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ABSTRACT

Several available diffraction analyses techniques are compared in this paper. Techniques
including GTD, PO, PTD, and Gaussian Beams, are used to analyze representative reflector
antenna geometries. First the techniques are compared for a flat circular disc, representing
an unfocused system. Next, the techniques are applied to offset ellipsoidal reflectors and the
offset parabolic reflectors. Near-fields, focal-fields and far-fields are determined using these
techniques. Both co-polar and cross-polar fields are compared. The acceptability ranges
of each technique is carefully investigated. Numerical data are presented for representative
configurations and, in particular, field intensities are determined for high power microwave
applications.

I Introduction

Reflector antennas continue to be a highly cost and performance competitive alternative for
medium to high gain microwave antenna systems. In many modern applications such as
satellite communications, beam waveguide fed antennas, compact range measurements, and
high power microwave (HPM) systems, accurate and efficient diffraction analysis techniques
have become indispensable for effective performance predictions of the radiating system.

The purpose of this paper is to review several of the numerous diffraction techniques
(see, for example, [1, 2, 3]) for the analysis of reflector antennas. These techniques include
those which have been used extensively for reflector analysis such as (i) Physical Optics
(PO) [1], (i1) Geometrical Theory of Diffraction (GTD) [4], (iii) Uniform Asymptotic Theory
(UAT) [5, 6], (iv) Uniform Geometrical Theory of Diffraction (UTD) [7], and (v) Theory
of Gaussian Beams [8]. A class of Physical Theory of Diffraction (PTD) techniques, which
are modifications of Ufimtsev’s PTD [9], are also studied: (vi) Mitzner’s incremental length
diffraction coefficients (ILDC) [10], (vii) Michaeli’s equivalent edge currents (EEC) [11], and
(viii) Ando’s modified physical theory of diffraction [12]. Comparative results are presented
for flat circular discs (an unfocused system), offset ellipsoidal reflectors, and offset parabolic
reflectors (focused systems).

Most of the earlier literature emphasize the analysis of the radiated far-field of reflector
systems. However, a knowledge of the near-fields has become important for recent appli-
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cations such as HPM systems, compact range measurements, and multi-reflector antenna
designs. This paper presents comparisons among the various techniques for both near-field
and far-field scenarios. Extra emphasis will be given to the offset ellipsoidal reflector because
of the scant literature describing its characteristics [13].

Although this paper deals only with the conic-section reflectors, all the techniques could
equally well be applied to reflectors of arbitrary shape. Furthermore, since many shaped
reflectors are perturbations of conic-section reflectors, it is the opinion of the authors that
the conclusions drawn about the accuracy and applicability of the various techniques can be
extended to shaped reflectors.

IT Circular discs

The PTD (physical theory of diffraction) and GTD (geometrical theory of diffraction) tech-
niques listed in Table 1 will be studied in this section by analyzing the scattering from a
conducting circular disc of radius a (Fig. 1). The feed is a short dipole located a distance d
in front of the disc center. This problem is chosen because it facilitates effective comparisons

among various techniques.

I1.1 formulation

The PTD techniques that will be studied are modifications of Ufimtsev’s physical theory of
diffraction [9]. In these techniques, the total scattered field consists of two components, the

physical optics (PO) field and the fringe field:
EPTD — EPO + E’f’r. (1)

In the far field region, the PO field can be constructed by [1],
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where ¥ is the scatterer surface, f is a unit normal of the surface, 24 x H* is the PO current,

and 1 is the unit dyad. The dyad (I — ##) serves to extract the transverse (to #) component
of the surface integral. The fringe field is determined by the electric and magnetic equivalent
currents along the scatterer edge:
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where dl’ is a differential path length along the scatterer edge I'. For every point on the
scatterer edge a local coordinate system &' — g’ — 2’ is defined (Fig. 1) in a manner that 3’ is
along the tangential direction of the edge. Therefore, the vector 2’ in equations (4) and (5)
varies along the integration path. The equivalent edge currents I°? and M®? in equations (4),



(5) can be written in terms of the tangential (to scatterer edge) components of the incident
field and the diffraction coefficients D, D, and D,, as
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where ' is associated with the incident direction and ¢’ is associated with the observation
direction, both with respect to the local coordinate system. Mitzner’s [10], Michaeli’s [11],
and Ando’s [12] formulations differ in the detailed expressions of the diffraction coefficients.

