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ABSTRACT

A method for evaluating the threshold for electric and magnetic stimulation of nerves surrounded by an
inhomogeneous, anisotropic, and dispersive tissue has been developed. The scalar potential distribution induced by a
given electric or magnetic source is evaluated by using the Finite Difference Technique. Calculations are performed
with a FORTRAN code, and for non dispersive tissues a spread-sheet is also used. Nerve fiber excitation is described
by using the Frankenhaeuser-Huxley model in which the stimulating current densily is oblained by extending the
method proposed by Rattay. The analysis results predict that, with reference to the homogeneous case usually
considered in literature, the larger differences in the current threshold are due 1o the tissue inhomogeneity, while the
consideration of the dispersive properties of the tissues has less effect.

INTRODUCTION

Tunctional electrical stimulation (FES) is a technique for the rehabilitation of spinal-cord injured patients. It makes
use of electrical stimulators to induce currents through the membrane of nerve fibers. These currents trigger action
potentials (APs) that propagate along the nerve and induce muscular contraction by means of the synaptic
mechanisms still active in paraplegic subjects.

Practical FES realizations concern both upper and lower limbs. For lower limbs Marsolais and Kobetic [1987] have
developed a hand-operated stimulator (open loop) that applies trains of biphasic current pulses to the motor point of
muscles by using percutaneous intramuscular wire electrodes. Graupe et al. [1988] have realized a closed loop
stimulator in which the stimulating current was controlled by the electromiographic (EMG) signal of the upper
trunk. Extracutaneous electrodes have been used to stimulate and to measure the response-EMG signal of the
stimulated muscles. Paraplegic subjects using this system were able 1o walk for 300 meters and some of them conld
climb stairs.

With regard to upper limbs' applications, Buchett et al. [1988] have graded hand movement in quadriplegic subjects
by using, as a controller, a shoulder position transducer. The transducer delivers its output to the stimulator module
that, in turn, applies current pulses Lo the muscle by means of percutaneous electrodes. In the controller of their
stimulator, Crago et al. [1976] have linearly combined the force and position signals of the hand grasping an object.
In this manner and by varying the pulse width of the stimulating current, they could control the finger position,
before object acquisition, and both grasp force and opening, after contacL.

All the cited authors apply monophasic or biphasic current pulses to the limb to stimulate nerve fibers innervating
muscles. For this reason many researchers have studied the threshold response of a nerve fiber to a current signal by
introducing different electrical models for the excitation and propagation of the APs,

McNeal [1976] studied the response of a myelinated nerve fiber to a cathodic pulse applied with a spherical
electrode. The electrical behavior of the fiber was simulated with a cascade of 11 dipoles (each rcpresenting a
Ranvier's node) with the central one modelled by mcans of the Frankenhaenser-Huxley (F&H) equations [1964]. To
evoke an AP with the clectrode 1 mm away from the fiber, 100 ps and 226 pA current pulses were necessary.
Rattay [1986, 1988, 1989] extended the McNeal's study by considering both myelinated and unmyelinated fibers and
electrodes with different geometrigs. Gorman and Mortimer {1983] analyzed the possibility of a selective excitation
of the fibers inside the nerve by varying the electrical parameters of the stimulus. They obtained selectivity by
using byphasic stimuli of appropriate widths. Veltink et al. [1989] studied the samc problem as a function of the
clectrode position showing the possibility of selective excitation of the fibers using intraneuronal clectrodes.

Nerve stimulation has been also performed by using time varying magnetic ficlds. This method seems painless
compared to the conventional electrical stimulation and, for this reason, has been recently investigated. In particular,
Polson et al. [1982], proved experimentally the feasibility of magnetic stimulation of nerve trunks. In their
experiments the magnetic field was generated by the discharge through a coil of the charge accumulated on a
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capacitor bank. Theoretical investigations have been performed, by using both the F&H [1964] and the Hodgkin-
Huxlcy (H&H) models [1952], to evaluate the threshold of nerve stimulation indoced by magnetic fields [Reilly,
1989; Roth and Basser, 1990; Basser and Roth, 1991].

