ANTENNA ARRAY MODELLING BY PARALLEL PROCESSOR FARMS
Iain Cramb, Daniel H. Schauberr*, Richard Beton, James Kingdon, and Colin Upstill
Roke Manor Research Limited,

Roke Manor, Romsey, Hampshire, SO51 0ZN, UK

ABSTRACT

The fast concurrent implementation of a FORTRAN method of moments analysis of the
electromagnetic properties of an array of tapered slot antennae is discussed. Decomposition of an
existing FORTRAN algorithm for calculation of the currents induced by an incident radiation field in
an infinite array of tapered slot antennae is described. The problem was distributed across an array of
INMOS transputers, yielding significant speed-up over a single CPU. This decomposition was
relatively simple to implement, can readily be scaled to larger processor arrays virtually indefinitely,

and promises linear speed-up with the number of processors in the array.

1. INTRODUCTION

A growing number of electromagnetic analysis problems are being formulated for processing on
parallel processing computers, and transputer arrays represent one of the least costly parallel computer
systems available to the EM analyst. Recently, tutorial papers have appeared to describe the successes
and difficulties one may encounter in solving various types of problems [1, 2]. The objective of this
paper is to describe the way in which a FORTRAN moment method analysis was converted from a
code for a single CPU to a code that utilises several cpus with very high efficiency.

The particular analysis that was converted is for infinite arrays of endfire, tapered slot antennas [3]-[5].
The currents flowing on the metallic fins that comprise an infinite array of tapered slot antennae (figure
1) are determined by using the method of moments to solve the electric field integral equation.
Floquet's theorem is used so that only a unit cell of the structure must be considered, and the version
of the analysis being performed here uses piecewise sinusoidal rooftop basis and testing functions.
Most (over 95%) of the time taken to calculate the currents induced in the antennae is spent filling the
impedance matrix for the 50 to 200 unknowns that are used to model the current. Since this particular
analysis is not the main topic of the paper, only a few sample results are included.

Fi 1 red sl nn

Use of the numerical model for antenna design and development requires computing the antenna
currents for many scan angles and frequencies of operation. Computations for each set of parameters

* This work was performed while D.H. Schaubert was on leave from:
University of Massachussetts at Amherst,
Department of Electrical and Computer Engineering,
Ambherst, MA 01003.

143

are lengthy but tractable with modest CPUs; typical cases require several minutes to a few hours on a
25-MHz 80386/80387 PC. However, typical applications require that dozens, or perhaps hundreds,
of parameter sets be analyzed. It is the objective of this paper of demonstrate that EM analysts can
readily decompose a FORTRAN algorithm of this type to be distributed to an economical transputer
array. The decomposition maintains the input and output features familiar to the user while distributing
the computations for each parameter set to a different processor via a “general purpose”
communications harness that is easily adapted to different FORTRAN algorithms. A request-driven
transputer farming paradigm is used, which provides efficient utilization of the transputer array for this
type of computation. Thus, we demonstrate how easily the total processing speed of the mansputer
array can be used to the benefit of EM analysis codes that were not originally intended for parallel
processing as well as to the benefit of new codes that may be written specifically to exploit the
parallelism in computations for a single parameter set. The controller/worker model is described in
detail in the implementation section below.

2. PARALLEL IMPLEMENTATION

2.1. Paradigms for Parallelism

Parallel systems may be described at various levels of abstraction, and it proves convenient to use the
subclasses conceptual, physical, and logical architectures to describe more accurately what is meant by
'parallel architectures’. This is more than mere taxonomy: understanding parallel processing and
effectively managing parallel systems design and implementation requires different views to be taken
for different purposes, and thinking in terms of these architectural subclasses has been found very
useful in practice.

Conceptual architectures involve the most abstract aspects of parallel processing systems, in particular
the type of computation being undertaken. Most conceptual architectures fall into one of four classes:
control-driven, data-flow, object-based, and logic-based.

Physical architectures deal with the actual physical implementation of such systems. The categorisation
of physical architectures preferred is that introduced by Flynn [6]. It is a classification which
distinguishes four basic combinations of instruction streams and data streams (§ISD, SIMD, MISD,
and MIMD). Flynn's scheme is simpler than most, and is very useful for classifying machines which
are clearly different. This work uses a machine in the last of the above four categories - a transputer
array.