The total scattered field in Keller’s GTD [4] is divided into a geometrical optics (GO)
part and a diffracted part. The detailed expressions for these field components can be found
in [14, 15]. The singularities of GTD at the shadow boundary (SB) and reflection boundary
(RB) are cured by its uniform versions, UTD [7] and UAT [5, 6]. In UTD, Fresnel integrals
are incorporated to smooth out the singularities in the diffracted field. Similar Fresnel
functions were introduced in UAT to modify the GO field so that the singularities in the
diffracted field can be cancelled.

I1.2 Numerical results

Computer programs have been developed based on these formulations and computations
have been conducted for various disc sizes at different frequencies. The co-polar and cross-
polar field components calculated by these techniques will be compared with those obtained
from PO and the method of moment (MoM), which is treated numerically exact. In the
following, typical numerical results will be demonstrated and discussed. Since Mitzner’s
solution happens to be the same as Michaeli’s solution for this problem, their common
solutions will be referred to as the ILDC solutions.

The far-field patterns obtained from various techniques are shown in Fig. 2 for a small
disc (a = 1.5), d = 2.75)). Several facts can be observed from Fig. 2: (1) Compared to the
MoM solution, physical optics predicts the field patterns reasonably well up to 30 degrees.
The ignored edge effect in PO can be observed most clearly in the far-angle region. (2) All
PTD and GTD techniques predict the dip near § = 47° and the side lobe near 6 = 60°. (3)
There is a RB singularity in the GTD solution, but not in UTD or UAT. All three GTD
techniques suffer from the caustic singularity at the boresight. (4) Near § = 90°, Ando’s
solution approaches the GTD solutions, which overestimate the actual field levels. (5) ILDC
solution follows the MoM solution closely throughout the whole angular range.

In Fig. 3, the far-field patterns are plotted for a large disc (¢ = 96, d = 176A) where the
method of moments is not easily applicable. As can be seen, the PTD and GTD techniques
agree well except in the last side lobe region. PO solution works well up until 30 degrees,
but starts to deviate from all other solutions thereafter.

The cross-polar fields obtained by the various techniques are also examined. Generally,
the cross-polar fields are very weak around ¢ = 0° and ¢ = 90° for symmetric antenna
configurations, but become significant at ¢ = 45°. Most of the observations for the co-
polar fields discussed above are true for the cross-polar fields, except that PO predicts very
different patterns from those predicted by MoM. This is illustrated in Fig. 4 using a = 6A,
d = 11X. Note that in the PO cross-polar field the first few lobes are not predicted, and



the beating pattern outside the main beam region is “out of phase” with other solutions.
Nevertheless, the envelope of the field pattern outside the main beam region predicted by
PO is not disparate from others for this large disc.

IIT Ellipsoidal Reflector

We will next consider an offset ellipsoidal reflector. This reflector is of special interest since
it gives us a second focal point . The GTD group have a singularity at a focal point and
it is of interest to find how close to the focal point these techniques still yield meaningful
results. The reflector will be defined by the intersection of an ellipsoid of revolution with a
circular cone emanating from one of the ellipsoid’s foci as shown in Fig. 5. This particular
way of defining the reflector will lead to the reflector having a planar edge and an elliptical
aperture [1].

The feed is located at the focus at z = —c. The feed is assumed to be in the far-field of
the reflector radiating a linearly polarized wave with a radiation pattern given in terms of
the feed (source) coordinate system by

E(r,0,9) = Ay
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where A is a constant related to the power radiated by the feed, 5 is the intrinsic impedance
of free space, and ¢, is related to the illumination edge taper as follows [16].

ET = —20log,q [cos?™¥ ] (9)

This particular model for the feed is chosen for its simplicity.
The following sections present an outline of the solution approaches for the scattered fields
as obtained by the GTD, near-field PO, and Gaussian Beam techniques.

III.1 GTD Solution

The GTD solution is an approximate high frequency solution that is useful in determining the
scattered fields of objects that are large compared to a wavelength. For the given incident
field produced by the feed the total reflected field at the observation point (Py) is found
through the asymptotic solution given by Keller’s Geometrical Theory of Diffraction [4]. As
mentioned earlier, this solution can be written in the form

E(Pf) = E, + E; 4+ O(k™) (10)

where the g-subscript represents the geometrical optics field which is of order £°. The d-
subscript represents the edge-diffracted field which is of order k~1/2. These fields can be
thought of as “ray fields” that are locally plane waves.

