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ABSTRACT

DOTIGI is a computer code developed for the study of the interaction
of arbitrary clectromagnetic signals with thin-wire structures, in the time
domain. It calculates the current distribution induced on the structure by
solving the electric field integral equation using the moment method. The
numerical procedure used to develop the program and different possibilities for
treating junctions are briefly described.

To obtain an accurate solution for the current induced on the thin-wire
structures it is very important to pay attention to the zones at which the wires
intersect. Thus, different junction treatments were tested for several simple
structures. Following some convergence criteria the current distributions were
compared to a reference solution and also, by way of Fourier transform, with
results obtained using some well known frequency-domain codes.

1. INTRODUCTION

Recent developments in high-resolution radar and electromagnetic-pulse technology
(EMP) have generated interest in their interaction with structures. This can be studied either
by using time-harmonic analysis followed by Fourier inversion or solving directly in the time
domain using a time-step algorithm [1]. The time domain approach not only offers computational
advantages but sheds light on the problem in a way that is not possible using frequency-domain

techniques [2].

The first step for such an analysis is to calculate the electric current induced on the



surface of the structures. As they arc normally very complex, a common technique is to
approximate the surface geometry by a sct of joined wires. To obtain an accurate numerical
solution for the structure current distribution, particular attention must be paid to the zones at

which the wires arc joined together [3].

In this paper different treatments for the study of the junctions arc presented in order
to compare how stable and accurale the solution is obtained. The treatments were applied to:
a cross ol wires, a stepped-radius wire, a net (Fig. 13) and a dodecahedron (Fig. 16), when
illuminated by a transient electromagnetic field. The currents induced on the wires werc
calculated in the time domain by solving the electric field integral equation (EFIE) using the
moment method. The results obtained using the different junction treatments were compared,
by Fourier transform, with those obtained from the computer code NEC-2 [4], working in the

frequency domain, and [or the dodecahedron with the AWAS code [5] as well.

2. NUMERICAL METHOD

DOTIGI compulcs, in the time domain, the currents induced on a structure modelled by
interconnected wires when it is cxcited by an arbitrary electromagnetic signal. The method
employed consists of resolving the clectric field integral equation (EFIE) using the moment

method. This equation for a thin wirc is [6],[7]:

g g g5 Lot E & It
s s, O =2 f S Tlsh e e S TS 1) 5

LRt /
Fq(s,t)]ds

where § and § are tangent vectors to the wire axis of contour C(s') at position s(r)=s and
s(r')=s" I(s’,t’) and q(s’,t") are the unknown current and charge distributions at source point s’
at retarded time t'= t-R/c and E' is (he field applied to the observation point R = |TT| (See
Fig. 1). The charge q(s’,1") can bc expressed in terms of I(s,t’) by the equation of continuity.
Using thc point matching form of the moment method, integral eq. (1) was transformed

into the group of cquations (in matrix notation) [8],]9]
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which allows us to calculate the current I; at time t; from the elements EY of the tangential



electric field scattered by currents of previous times and the elements E/, of the tangential applied
electric field at the observation point and at time step t. Matrix Z is a matrix of interaction, the
elements of which are time-independent. They depend on the geometry and on the

electromagnetic characteristics of the structure alone [10].
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Fig. 1 Geometry of the thin wire

The base function used was a nine-point lagrangian interpolation, which in the case of

a single wire can be written
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where I;;(s",t") is the value of the intensity current at position 8’ and time t' inside one of the
space-temporal intervals i-j into which the wire was divided. B;;*®) are the coefficients of the
interpolation that depend on s’ and ', and L, y;,, are the values of the current at the space-

temporal interval i+1-j+m nearest to the i interval [8],[10]-[11].

Fig. 2 shows how the space interpolation is carried out for an isolated wire. The current
at a point s’ in the i-segment is interpolated to the values of the currents at the centers of its
neighbouring spatial intervals (i-1, i and i+1) (fig. 2a). The current on the end segments is

interpolated to zero just at the wire ends (fig. 2b) [12].
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Fig.2 Spatial interpolation for a single wire.
a) Not end segments, b) End segments.

3. DESCRIPTION OF THE DIFFERENT MULTIPLE-JUNCTION TREATMENTS.

When dealing with structures that have several interconnected wires, the assumption that
the values of the currents at the ends meeting at the junction are zero is invalid, so the current
on the segments closest to the junction point cannot be interpolated to zero and the numerical

method described in section 2 cannot be applied [12].