The logical architecture of a system is the architecture seen by applications software designers and
programmers. There are three main types of logical architecture appropriate 10 MIMD machines -
farming, geometric and algorithmic [7,8].

Farming is a controller/worker paradigm in which an overall problem is split into conveniently sized
work packets which are distributed over a number of worker processors in such a way as to
dynamically balance the work load across the processors in the farm. The controller knows about the
work that has to be done, and the worker knows how to do it - each worker has an identical copy of
the code. The controler sends batches of work to each worker; the latter executes its algorithm on a
batch of data then returns the results, starting to work on the next batch pending any message
transmission. The primary advaniage of the task farm is the fact that it dynamically balances the
ioading of an overall problem across a network of processors. A potential disadvantage is that each
worker has to have a copy of the complete code, which can lead to problems if memory is limited.

An architecture of this type is most appropriate to an application in which firstly, the work packets may
require different amounts of processing - that is to say the amount of work for each is packet-
dependent. Secondly, and perhaps more obviously, the overall task should naturally lend itself to
temporal concurrency. This means that as far as is possible, the processing of any individual packet
should not depend upon the processing of any other packet. Complete independence may not actually
be possible; packets may have some positional or other relationship to each other. However, such an
architecture does demand that the final result does not depend upon the order in which the packets are

processed.

144

In contrast with the automatic run-time load-balancing in a farm, geometric and algorithmic
architectures, which exploit data concurrency and algorithm concurrency respectively, have to be load-

balanced at design time,

In geometric parallelism, the parallelism inherent in the data is exploited. The problem will generally
" have an underlying geometrical structure (this is often very similar to SIMD array processing), and
when this is the case, the array topology reflects the data topelogy. In geometric parallelism, as in
farming, each processor has an identical copy of the complete code for the whole program, but each
works on separate pre-defined portions of the data space, i.e., each processor is responsible for a
specific area or volume of the data set.

Algorithmic parallelism is the case in which the parallelism inherent in the algorithm is exploited, e.g.
with a pipeline. In a distributed memory machine, each processor has its own segment of the code, and
this is different from processor to processor. The topology of the machine typically reflects the
topology of the data flow graph on which the algorithm is based.

Many architectures are, in fact, hybrids of two or all three types, but our decomposition is purely a
farm. The logical architecture is described in more detail a little later. Before giving the description we
present a brief summary of the various techniques used in implementation of parallel software.

2.2, Implementing Parallel Software

There are several distinct approaches to implementing parallel software. The quickest, and the one used
in this case, is to use existing codes within a specially created communication harness. Possible
parallelism is identified at the procedure level, separate code segments are isolated, and then a
communication harness is constructed. Slight modifications may be needed to the existing code - the
extent of this depends on the manner in which the original code was written. According to how well
the existing code is written, this approach usunally requires less effort than either implementing the
same algorithm in a more appropriate language (e.g., Occam) or than making a completely fresh start
with respect to algorithm and language, and provides a significant return.

2.3. Transputers and Parallelism

Confusion is often caused in discussions of transputer-based software by the ambiguous use of the
term parallelism, Three distinct forms of parallelism may be observed in a multi-transputer
implementation.

Firstly there is the case of separate transputers running separate processes. This is genuine
simultaneous operation of concurrent or parallel processes, similar to having two or more independent
computers running side by side.

Secondly. a single transputer may be running several processes in a time-sliced mode. This is

analogous to the forms of pseudo-parallelism performed on many conventional machines, e.g., those

running processes under an operating system such as Unix or VAX VMS. Time slicing is performed
on a time scale which is short compared to the process lifetimes. It should be remembered that each of

the parallel processes on a single transputer is competing for cpu time, and in the same way that

another user on a VAX makes operation seem slower, every extra process will slow down the

operation of those already there.

The time-slice mechanism of the transputer is implemented in hardware, and is particularly efficient
compared to many similar systems. In particular, processes waiting for communication are removed
from the active process list {descheduled) and incur no cpu overheads.