For the ellipsoidal reflector, the problem of locating the reflection point is significantly
simplified. This simplification occurs since any ray emanating from one focus will also
pass through the other focus. Thus, given an observation point and the location of the
focus through which the reflected ray travels, one has two points which define a line. The
intersection of this line with the ellipsoid defines the reflection point.

To specify the reflected field one needs the radii of curvatures of the reflected rays. We
know that the ellipsoid, according to the GO approximation, will focus all the energy through



the second focus. Thus both principal radii of curvatures of the reflected ray at the reflection
point are equal to the distance from the reflection point to the focus F3.

The geometrical optics field at the reflection point is found through the application of
Snell’s law. In terms of the incident field unit vector, the reflected field unit vector is given
as

é = —€; + Q(ﬁg . éi)'flg (11)
The unit vector €, gives the direction of the electric field for the reflected ray. The vector
7y is the unit normal to the surface at the reflection point. The reflected field can for our
geometry be written as follows

" Anexp[—jk(d, + d2)] .
By(Py) =& 1[~d2(/ll% Py

where d; and d, are the distances from the feed to the reflection point and from the reflection
point to the observation point , respectively. R is the radii of curvature of the reflected field
at the reflection point. Notice that the magnitude of the field will become infinite when the
observation point is at the focus (d2 = R). Further, notice the phase shift of 180° that occurs
when the ray passes through the focus. This phase shift has been discussed extensively in
the literature and is known as the Phase Anomaly or Gouy’s phase shift after the French
scientist who first discovered it.

The edge-diffracted field is due to the contribution from diffraction points lying on the
edge of the reflector. These diffraction points are found through the application of the law
of edge diffraction. The total diffracted field is found by summing up the contribution from
all of the diffraction points. The diffracted field is given by the expression [4]

(12)
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in which g(kdy) is a cylindrical wave factor, DF is the divergence factor, and D, are the soft

and hard diffraction coefficients. Detailed expression for each of these terms can be found
in the literature [14, 15].

II1.2 Physical Optics Solution

In a scattering problem we can find the scattered near-field from the integral representations

— . - 1 -
B o= —jou [ [Jg-i-ﬁ(J-V)Vg] ds’ (14)
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where J is the induced current on the scatterer and g is the free-space Green’s function given

by

e—ikR
g = 4r R (16)
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and ¥ is the surface of the scatterer. These equations can be derived through the Stratton-
Chu formulation [17]. The Physical Optics method (PQO) assumes that the scatterer is an
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infinite ground plane and thus, assumes J to be given by
J =24 x H (18)

where 7 is the normal to the surface and H' is the incident H-field. This approximation for J
has been shown to be useful for relatively large and smooth scatterers. The accuracy of this
approximation becomes questionable near the edges of the scatterer since the PO current
does not satisfy the Meixner edge condition . The PTD techniques described in the previous
section attempt to compensate for this deficiency. Although we will not present the PTD
solutions for this reflector, the techniques are applicable for the analysis of reflector antennas
[18, 19]. A computer program was written that numerically evaluates the integrals in Eq. (14)
and (15) using two-dimensional nine-point Gaussian quadrature and subsectioning.

I1I.3 Gaussian Beam Solution

A method frequently used for the solution of beam waveguide and lens problems is the theory
of Gaussian beams. Gaussian beams are a result of an approximate analytic solution to the
wave equation. We assume that the beam consists of field components purely transverse to
the direction of propagation and that the phase varies essentially as a plane wave. That is,
we look for solutions to the scalar wave equation of the form.

E(wayaz) = EO¢($7 y’z)e—jkz (19)

The factor ¥(z,y,2) describes how the beam deviates from a plane wave. Substitution
of Eq.(19) in the wave equation and assuming a paraxial beam, we find the fundamental
Gaussian mode which is given in cylindrical coordinates by

6000 = 2o [y~ (g ~ 00 20

where R(z),w(z) and ®(z) are defined as

R(z) = 2 l1 + (’r;‘f )2] (21)
(o) =t [1+ (5 2
&(z) = arctan [W’\ZEJ (23)

The first term in the exponent is a radial amplitude factor, the second term is a radial phase
factor, and the last two terms are longitudinal phase factors. The term w(z) is called the
beam width and gives the radius at which the field has fallen off to a value of e~ times
the value on the axis. The term R(z) is the radius of curvature of the phase front. Fig. 7
illustrates the propagation of a Gaussian beam:.