All the quoted authors have studied the action on the nerve of currents flowing through a homogeneous, isotropic,
and non dispersive medium. These conditions are never fulfilled practically. The purpose of this work is to develop
a mcthod for evaluating the nerve current threshold for electric and magnetic stimalation for the nerve fiber
sutrounded by an inhomogengous, anisolropic, and dispersive tissue. The proposed method first evaluates the scalar
potential distribution induced by a given electric or magnetic source by using the Finite Difference Technique (FDT)
(in the magnetic case, the vector potential distribution is previously evaluated starting from the coil current and
position), then it relates the scalar and vector potential distribution along the nerve to the current density crossing
the nerve membrane, and finally it computes the nerve response to the resulting current density,

The cmphasis in this paper is on the description of the numerical technique used to solve the EM problem, on the
characterization of the dispersive properties of the tissue, and on the introduction of a modification of the activating
function proposed by Rattay [1986].

METHODS

Finite Difference Technique

FDT has been widely used for studying the scalar potential diswribution in a biological tissue due to known
electrical [Sowinski and Van Den Berg, 1990; Heringa et al., 1982; Stock et al., 1988] and magnetic sources
[Armitage ct al., 1983; Gandhi et al., 1984; Polk, 1990; Polk and Song, 1990]. In this section, it will be shown
that it is possible, starting from the Maxwell equations, to associate an electrical network with the region under
study. The network consists of admittances, whose valucs are related to the electrical properties of the tissucs
forming the region, and gencrators representing the electric and magnetic sources.

To define the electrical network we divide the volume of interest into homogeneous parallelepipedic cells of sides
Ax, Ay, Az centered in (x,y.z) (Fig. 1):
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Fig. 1 Unit cell of the FDT lattice.
For each cell we consider the Maxwell equation (assuming harmonic fields):
VxH= Jo +Ja+ Jio = [0] F +j@[e]E + Jie =[0"1-E +J:e O
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where:

J. = conduction electric current density,
Ja = displacement electric current density,
Jie = impressed electric current density,
[6] = conductivily lensor,

[e] = permittivity tensor,

[6'] = [o]+jole] = complex conductivity tensor.
In the Cartesian coordinates, the conductivity tensor takes the form (in the absence of any static magnctic ficld):

60 0
=] o oy 0 (2)

0 0 o;
In eq. (1), the clectric field can be expressed in terms of scalar (V) and vector (A) complex polentials as:

E = -joA -VV (3

Upon taking the divergence of (1), volume integration and subsequent application of the divergence theorem, we
obtain:

—Eﬁ[o*]-Vv-nds—§[a‘1-ij-nds+§jie-nds=o @
N s

s
The FD'T consists in approximating the derivatives in (4} by the corresponding incremental ratios, thus obtaining:
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where L, represents the impressed current at the node (x,y,2), positive when going out of the cell. The superscripts
- and + in the expression mean that the quantity is evaluated on a specific face of the parallelepipedic cell. For
examplc 0';+ represents the complex conductivity on the face between the cells centered in x and x+Ax (see Fig. 1).
Conlinuity of the complex current at the x¥ surface requires that Ox Ex = Oxsax Exsax = Oy Ex, where E,. is given
by the negative of the potential gradient in (5) (in the absence of the vector potential and impressed current) and Ex
and Exsax arc the x-directed component of the electric fields evaluated, respectively, at x and x +Ax. To satisfy this
condition we introduce the complex admittance:

Ay-Az _ 205-Gyms Ay-Az
Ax Gt Orinx  AX

Y. =(o%) 6

Similar admittances can be obtained for the other coordinates. With this substitution (5) becomes the Kirchhoff's
current equation for an electrical circuit made by a threc-dimensional star of admittances and current generators.
Fig. 2 shows this circuit for the two-dimensional case.
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Fig. 2 Two-dimensional representation of the basic circuit.