The third form of parallelism concems the hardware of the transputer. The T800 contains a fixed-point
cpu, a floating-point processor, and four bidirectional serial communications link engines; all of these
elements can function simultaneously and independently. This is particularly important in relation to
communications. If the ime required to pass a message is less than the processing time required to do
the work generated by the previous message, then the communications can be done in the background
with little impact on the time required to generate the desired results.

145

The link engines operate by DMA. For a message to pass between two processors, the cpu must
provide the link engine with a start address and a byte count. This cpu overhead for communications
means that it is more efficient to pass long messages (e.g., a few kbytes) than short ones (e.g., single
bytes).

In this paper we are primarily concemed with the exploitation of the genuine parallelism of running
separate processes on separate processors.

3. ALGORITHM FOR THE CPU

The analysis was originally coded in FORTRAN for implementation on a single CPU. The code is
comprised of a main program which performs data input and output, and controls the computations by
calling subroutines that fill the impedance matrix and solve the system of equations. A typical matrix
element is obtained by evaluating an expression of the form [9]:

N M

qu = Z 2 Koo B(r]nn T]r)nn

_ (nAV) sin(Bmpa)
(Bmna) [cos(Uga) — cos Pmnal

Kmn

_ sin(Vm W) cos(nAZg)[cos(nAhg) — cos(khg)]
Vin(k2-n2A2)sin(k hg)

™ - sin(nAzp)sin(nAWp)[cos(Vmhp) — cos (k hp)]
me (mA)&2-V2) sin(k hp)

q iV
an el¥m¥q

elVmYp

By = \/ K2- v 0242 Im{Bpa) <0

2
Vm = ksinfgsing, + m FK

Up = k sinfBycosdg

k=m\/p{,eo

8, ¢p = main beam direction
a,b = array grid spacings in x and y directions
A =increment of the spectral variable
Yq» 2q = coordinates of center of basis function q
yp.Zp = coordinates of the center of testing function p
hg,Wq = half-length and half-width of basis function q
hp, W = half-length and half-width of testing function p

The upper limits of the summatons required for convergence are typically +/- 15 for m and 500-1500
for n. The large range of the upper limit for n is due to this parameter being sensitive to the antenna
geometry. The FORTRAN code uses the common practice of storing various terms that comprise
Kmn, B} and T]r)nn so that they are not recomputed when needed for successive sets of the indices.

146

Total storage requirements are kept 1o a reasonable level {1-3 MBytes) by proper nesting of the ioops
onm, n,p and q. The problem possesses an inherent parallelism because the computations are usuaily
performed for several scan angles, which provides a simple way to divide it up into independent sub-
problems. Except for a few initialising calculations, the various scan angles do not share any common
data, but the code that is executed for each angle is identical.

4. THE FORTRAN FARM

4.1. Topievel architecture

The architecture used in this case is shown in figure 2 - a ring. Data and work packets pass round the
farm in the same direction. All file access and control is provided by the driver and the calculations are
performed by the worker processors. The communications harness was written in the parallel
processing language Occam, and all the original file access, control and calculation code was retained.
The result is about 600-700 lines of Occam and about 2000 lines of FORTRAN. Occam was chosen
for the communications hamess because it is a natural language for describing parallel communications
within a computer program and it was the quickest means available at the time of creating an efficient
communications harness. Further data on the transputer system are contained in table 1.

Table 1 m characteristi
Hardware Compliers
Meike M10 computing surface Inmos Occam compiler for the

communications harness

T800 transputers (20 MHz, 4 cycle RAM)

T800 maximum computing power = 1Mflop

VAX3800 maximum computing power = 3-4 Mflops Meiko Fortran 77 compiler for the
main program

Worker 7

Coantroller

300 lines occam
Thousands ol
lines of

300 lines occam
Thousands o

300 lines occam
Thousands of

300 lines occam
200 lines of
FORTRAN

requasts

———-
FORTRAN
resuils

results

figure 2 Toplevel architecture

In this case the most convenient decomposition was to perform the calculations for different scan
angles on different processors. This is the simplest approach possible, and is also the one which yields
the highest ratio of computation load to communications load. The work packets passed out to the farm
consist of little more than the scan angle at which the calculations are to be performed - a few bytes of
data at most, whereas the calculations for each angle require between one and two hours of T80 cpu
time.