For treating junctions we have modified the method, trying several schemes which are
summarized in Fig. 3; the main differences between them are the way of discretizing the wires

and how the interpolation function is handled near the junction {13]:
T1: Overlapping-segments treatment:

The first method employed was the translation to the time domain of a technique that
had been used successfully in the frequency domain [12]. The method consists of replacing the
actual configuration of N wires that meet at the junction (see Fig. 3a) by a set of electrically
unjoined but overlapping wires (Fig. 3b). It is easy to prove that the way chosen to represent the
overlapping wires satisfies Kirchoff’s first law at the junction. This way is that when N wires meet

at any junction, wire i overlaps one segment onto wire i-1, except that wire 1 is not overlapped



Fig. 3. Different junction treatments. a} Real structure. b) Overlapping-segments
treatment. ¢) Half-segments treatment. ¢) Sum treatment.



onto wire N. A wire is then considered to end not at a junction but at the end of the overlap,

where the current is set to zero. This way each wire can be treated as if it were isolated.

The interpolation of the current on a segment will be to the sum of the current on that
segment and the extra overlapping segment if it exists, as shown by the arrows in the diagram

(Fig. 3b).

As matrix Z in eq. (2) depends only upon the geometry of the structure, the application
of the moment method to a segment and its overlapping segment leads to exactly the same
equation. For a junction of N wires the system of equations (2) has N-1 identical equations (the
number of averlaps). These extra equations were removed and substituted by the Wu and King
condition for the charge at the junction [14], which for thin wires can be expressed as the match
of the derivative of the current over space at each wire at the junction. Therefore, a linear system

is obtained with the same number of unknowns as equations.
T2. Half-segments treatment (Fig. 3c):

Each wire was discretized, locating at each end, segments of half the length of the other
segments of the structure. The current on those half segments is interpolated backwards to the

currents on segments of the same wire, as shown in Figure 3c.

The Kirchoff’s first law and the Wu and King condition described in the T1 treatment arc
imposed adding extra equations to the ones that come from the moment method. In this case the
method leads to a linear system of equations with onc equation more than the number of
unknowns. The system is solved by multiplying eq.(2) by Z transpose, which minimizes the square

EITOT.
T3. Sum treatment (Fig. 3d):

The multiple junction of N wires is treated by interpolating the current from one¢ segment
across the junction to the center of a "ghost segment” with current equal to the sum of the N-1

currents of the other segments at the junction.



It can be seen that the Wu and King condition is implicit in this junction treatment, but
not the Kirchoff's first law, which has been imposed by adding an extra equation to eq. (2) and

solving as described in T2

4. RESULTS

The different junction treatments described in section 3 were applied to scveral simple
structures in order to study the accuracy of the solution obtained and the efficiency of the

method employed.

The first structure analyzed was a cross-wire structure (see Fig. 4). The currents induced

on it were calculated when it was illuminated by a gaussian pulse of the form:

— (4)
E=exp(-g?(t-to)2) 2

with g=5*10° s and t,,,=4.28*107" s, The radius of all the wires was 0.00222m.
In Fig. 5 the current distribution is presented versus time at a point on the first wire

situated 4.6 mm from the junction point (Point O).

In order to compare how convergent the different junction treatments are with respect
(o the number of segments in which the structure is divided, two error criteria werce calculated:
the root mean square current [, and the normalized root mean squarc Current ermor €y, [15].

These variables are defined by:
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wherc N, is the pumber of segments into which the structure was divided and N, the number of
timc intervals calculated in each case. Ny, Nyf and 17 correspond to a reference solution that was

oblained dividing the wires into a sufficiently large number of segments.
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Figd4  Cross-wire structure. p=0.11 m, a=0.00444 m.
Length of the wires: (wire 1= wire 2= wire 4= p;
wire3= 2p).

Figs. 6 and 7 show respectively L., and e, versus the number of segments. The rapidity
with which a technique leads to a stable solution can be estimated from the I, plot. It is
desirable that the curves should approach a constant as soon as possible. As can be seen in Fig.
6, the 1,,, obtained using T1 and T3 approach a constant more quickly than T2. The e, plot in
Fig. 7 also shows that T1 and T3 behave better than T2, that is, these approaches need fewer

segments than T2 to arrive to solution with e, ~ 0.
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Fig. 5. Current distribution versus time at point O on the cross wire structure.
Overlapped and Sum give the same results,
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Fig. 6  Root mean square current versus the number of segments into which the
cross-wire structure was divided.