Bath for an electric current stimulation applied directly to nodes, and for a magnetic stimulation applied through an
external coil, the potential distribution in the volume of interest can be evaluated by solving a set of simultaneous

equations, namely, one per node:

Viyz= 1 _— Y Ve .
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This set of equations is solved using an iterative technique with successive overrelaxation [Ralston and Rabinowitz,

1975]. This technique computes successive estimates of the potential by taking the previous estimate plus a
correction terms;

V“+1(x,y,z)=V“(x,y,z)+a[V,_y'z-V"(x,y,z)] ®)

where V**(x,y,z) and V"(x,y.z) are the potentials at the (x,y,z) node evaluated at steps n+1 and n respectively,
V5.2 i given by (7) and o is the relaxation constant (1< a < 2). The procedure is terminated when the following

criterion is verified:

N
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where N is the total number of cells [Veltink et al., 19891,
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In the magnetic stimulation we firstly evaluate the vector potential on the cell surfaces, produced by the coil taking
into account its position, geometry and current. As reported by Polk [1990], for the frequencies, conductivities, and

distances considered in our work (1 + 106 Hz; 0.013 <+ 0.5 S/m; 1+ 100 mm), we can apply the quasi-static
approximation, and the vector potential can be expressed as:

-t

where Ji represents the volume current density that flows in the coil and produces the magnetic field. The vector
potential at the center point of the cell surfaces is evaluated by approximating the coil with a 64-sided polygon and
summing the contributions of each side [Roth and Basser, 1990]. Starting from the value of the vector potential on
the cell surfaces it is possible to evaluate the intensity of the current generators (Fig. 2). Finally eq. (7) is iterated
up-to convergence.

Cross-Sectional Geometry and Electrical Properties of the Forearm

In our study we model the stimulation of the right forearm cutaneous nerve "antebrachii medianus” at the level of
the third proximal. This nerve is not usually stimulated for rchabilitation purposes and it is chosen just to show the
technique.

To identify the cell grid for the FDT, the cross-sectional anatomical picture of the right forearm at the level of the
third proximal, reported in Sobotta and Becher [1983], is digitized into a computer by using a scanner (PC Scan
1000 DEST) with a resolution of 300 pixels per inch. The section is then subdivided into 30x25 square cells of
3mm side, each homogeneously filled with the prevailing tissue (Fig. 3).

In the three-dimensional study we consider parallelepipedic cells of 3x3x2mm sides. For each cell, the longitudinal
dimension (2mm) is chosen to correspond to the internodal distance in myelinated fibers and it allows us to
evaluate, by using the FDT, the scalar potential for Ranvier's nodes [McNeal, 1976]. The forearm structure is
assumed to be cylindrical and it is obtained by superimposing a given number of parallelepipedic cell layers.

With each cell we associate a conductivity and a permittivity that, in some cases, are different in the transverse and
longitudinal directions (anisotropic tissues). The conductivity values are taken from various experimental reports
[Geddes and Baker, 1967; Stuchly and Stuchly, 1980; Polk and Postov, 1986]. For the permittivity we consider the
frequency dependence, and use the analytical expression for the permitivity to interpolate the experimental data from
Polk and Postow [1986] (see third and fifth column of Table I). The interpolating function gives a good fit of the
experimental data for frequencies from dc to about 10MHz.

Sink electrod nerve cutaneous
clrode antebrachii medianus

O Air
Skin
B Fat
@ Muscle
H Bone
B Tendon
@ Nerve

-

Radius

\i\ Reference

= electrode
Fig. 3 Diagram of the forearm cross-section.
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Biological Transversal Transversal Longitudinal Longitudinal
Tissue Conductivity Permittivity Conductivily Permittivity
o (S/m) £ry Oz (S/m) £ra
Air 0 0.0 1.0 | - 00 1.0
Skin 1 0.5 1053503 Logiol+ 1) 0.5 1055 USLEEGUTT)
Fat 2 0.05 1°0-tegtolih 0.05 10>~ -eB10+D)
Muscle 3 0.08 10°9-Legiedt+ 1) 05 105503 Log1oli+T
Rone 4 0.013 1o+ eriot+ D) 0.013 1070 g0t D)
Tendon 5 0.013 1 04-U<35Logmu+1) 0.013 107 T T Logiol+ T3
Nerve 5 0.05 105 OSLogiotD) 0.5 10% O STRERTD)
Table 1

Modeling of Nerve Fiber Excitation

The nerve model used to evaluate the threshold response of the fiber is that of Frankenhacuser and Huxley (F&H)
[1964] (Fig. 4). The stimulating current density in this model is evaluated extending the method proposed by Rattay
[1989]. Rattay showed that, in simulating the stimulation of a nerve fiber with external electrodes, the current
density uscd in the F&H model is proportional to the longitudinal derivative, evaluated at the node of Ranvier, of
the longitudinal component of the electric field.