4.2, Communications paradigm

The simplest type of communications harness for a farming decomposition is one in which the driver
processor passes work packets out to the farm as quickly as possible, and each worker processor
accepts data if it is free to do some work, or passes it on if not. This flood-fill approach to supplying
the workers with data for processing is not appropriate in this case, because it is necessary for each
worker to have buffer processes in which work packets must be stored temporarily whilst the
processor decides whether to pass on the data or accept it for processing - the minimum possible

147

number of buffers is one. This is not usually a problem for decompositions in which the number of
processors in the farm is one or two orders of magnitude less than the total number of work packets.
However, in a case where the total number of work packets to be processed is only twice or three
times the number of processors in the farm, the flood-fill approach can have very serious
disadvantages. Work packets are often left stranded in buffers in such a way that at the end of a
processing run the last two or three packets are processed one after the other by the same processor.
This is not noticeable in cases where there are hundreds, or even thousands, of individual work
packets, each of which takes a few milliseconds to process. If there are only a few tens of packets and
a similar number of processors, as there are in this particular decomposition, then the total compute
time can be significantly greater than if the farm were used with the maximum possible efficiency.

We have adopted an approach which removes the necessity for any buffering on the worker processors
- the farm is request driven. The driver only passes work packets out to the workers when they
specifically request it. Each packet is tagged with the address of the requesting worker and no other
processor may accept that packet. This approach can reduce farm efficiency if the work packets are
large because there is then a significant delay between a worker sending out a request and receiving its
work package, during which time the processor stands idle; but for this problem the work packets are
at most ten bytes, and for a transmission time around ten microseconds per processor the
communications delay is insignificant.

4.3. Performance

Typical processing runs were over 20 to 55 scan angles with 10 to 20 worker processors avatlable.
The results below are for a particular example of 52 scan angles (8 = 0° to 859 in 59 steps and ¢ = (°
to 900 in 45° steps) distributed over 17 processors: the time taken for the processing run was 7.61
hours. The same processing run on a VAX 3800 with a floating point accelerator took 37.32 hours:
even without the benefit of the extremely efficient FORTRAN compiler available on the VAX, the
transputer system is four times as fast. This increase in compute power allowed overnight production
of results which would otherwise have taken two days of dedicated VAX 3800 cpu time.

The VAX 3800 is chosen for comparison because its characteristics are widely publicized and these
machines, or similar ones, are often available to EM analysts. Obviously, newer workstations could
outperform the VAX 3800, but newer transputers also could outperform the T800.

4.4. Sample Computed Results

Typical results for the input impedance of the antenna depicted in figure 3 are shown in figures 4 and
5. These curves are similar to those one might obtain for any well-behaved phased array antenna. The
resistance versus scan is reasonably constant near broadside and then drops to zero at endfire. In the
H-plane (¢ = 0) and the E-plane (¢ = 90), the reactance changes are opposite. The same array,
operating at 3.725 GHz, exhibits at grating lobe at 54.99 in the principal planes. The reflection
coefficient for this case is shown in Figure 6. The data in Figures 4, 5 and 6 were computed by using
77 rooftop-like current modes on the metal fin. These modes and a closely related formulation of the
electromagnetic problem are described in (9], as are issues related to convergence and validation of the
analysis. To summarize those findings, the summation limits mentioned above are adequate for
computing the impedance to an accuracy that agrees within 1 or 2 ohms with published data for test
cases, such as dipoles and monopoles, and also agrees well with waveguide simulators for other

cases.

5. CONCLUSIONS

We calcnlate that the ratio of communications to compute load for this particular application is so small
(a few milliseconds versus half an hour) that the farm size could easily be increased to several hundred
processors without significant (or even visible) degradation of efficiency. This implies linear speed-
up. This assumes either that a more finely grained decomposition for this algorithm could be found
without excessively increasing the communications load on the farm, or that one would desire to
compute the antenna response either for many thousands of scan angles, of for several tens of scan

148

3.0 -

ficure 3 Unit cell of linearly tapered slot antenna. Dimensions in ¢m and H-plane spacing = 4.43 cm.

g0
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5

0 =TT T

L L B T Y
0 5 1015202530354045505560657075808580

Resistance (chms)

Theta (deg)

figure 4 Resistance against sean angle for three values of phi, Phi = 0 is H-plane and frequency =
2.54GHz.