In order to compare the Gaussian beam solution with the PO and GTD solutions, we
have to specify the feed pattern in the same fashion. That is, we have to relate the cos?(9)
feed pattern to a Gaussian beam. We can determine the beam waist and its location for the
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equivalent incident Gaussian beam by equating the radius of curvature, and the e=! point
of the cos?(d) pattern to that of the incident Gaussian beam.

Using the assumptions of Gaussian beam propagation we can replace the ellipsoid with
an equivalent lens of focal length f given by [8]

1 1 1

7 & + Z (24)
in which d; 3 are the distances from the focal points F} 2 to the reflection point for the central
ray of the incident beam. The reflected beam is found through the transformation in radii of
curvature as the beam passes through the equivalent lens. The beam width is assumed to be
unchanged passing through the lens. It can be shown that the beam waist of the transformed
beam is given by the equation

Wey = Yot (25)

rw?
V(@ f =1+ (Sye
where w,; and w,; are the waists of the incident and reflected beams, respectively. Further,
the location of the waist is given by

Zl/f —1
(21/F)* + (53)?

in which z; 5 are the axial distances from the reflector to the beam waists for the incident
and reflected beams. Given the location and size of the waist of the Gaussian beam, together
with the direction of the central axis, we can evaluate the scattered field.

II1.4 A Generic Offset Ellipsoidal Reflector

Let us choose an ellipsoid given by a = 40X and b = 50X. This ellipsoid has focal length,
f = 20X and eccentricity, e = 0.6. Consider a reflector produced by specifying 8 = 57 /6,
a = 7 /12. Referring to the geometry of Fig. 5, these specifications lead to a reflector with
an elliptical aperture described by a’ = 19.73) , and ¥ = 16.85\A. Such a reflector could
conceivably be used in a beam waveguide or a Gregorian antenna system. Having specified
the reflector, we also need to define the feed of this system. We choose to investigate the
case of a feed pointing towards the center of the reflector as seen from the feed. The taper
of the feed is determined by the choice of ¢, and ¢,. For the particular value of o chosen, a
value of ¢, = ¢, = 50 will lead to a feed edge taper (ET) of —201log[cos*°(a)] = 15.06 dB.

Figs. 8-9 show the magnitudes and phases for the dominant components of the E-field
along the central reflected ray, as obtained using the GTD, PO and Gaussian Beam methods.
We see that away from the focal point in the main beam direction, the GTD and Gaussian
Beam solutions both give results that are very close to the PO solution. Near the focal point
both the Gaussian Beam and the GTD methods predict erroneous results for the magnitude.
The Gaussian Beam method predicts a phase that is very close to that predicted by PO even
though the magnitude differs. Notice also that the GTD solution displays the same sort of
ripple as the PO solution in both its magnitude and phase.

Let us graph the magnitude of the fields of this reflector in a line that is perpendicular
to the reflected ray and lies on the x-z plane. Fig. 10 chows the magnitude of the E-field
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along this line. Notice that the fields are given in terms of dB Volts/wavelength. These
units are defined as 20 log,o[E(Volts/wavelength)]. We see that the Gaussian Beam solution
is close to the PO solution around the focal point, but becomes drastically erroneous as one
moves away from the focal point in the direction transverse to the main beam direction. The
GTD solution is in error close to the focal point, but it provides accurate results away from
the focal point. We see that with a prudent combination of the GTD and Gaussian Beam
methods one could establish a correct field distribution in the focal region while avoiding the
time consuming PO integration.

II1.5 Effects of Varying the Geometry

The accuracy of the various approximate techniques is strongly problem dependent. The
problem described in Figs. 8 and 9 is a highly focused system. That is, the subtended angles
are large. For this system the GTD solution is accurate to within a few wavelengths from the
second focal point. Consider now a geometry with much smaller subtended angles. Figs. 11
and 12 show the scattered magnitude and phase along the central reflected ray of a system
where 8 = 7/6 and o = w/12. As can be observed the GTD solution is in this case in
error over a region covering ten’s of wavelengths. The Gaussian Beam solution follows the
PO solution relatively closely. This is expected, since the Gaussian Beams are based on a
paraxial approximation.

Figs. 13 and 14 shows the magnitude and phase of the scattered field for the case where the
reflector is relatively large, and the feed edge taper is very high, 45dB (low edge illumination).
In this case we see that the Gaussian Beam solution tracks the PO solution very closely.