Because of the dispersive propertics of the tissues the scalar potential at each point inside the forcarm varies with
the frequency of the stimulating current. For this reason we introduce in the frequency domain a complex transfer
function T(f} defined, at each frequency, as the ratio betwecn the current density stimulating the nerve (Js(f)) and the
applied electrode current (I.). Extending the Rattay model in the frequency domain this ratio can be expressed as a

function of the scalar and vector potential distribution along the nerve:

T(D={§£ﬂ= daz Vz-m{f)-ZVz(zf)"' Vzvm(f)_'_ijz* - Agr [m?] (11)
I 4pLlL A7 Az

To cvaluate the time behavior Jg(t) of the stimulating current density, first we apply the Fouricr-transform o the

electrode current, then the obtained frequency spectrum is multiplied by T(f), and, finally, the inverse Fourier
transform of the result gives the time behavior of the current deasity Jg(t) used in the F&H model,

¢m = mecmbrane capacitance / unit area
Em = membrane conductance / unit arca
OUTSIDE d = axon diameter
10 p; = intracellular fluid resistivity
L = node of ranvier width
Tna I Ip ) Ic Az = miemodal distance '
Cm = c¢mndL = membrane capacitance
G, v Gm = gmmdL = membrane conductance
C ® INa = sodium current density .
y Jk = potassium current density
R —r Jp = nonspecific delayed current density
‘ J = leak current densit
L y
INSIDE J) 1 = Inatig+Ip+lp
VYm = membrane voltage
VR = resling potential

Fig. 4 Equivalent circuit representation of the F&H model and list of symbols used.
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The time behavior of the membrane voltage Vi, in response to the stimulating current density is evaluated by
solving the differential equation:

% = E}rm— (-3t + Js (t)} a2

Four additional differential equations with nonlinear coefficients are necessary to evaluate Ji(t) [Frankenhaeuser and
Huxley, 1964]. This set of five differential equations has been soived by using the Runge-Kutta numerical method
[Ralston and Rabinowitz, 1975]. As an example Fig. 5 shows the time behavior of the membrane voltage in
response to 120us current density pulses with different amplitudes. The figure shows that excitation occurs for
amplitudes above 775 pA/em? with the considered signal.

MEMBRANE YOLTAGE (m¥}

J
L4
[=]

o 2 A 6 8 1 t2 14 16  1e 2
TIME (ms)

Fig. 5 Time behavior of the membrane voltage in response to 120us current density pulses
with different amplitudes; a) 1000pA/cm#, above threshold response; b) 775uA/cm?,
threshold respomse; ¢) SOOMAIcmZ, subthreshold response.

FDT Solution Methods

The electromagnetic problem is numerically solved using a FORTRAN code. For non dispersive tissues, both a
FORTRAN code and a spread-sheet (Wingz™) are used. Spread-sheets have already been introduced in the past to get
iterative solutions of finite difference problems [Hart, 1989a, 1989b, 1990]. In this work the spread-sheet Wingz™
has been chosen for its capability of managing a large number of cells simultaneously, and because of its excellent
graphic capabilities. In the application of the spread-sheet to solve the FDT problem, we first fix the number of
ransverse seclions of the forearm to be considered, then, for cach section, three regions of 30x25 cells are defined on
the spread-sheet. The conductance values of the forearm cells are inserted in each cell of the first region; in the cells
of the second section we place, in the electrical stimulation the sink and references current values, and in the
magnetic stimulation, the sum of the currents of the generators dependent on the vector potential. Starting from the
knowledge of conductivity and electrode matrices it is possible to implement Eq. {7y in a cell of the third region and
to copy it into all the remaining cells. To find a solution of the problem, the iterative technique is applied by using
the spread-sheet property of calculating a new value in a specific cell whenever a variation lakes place in one of the
adjacent cclls. It must be noted that a further aid to the implementation of this procedure is provided by the
possibility of programming the spread-sheet WingzT™™, It uses a high-level programming language, and the
calculations can be executed automatically.