149

Reactance (ohms)

80 -

70

18

—a— PHI=0
—— PHI=45

—— PHI=80
T 1Tl Tl rrJTr1rrryryrrrrrrrrr1r 17 "¢ " v "1 "1 %1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 B0 B85
Theta (deg)
fi R in ngle for v f phi
1.0
0.9 E-plane
c8q m====- H-plane
0.7 1
] N B
0.6 ‘-
J 4
0.5 /
1 7
0.4+ ,’
1 Z
0.3 4
b 7
0.2 1 e
ra
1 4
0.1 R4
E -’/"
0.0 —TrTrr T T T T T T
0 10 20 30 40 50 860 70 80 90
Theta (deg)
Magnitude of reflection coefficient for f fi 5 operat

150

GHz.

angles at many different frequencies. Increasing the number of processors is easy, finances permitting
- in the software, a single constant defining the number of workers is changed and the communications
harness is recompiled - the FORTRAN is completely unaffected. We estimate that a 32 processor
system, offering an order of magnitude speed-up over a VAX 3800, complete with all necessary
software and additional hardware could be purchased for less than half the price of the VAX.

An alternative to increasing the number of processors, or redesigning and recoding the algonithm to
suit a finer grained decomposition, is to use different hardware. Examples of high performance cpus
available, or soon to be available, are the INTEL 1860 and the INMOS T9000 wansputer. These would
both offer performance improvements over the T800 of at least a factor of ten - the 1860 is already
available (with communications handled by transputers), and the T9000 is expected to be available late
in 1991. The i860-transputer hardware can be obtained for around £10,000 per i860; as yet the muly
exceptional performance of this chip (upto 60Mflops - 60 x T800 transputer power) is only available to
those who are willing to hand craft their algorithms in the appropriate assembler. Currently available
compilers achieve between 5 and 10 Mflops. Between the times of writing the original manuscript and
the revisions, the cost of 1860 boards has been reduced more than 50 percent. However, at present, it
appears that the 30 Mflops/£20,000 cost effectiveness of the transputer farm employing T80('s is
superior to that of multiple i860's that would be required to achieve 30 Mflops with currently available
compliers. This means that the i860 is, as yet, no more cost effective than the transputer - we are not
yet able to comment on the T9000.

6. REFERENCES

[1] Hafner, C., 1989, “Parallel Computation of Electromagnetic Fields on Transputers”, IEEE Ant.
Prop. Soc. Newsletter, 31, no 5, 6-12.

[2] Davidson, D.B., 1990, “A Parallel Processing Tutorial”, IEEE Ani. Prop. Soc. Magazine, 32,
no 2, 6-19,

[3] Lewis, L.R., Fasset, M., and Hunt, J., 1974, “A Broadband Stripline Array Element”, Digest of
1974 IEEE Symp. Ant. Prop., 335-337, Atlanta, GA.

[4] Gibson, P.J., 1979, “The Vivaldi Aerial”, Digest of 9th Eur. Microw. Conf., 120-124,
Brighton, UK.

[5] Yngvesson, K.S., Korzeniowski, T.L., Kim, Y.S., Kollbert, E.L., and Johansson, 1., 1989,
“The Tapered Slot Antenna — A New Integrated Element for Millimeter Wave Applications”,
IEEE Trans. Microw. Th. Tech., MTT-37, 365-374.

[6] Flyan, M.J., 1966, “Very high speed computing systems”, Proc IEEE, 54, No 12, 1901-1909.
[7] Pritchard, D.J., 1987,"PARLE Vol 1", Lecture Notes in Comp. Sci. No. 258, Springer-Verlag.

[8] Beton, R.D., Tumner, S.P., Upstill, C., 1989, “Hybrid Architecture Paradigms in a Radar ESM
Data Processing Application”, Microprocessors and Microsystems, 13, No. 3, 160-164.

[9] Cooley, M.E., Schaubert, D.H., Buris, N.E. and Urbanik, E.A., 1991, “Radiation and
Scattering Analysis of Infinite Arrays of Endfire Slot Antennas with a Ground Plane”, to appear
in IEEE Trans. Ant. Prop., AP-39, No. 11.

151