II1.6 Regions of Validity of the GTD and Gaussian Beam Methods

It is apparent from the previous sections that a combination of the fundamental mode Gaus-
sian Beam method and the GTD method can, in many cases, give an accurate description
of the caustic region fields of an offset ellipsoidal reflector. The difficulty lies in determining
in which exact regions and for what type of geometries each of the methods provide good
results. Let us try to provide some general guidelines. The Gaussian Beam solution will give
good results as long as the assumptions made in the derivation of the Gaussian beams are not
violated. That is, the divergence angles should be small, less than approximately 30 degrees.
Further, the beams should have beam widths of the order of A or greater. Finally, the edge
taper should be large (low edge illumination) so that the truncation of the Gaussian Beam
will not affect the results significantly. When the divergence angles are large, the Gaussian
Beam method approaches the GO solution and it becomes erroneous near the focal point.

There are three major drawbacks of the Gaussian Beam approach. First, since it is a
scalar analysis it contains no information with regards to the cross-polarized fields. Second,
it fails when the observation point is more than a few beamwidths into the geometrical
shadow region, even for edge tapers that are relatively large. Third, the Gaussian Beam
solution is not easily modified to account for feed displacements, and for patterns that are
not circularly symmetric. It should be mentioned that the inclusion of higher order Gaussian
modes can mend the second deficiency.

The GTD solution although failing at the focal point, gives accurate results for both
magnitude and phase as long as the angle subtended by the reflector at F; is large. For
this situation the location of maximum field strength is close to F3 which is what GTD

13



predicts. The GTD solution gives accurate result in shadow regions and does contain in-
formation about the cross-polarized components. Its accuracy in the focal region increases
with increased edge illumination.

There are two major drawbacks of the GTD solution. First, it is not valid at or close to
the focal point. Second, it is not able to predict correct results even far from the focal point
when the reflector is small or the subtended angles are small (less than about 30°). That
is, it does not predict any defocusing. Given a specific reflector one needs to keep in mind
the above mentioned limitations of the approximate methods in order to obtain an accurate
picture of the field distribution. If the edge tapers are low and the subtended angles are
large then the GTD solution will yield results that are accurate everywhere except very close
to the focal point (less than a few wavelengths from the focal point). For a reflector of this
type the GTD solution will yield more information than the Gaussian Beam solution. The
Gaussian Beam method as presented here will not be able to predict the focal field strength
for this type of reflector. However, for a reflector with small subtended angles the GTD
solution fails everywhere except for very close to or very far from the reflector. For this type
of reflector the Gaussian Beam results should be used.

IV  Parabolic Reflector

The same computer programs that were developed to analyze the offset ellipsoidal reflector
can be applied to the analysis of an offset parabolic reflector by letting the eccentricity of the
ellipsoid approach unity. The scattered near-field, far-field, and Fresnel-fields obtained by
these techniques have been compared in order to obtain some information about the relative
accuracy of the various techniques for this geometry. Fig. 15 shows the far-field radiation
pattern of an offset reflector with F/D=1 and a diameter of 30A. We see that as was the
case for the circular disc, the GTD technique fails drastically along the boresight direction
but gives reasonable accurate patterns past the first sidelobe. In this case the failure of the
GTD technique is “three-fold”, since in the boresight direction we have caustics for both the
GO field and the diffracted field, and additionally, this is also the direction of the shadow
boundaries. Notice that the GTD solution fails on the shadow boundaries. The use of
the uniform theories (UAT, UTD) would eliminate this problem. The fundamental order
Gaussian beam solution gives a reasonable value for the peak of the main beam but does
not predict any sidelobes. Figures 16 and 17 show the Fresnel-field and near-field radiation
patterns of the same reflector system.

For certain applications such as high power microwave (HPM) applications there is a need
to know the near-field power density, in order to predict maximum power levels limited by
air breakdown. Fig. 18 shows a plot of the scattered near-field power density of an offset
parabolic reflector that has a feed radiating a total average power of 1 GW at 1 GHz. Fig. 19
shows the total field (scattered plus incident) for the same system. Notice the standing wave
that occurs in front of the reflector. It can be seen from Fig. 19 that if we assume that
the air breakdown occurs at a field strength of 10 V/m, then the total field in front of the
reflector could exceed the breakdown field strength.
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V Conclusions