As an example, let us consider a forearm model obtained by superimposition of five sections, that is 3750 grid
points. By considering an clectrical stimulation (f = 0} with a relaxation constant ¢=1.3, the convergence criterion
(9) is reached after 225 iterations. This number corresponds to an execution time of 70 minutes on a Macintosh
SE/30. The same time is necessary to solve the problem with the FORTRAN program on the same computer.
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RESULTS

Electrical Stimulation

The electrical simulation is performed by placing the electrodes on a transverse section of the forearm. The sink
electrode is placed on the skin, 3mm from the cutancous nerve 'antebrachii medianus'; the reference electrode is
placed on the other side of the forcarm (Fig. 3}. The stimulating signal with a pulse width of 120us and a slew-rate
of tmA/ps is shown in Fig. 7a. The pulse amplitude (Ip) is e¢valuated as the threshold value (current threshold)
necessary to obtain the excitation of the nerve membrane, that is a stimulating current density amplitude of
775 pA/em? (threshold current density).

In the following study, three cases will be evaluated:

a) homogeneous and non dispersive,

b) inhomogeneous and non dispersive,

¢) inhomogeneous and dispersive,

In a) the forearm tissue is assumed homogeneous with a conductivity of 0.08 $/m that corresponds (o the transverse
conductivity of the muscle (see Table I); in b) the inhomogeneities of the forearm are considered and for each tissue
the conductivity values shown in Table I are used; finally in ¢} the permittivity of the forearm tissues is introduced
and its frequency dependent behavior is considered as given by the analytical expressions in Table I. The ¢) situation
is the real one, however, the a) and b) cases are analyzed to show the effect of the subsequent approximations on the
current threshold.

a} homogeneous and non dispersive. In this situation the scalar potential inside the forearm does not vary with the
frequency of the clectrode current. The electromagnetic problem is solved in the £=0 case (no vector potential) and by
considering five longitudinal layers of parallelepipedic cells.

The wansfer function T(f} is evaluated using Eq. {11). It can be notcd that by using the FDT the potential is
calculated apart from an additive term that can be ignored since, to compute the transfer function only differences of
potential arc considered. Since T(f) is frequency independent, the stimulating current density is simply proportional
to the electrode current. By applying this current density to the F&H model a carrent threshold value of 65pA is
obtained. This value is close to that found by using, for the evaluation of the potential, the equation: V =p,I 4nR
where [ is the electrode current, p, the tissue resistivity, and R the distance between the electrode and the nerve
[Rattay, 1986]. From this equation evaluated for R=3mm, a current threshold of 100(A is found. In our simulation
we obtain a lower current threshold since the current does not flow in all the directions but only in a confined region
{Fig. 6a), so for the same electrode current the vollage gradient and the corresponding stimulating current density are
higher.
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Fig. 6 Current density in the central layer of the forearm for the homogeneous and non
dispersive tissue (a), and for the inhomogeneous and non dispersive tissue (b).

b) inhomogeneous and non dispersive. The effects of the tissuc inhomogencitics on the current density distribution
arc evidenced in Fig. 6b. Low current values instde the low conductance tissues (bone and tendon in Fig. 3) can be
scen. In this situation, the transfer function is still constant with frequency, but 20 times lower than in a). Higher
pulse amplitudes are necessary to evoke an action potential (1,=1.22 mA with 5 layers).
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¢) inhomogeneous and dispersive. In this case the potential and T(f) vary with frequency. The stimulaling current
density is obtained by using the technique previously described for the dispersive case. By applying the electrode
current shown in Fig. 7a we obtain the stimulating currcnt density Js(t) shown in Fig. 7b. In spite of the difference
in signal shape, the current threshold does not change very much (1.20 mA with 5 layers) with respect to the non
dispersive case b). A time behavior similar to that reported in Fig. 7b has been experimentally obtained for upper
limbs [McGill et al., 19821.

The performed analysis shows that, with refercnce to the homogeneous case, usually considered in literature, the
most important differences are due to the tissue inhomogeneity, while the non dispersive tissue hypothesis does not
cause significant etrors. Since WingzT can be used only for the nondispersive case, the obtained results suggest
that the spread-sheet is a very useful tool for this kind of application.

3

300
00 1200
300 1000
0 ;‘ o
E
-~ =300 05
< <
3 %00 Ir o 00
2 -a0 32 =
Ed
-1200 L) .
-1300 -200 {
1800 -0
IR i e 29 20 %9 W0 40 450 830 W6 60 e 80 100 150 200 230 W0 I 400 430 W0 T 600
TIME(n3) TIME (ns)
{a) {(b)

Fig. 7 Time behavior of the input electrodic current (a) and of the stimulating current
density (b) evaluated in the dispersive case.

