matrix representing this equation would be extremely large due to the high
sampling rate and would dominate the numerical calculation. We increase the efficiency
of this method by adding more finite elements between the scatterer and the boundary
integral while decreasing the sampling rate to quite low levels.

Away from the scatterer, outside the evanescent field, the wave fields are quite smooth.
This suggests that very low sampling rates may be used. We have found that six samples
per wavelength, using quadratic basis functions, provides highly accurate representations.
It is therefore desirable to apply the boundary integral equation in this regime where the

low sampling rates translate into a system matrix of minimal dimension. In our examples,
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the boundary integral equation is implemented within the outermost layer of elements.
These elements are quadratic in the angular direction but only linear radially. Since the
boundary integral couples all nodes in this layer of elements, reducing the radial variation
to linear from quadratic reduces the number of nodes in this dense equation by one third.
The shape of these elements is determined by two competing criteria. By making them
thinner radially one increases the sampling rate thereby making the linear representation
as accurate as the quadratic representation used angularly. If the elements are too thin,
however, the distortion of the elements increases the condition number of the system. The
elements used in the examples below have a radial sampling rate eight times the angular
rate and provide a good compromise. In addition, the integration surface for the boundary
integral, I' in Fig. 1, passes through the center of these elements, where the derivatives
are most accurate. Given this efficient and accurate representation of the near field, it is
still advantageous to keep the numerical boundary close to the scatterer.

The optimal distance of the boundary integral from the scatterer is also determined
by competing criteria. First, the high spatial frequencies of the evanescent field near the
scatterer must be represented in detail until they have decayed below the inherent error
of the discretization. This suggests a slow smooth transition from the high sampling
rates near the body to the low sampling rate used in the boundary integral. A rapid
transition from high to low sampling rates keeps the boundary integral close, thereby
minimizing the number of finite element equations, but also highly distorts the elements,
making the representation inaccurate and increasing the condition number of the system.
The meshes used in the examples were generated in layers, using about a two to one
reduction in the number of nodes in each subsequent layer. This reduces the sampling rate
rapidly, minimizing the number of finite element equations, and does not highly distort
the elements.

The efficiency gained using this method is due to the sparseness of the finite element
equations. The use of finite elements to reduce the sampling rate from the quite high rate
required on the scatterer to a quite low rate where the boundary integral is implemented
drastically reduces the dimension of the dense boundary integral matrix at the cost of
introducing additional finite element unknowns. Although the total rank of the system
has been increased from what it would have been had the boundary integral been applied
near the scatterer these additional finite elements generate a sparse system matrix which
may be eliminated rapidly using sparse matrix algorithms. The additional time required
for this extra elimination step is more than offset by the savings in reducing the dimension

of the boundary integral matrix.
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V. Numerical Procedures

Efficient and accurate solution of this system of equations requires that advantage be
taken of the sparsity of the system and that pivoting be used in the matrix factorization
algorithm. Up to this point, the finite element development is completely analogous to
that used in structural mechanics, where the method was developed and widely used [12].
However, the matrices generated in structural systems are typically real, symmetric and
positive definite. The importance of positive definiteness cannot be overemphasized for
it allows elimination algorithms for direct solvers to avoid pivoting [14]. For positive def-
inite systems, the nodes may be ordered solely to minimize the computational burden.
The matrix encountered here is indefinite and elimination methods must pivot for numer-
ical stability. We address the sparsity and pivoting issues using substructuring and the
LINPACK banded LU factorization algorithm [15].

The total mesh for the examples, one fourth of which is shown in Fig. 2, is in the
form of an annulus. We group the nodes into two substructures. Substructure 2 contains
all nodes involved in the boundary integral equation, the outermost layer of elements, and
the nodes along one radial line. The remainder of the nodes are grouped into substructure
1, which after the removal of the radial line, is in the form of a strip. By numbering the
nodes in this strip first across the strip, then down its length, the non-zero elements of the
system matrix may be isolated into a band about the diagonal. This makes banded LU
factorization, with pivoting, an appropriate algorithm.

The structure of this system of equations then becomes

(& 2)(5)=(7) )

where K is the interaction matrix for substructure 1 and is sparse and banded, Z is the
interaction matrix for substructure 2 and has a large dense component, C is the coupling
matrix and is sparse, C7 is the transpose of C, f; and f; are the unknowns corresponding
to the two substructures and f' is the incident field. The solution is given by

fo=(Z-CTK'C)7 F, (14a)
f=—-K"'Cf, (14b)
where K ~1C' is computed using the banded LU algorithm. The solution of (14a) is sufficient
in order to compute the cross section for all illumination angles since the incident field

couples only to substructure 2 and the cross section may be computed from the far field

limit of (9). Solving (14b) produces the internal field.
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VI. Numerical Examples

We wish to model a scatterer which requires a high sampling rate for accurate solution.
To this end, we choose a conducting circular cylinder coated with a thin dense material.
The parameters used for the material are the measured values of Emmerson & Cummings
NZ-51, a magnetic ferrite tile. The illuminating frequency is 500 MHz, at which NZ-51 is
described electrically by

= =1206+1:025 and £ =7.77+.184. (15)
€0 Ho

The thickness of the coating on the one half meter diameter conducting cylinder is 0.00467
meters, exactly 1/10’th of a wavelength within the material and 1/128’th of a free space
wavelength.