NORMALIZED RMS CURRENT ERROR
L

20 40 60
NUMBER OF SEGMENTS
« Overlapped +  HALF SEGMENT +  SUM

Fig7 Normalized root mean square current error versus the number of
segments into which the cross structure was divided.

In order to compare our time-domain results with the frequency domain results given by
thc computer code NEC-2 [4] we Fourier transformed them and divided by the transform of the
incident field. Fig. 8 shows the Fourier transformation of the current at a point 4.6 mm from the
junction versus frequency. The results obtained with T1 and T3 agree closely with those obtained

from NEC.

The same analysis was made for the case of the stepped-radius wire (considering it as a

junction of two wires with diffcrent radii) drawn in Fig. 9, when illuminated by a gaussian pulse
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Fig.8 Current at point O on the wire-crass structure versus frequency. a) Real part. b)
Imaginary part. (Overlapped and Sum give the same resuits).

with g=5*10°s" and t,,,,=9.2*10"'%s. Figs. 10, 11 and 12 show respectively the current versus time

at point O, the e,,, error versus the number of segments and the comparison of the Fourier

11



transform of the time-domain results with the ones obtained by NEC. As can be seen, in this case

all the treatments behaved similarly.

Fig. 9. Stepped-radius wire geometry. p= 0.3m, g= 0.2m,
a= 0.002m and b= 0.004m.
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Fig.10  Current distribution versus time at point O on the stepped-radius wire. (Overlapped
and Sum give the same results).

The following structures studied were:

1.- The net of twelve wires represcnted in Fig, 13.

2.- A dodecahedron structure (Fig. 16).

In both cases the electric field incident was proportional to the temporal derivative of eq. (4)

polarized in the x-direction and propagating in the z-direction:

12
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with g=1*10° s and t,,,=4.6*107 s for the net and g=8*10® s and t,,,=5.7*10° s for the
dodecahedron. This incident field was chosen because it has not zero-frequency component and,

therefore, does not excite the circulating current that would exist on structures with closed-circuit

parts [10}.
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Fig. 11 Normalized root mean square current error versus the number of segments into which
the stepped-radius wire was divided. (Overlapped and Sum give the same results)

As the T2 treatment was found to give less accurate results when compared with NEC
and to nced more scgments to arrive at a stabilized solution, for these two more complex

structures a comparison was only made between the T1 and T3 trcatments.

In Figs. 14 and 17 the current distribution is represented versus time at point O on both
structures, and the magnitude of the Fourier transformation of these figures was compared with
NEC and plotted in Figs. 15 and 18. The results for the dodecahedron structure were also
compared with the ones obtained from the computer code AWAS [5]. In both cases the results

arrived at with the T1 treatment (overlapping segments) were found to agree with NEC and

13



AWAS more closely that the ones resulting from T3.
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Fig.12 Current magnitude at point O on the stepped-radius wire versus frequency. (All
the treatments agree closely).
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Fig. 13. Geometry of the net structure.
p=0.2m, a=13.48mm.
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Fig. 14 Current distribution versus time at point O on the net structure.

5. CONCLUSIONS

Different possibilities for treating the multiple junction problem in the time domain have
been compared. They have been called:
T1. Overlapping-segments treatment.
T2. Half-segments treatment.

T3. Sum treatment.

The three junction treatments proposed were specifically applied to the study of the
interaction of a gaussian pulse with:
1.- A cross-wire structure.
2.- A junction of two wires with different radii.
3.- A net of twelve interconnected wires.

4.- A dodecahedron structure.

To analyze the convergence of the method with the number of segments, the root mean

square current and the root mean square error of the current induced on a point on the structure

15



were calculated.
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To ascertain their accuracy we applied the Fourier Transform to our time domain results
and compared them with some well known codes that work in the frequency domain (NEC and
AWAS).

In the light of our criteria, the overlapping procedure seemed to be that which provided
the most accurate solution, requiring the structure to be divided into the least number of
segments. This treatment was, therefore, the one finally included in the computer program we

have developed for studying the interaction of EMP with thin-wire structures, the DOTIG1 code.

Ny

<y

Fig. 16 Geometry of the dodecahedron structure. 1= 0.5m. Wire radii = 0.008m.
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Fig. 17 Current distribution versus time at point O on the dodecahedron.
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Fig. 18. Current magnitude at point O on the dodecahedron struciure versus frequency.
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