Magnetic Stimulation

As in the electric situation, also in the magnetic one, stimulation of the nerve ‘antcbrachii medianus' will be
modeled. The stimulation is obtained by a 30 tum external circular coil having a radius of 2.4 cm (L=0.165mH,
R=3Q) placed 3mm from the forearm (Fig. 3) [Roth and Basser, 1990]. The coil current is generated by the
discharge of a capacitance (C=300.F) initially at a voltage V, . The time behavior of the coil current is:

- e e o/ ([
I (V) (R)z- (L) exp { T t} sinh ( o o t) (13)
2 C

Since in eq. (13) all the parameters are fixed except the voltage Vy, we relate the stimulation of the nerve membrane
to this parameter (voltage threshold).
In the magnetic stimulation we will analyze two situations for the forearm tissue:
a) homogeneous and non dispersive,
b) inhomogeneous and dispersive.
a) homogeneous and non dispersive. In this situation the vector potential in eq. {11) is evaluated by eq. (10}. By
solving this problem, we found that scalar potential values give a negligible contribution to the T(f). The small
scalar potential values depend on the homogeneous tissue assumption; in this case, in fact, therc is no charge
accumulation at the boundaries between different tissues. To further reduce the boundary effect due to the
longitudinal truncation of the forearm, we have increased the number of cell layers (o 49. Fig. 8a shows the transfer
function (f=50 Hz) on a planc containing the nerve and parallel to the coil surface. The maximum of T(f)
corresponds to the point of the nerve that will be excited with the lowest voltage. By shifting the coil center with
respect to the nerve by a distance equal 1o the coil radius the higher current density value is obtained at the nerve
position. Fig. 8b shows T(f) (obtained as in Fig. 8a) in a transverse plane 24 mm {rom the central layer. The figure
shows that, as in the electrical case, the points with highest current density are those close to the skin and the
current density decreases by increasing the distance from the skin. In the magnetic stimulation, however, the region
with high current density is larger than for the electric case.
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Fig. 8 Transfer function on a plane parallel (a) and transverse (b) to the coil surface.
Since the vector potential gives the main contribution to the transfer function T(f), the stimulating current density

is practically related only to the time derivative of the coil current I (a multiplication factor jo in the frequency
domain corresponds to a derivative in the time domain).
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Fig. 9 The coil current (a) and the stimulating current density (b).

Fig. 9 shows the time behavior of the current in the coil (a) and of the stimulating current density (b). These figures
are obtained by applying a voltage Vjof 3250 Volts that represents the voltage threshold for this situation. By
using a model of the mammalian myelinated axon and lightly different coil parameters, Basser and Roth [1991]
obtained voltage threshold values of the same order of magnitude.

b) inhomogeneous and dispersive: By considering the dispersive and inhomogeneous properties of the tissue of the
forearm, the scalar voltage gives a contribution to the transfer function that is opposite to the vector potential one
and it causes a reduction in the T(f) values and consequently an increase in the coil current necessary to excite the
nerve. In this situation we observe a 40% increase in the voltage on the capacitance necessary to evoke a spike on
the nerve (Vo = 4700 Volts). The obtained values for the voltage on the capacitance are similar to those found
experimentally by Polson et al. [1982]. An exact comparison with the Polson data is not possible since the distance
between the coil and the nerve is not reported.
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CONCLUSION

The proposed technique allows to study the threshold for electric and magnetic nerve stimulation by assuming the
nerve fiber surrounded by an inhomogeneous, anisotropic and dispersive tissue. The study shows the importance of
considering the tissue inhomogeneities for evaluating the threshold, while, in the cases examined, the dispersive
properties of the tissue are less important. The proposed method can be used both for the analysis and the synthesis
of FES stimulators, as well as for the study of multi-electrode configurations. To improve the technique, a
reduction of the cell dimensions should be considered. For the same anatomical section, this reduction causes an
increase in the computation time and necessary computer memory. With modern computers, and in view of the
small memory occupations by the FDT used in the present study, it should be possible to extend the technigue.
Another improvement can be obtained by considering a more realistic anatomical picture of the forearm.
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