Fig. 2 shows one fourth of the mesh used in the example. The elements are 1sopara-
metric quadratic quadrilaterals and triangles, except for the outmost layer of elements
used for the boundary integral. The innermost layer of elements model the coating. The
sampling rate here is 20 nodes per internal wavelength radially and 10 nodes angularly. We
found that 10 samples per wavelength radially, using elements with linear variation in this
direction, was insufficient to achieve accurate results. The angular sampling rate of was
also found to be about the minimum acceptable. At the outer surface of this coating, the
sampling rate is 128 samples per free space wavelength. Between I'; and T'; a combination
of quadrilateral and triangular elements to reduce the sampling rate from 128 to 6 samples
per wavelength. For the TE polarized configuration there are a total of 2080 nodes on this
mesh. The banded finite element matrix, K in (13), is of rank 2020 with a half band width
of 140. The boundary element part of the system, Z, in (13), is 60 by 60.

The method of moments comparison represents the thin layer as one electric current
on the surface of the conductor, and both electric and magnetic currents on the layer/air
interface. The sampling rate is the same as that of the finite element 128 nodes per
free space wavelength and produces a system matrix of 1000 by 1000. The factorization
times for the finite element problem were five minutes for K and five seconds for Z —
CTK~3C, while 90 minutes were required for the method of moments problem, both on
a Vax 11/785. Even though there are over twice as many unknowns in the hybrid finite
element formulation, most of these are eliminated quickly with a sparse algorithm leaving

a much smaller number involved in the dense boundary integral matrix.
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Figure 3. Bistatic scattering comparison. Coating thickness = 4.67mm.

Fig.3 shows the comparison of the bistatic cross sections for the series solution, hybrid
finite element and method of moments. The upper curve, included for reference, is the
series solution for the uncoated cylinder. The two bottom curves, which virtually overlie
each other, are the series and hybrid finite element solutions for the coated cylinder, while
the third curve from the bottom is the method of moments result for the coated cylinder.
The method of moment equivalent current approach runs into difficulties with thin dense
layers. This code was run at 20, 50, 100 and 128 samples per free space wavelength but
was unable to equal the finite element solution in accuracy even at these extremely high
sampling rates. At these high sampling rates, the hybrid finite element method is much
more efficient due to the sparsity of the finite element equations and the reduced size of
the dense boundary integral equations. While an impedance boundary condition is an
accurate approximation to a coated perfect electric conductor, and may be implemented
either with finite elements or method of morments, this hybrid finite element method is
efficient and accurate where the impedance condition is inaccurate [7], and wherever high
sampling rates are required for accuracy of the solution or faithful representation of the

scatterer.
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Figure 4. Bistatic scattering comparison. Coating thickness = 0.467mm.

As a second example, the same model was run except that the thickness of the coating
was reduced by a factor of 10. The finite element mesh was the same as before except that
the layer of elements representing the coating are too thin to be visible in the plot. The
elements representing this coating were reduced to linear variation in the radial direction,
providing 100 samples per interior wavelength and 1280 samples per free space wavelength.
The resulting extreme variation in element sizes within the free-space annulus presented
no numerical difficulty to the finite element code as Fig. 4 shows. The upper curve is again
the series solution for the bare cylinder. The middle curves are the series and hybrid finite
element solutions for the coated cylinder, and are virtually identical. The bottom curve is
a method of moments result, at the same sampling rate as the previous example. While
the moment code is experiencing great numerical difficulties in accurately representing
scattering from such a thin layer, the finite element code is very accurate even in this
extreme case.

It is worth noting that the TM polarized configuration is very easy in these cases,
with even more accurate results, which are not shown, obtained at coarser sampling.
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Conclusions

We have presented a hybrid finite/boundary element method for computing the scattering

off obstacles in either TE or TM polarized configurations. This method was applied to

perfectly conducting cylinders coated with thin dense materials.

1)

2)

We have shown that:

Using finite elements to move the surface where the boundary integral equation is
applied some distance from the scatterer, while reducing the sampling rate, has sig-
nificant computational advantages. It allows a high sampling rate to be used in and
around the/ scattering object at a much lower cost since these “additional” unknowns
are elimifated efficiently and accurately using appropriate sparse algorithms. The
dimension of the dense matrix representing the boundary integral is small since this
equation is applied on a smooth surface, outside of the evanescent field, where the
feld is smooth and thus can be sampled coarsely. For larger problems, this is even
more important since the factorization time for the finite element system will grow as
the circumference, while that for the boundary integral will grow as the circumference
cubed, making it the dominant term in the calculation. In comparison, the method
of moments equivalent current approach, or hybrid finite element methods where the
boundary integral is applied very near the scatterer, generate a large dense system of
equations and are much less efficient.

Finite elements can be used to accurately model extremely thin and dense layers. This
method accurately computed the scattering from thin dense coatings which ranged
from 1/128’th to 1/ 1980’th of a free space wavelength thick. In comparison, the
method of moment equivalent current approach failed in these cases, even at extremely

high sampling rates.
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