In this paper, several of the existing diffraction analysis techniques including GTD, PO,
PTD, and Gaussian Beams were applied to representative reflector geometries. The scat-
tered fields in the near-field, focal-field, and far-field regions were determined for various
reflectors using these techniques, and both co-polar and cross-polar field components were
considered. The ranges of acceptability of each technique was carefully identified. Numerical
results were presented to illustrate comparatively the accuracy and applicability of each of
these techniques. Also, field intensities were determined for high power microwave (HPM)
applications. The GTD and PO/PTD techniques were applied to circular discs and it was
found that Mitzner and Michaeli’s solution provide the most accurate fit to the MoM solu-
tion. GTD, PO and Gaussian Beam techniques were applied to offset parabolic and offset
ellipsoidal reflectors and it was found that in many cases a combination of the fundamental
mode Gaussian Beam technique and the GTD technique can yield accurate representations
of the scattered field, thus avoiding the sometimes very time consuming PO integration.
The results demonstrated in this paper gave useful suggestions and justifications for the
applicability of each technique in applications such as satellite communications antennas,
beam waveguide fed antennas, compact antenna range measurements, and high power mi-
crowave (HPM) systems, where accurate near- and far-field predictions are required.
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Table 1: PTD and GTD techniques studied for circular discs.

PTD techniques
ILDC: Mitzner’s incremental length diffraction coefficients [10].

EEC: Michaeli’s equivalent edge currents [11].
Ando: Ando’s modified physical theory of diffraction [12].

GTD techniques
GTD: Geometrical Theory of Diffraction [4].

UTD: Uniform Geometrical Theory of Diffraction [7].
UAT: Uniform Asymptotic Theory [5, 6].
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Geometry of the disc-dipole radiation system.

Co-polar far-field patterns (¢ = 0°) for a circular disc of radius a = 1.5\ and a
disc-dipole distance d = 2.75). (All curves normalized to boresight PO field.)

Co-polar far-field patterns (¢ = 0°) for a circular disc of radius a = 96\ and a
disc-dipole distance d = 176). (All curves normalized to boresight PO field.)

Cross-polar far-field patterns (¢ = 45°) for a circular disc of radius @ = 12X and
a disc-dipole distance d = 22\. (All curves normalized to boresight co-polar PO
field.)

Offset ellipsoidal reflector geometry.

: Rays contributing to the scattered field for the GTD solution.

Propagation of a Gaussian Beam.

|E,| along the central reflected ray for an offset ellipsoidal reflector with b = 504,
a =40\, 8 =57/6, a = n/12, and a y-polarized feed with ET = 15 dB.

Phase of E, (in degrees) normalized to exp[—jk(d; + d3)] for a reflector with
b=50), a =40\, 3 =57/6, a = 7/12, and a y-polarized feed with ET = 15 dB.

|E,| along a line perpendicular to the central reflected ray for an offset ellipsoidal
reflector \gith b= 50\, a =40\, 8 =57/6, a = v /12, and a y-polarized feed with
ET = 15 dB.

|E,| along the central reflected ray for an offset ellipsoidal reflector with & = 50,
a =40\, f =7/6, a = 7/12, and a y-polarized feed with ET = 15 dB.

Phase of E, (in degrees) normalized to exp[—jk(d; + d2)] for a reflector with
b =250\, a =40\, 8 =7/6, a = 7/12, and a y-polarized feed with ET = 15 dB.
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|Ey| along the central reflected ray for an offset ellipsoidal reflector with b = 100,
a =80\, 8 =57/6, = /12, and a y-polarized feed with ET = 45 dB.

Phase of E, (in degrees) normalized to exp[—jk(d; + d3)] for a reflector with
b = 100X, ¢ = 80\, f = 57/6, o = 7/12, and a y-polarized feed with ET = 45
dB.

Far-field (R = 1000)X) co-polarized pattern of an offset parabolic reflector with
F/D =1 and D = 10A and with a feed radiating 1 kW of power, having an edge
taper of 10 dB.

Fresnel-field (R = 50)) co-polarized pattern of an offset parabolic reflector with
F/D =1 and D = 10\ and with a feed radiating 1 kW of power, having an edge
taper of 10 dB.

Near-field (R = 20)) co-polarized pattern of an offset parabolic reflector with
F/D =1 and D = 10X and with a feed radiating 1 kW of power, having an edge
taper of 10 dB.

Scattered near-field of an offset parabolic reflector with F/D = 1 and D = 3m
and with a feed radiating 1 GW of power at 1 GHz, having an edge taper of 10
dB.

Total (scattered plus incident) near-field of an offset parabolic reflector with
F/D =1 and D = 3m and with a feed radiating 1 GW of power at 1 GHz,

having an edge taper of 10 dB.
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