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Abstract

Users often raise the question of whether it is possible to
analyze eddy current problems with velocity effects within codes
that are not programmed to account for movement. This paper looks
at a technique for applying a conventional boundary element
technique to the analysis of a velocity induced eddy current by
altering the conductivity of the conducting medium as a function of
position. Results of the predicted B fields for v=0 m/s and v=10
m/s are compared to the analytical soclution of a coil traveling
axially down the center of a conducting tube. Good agreement is
achieved; further refinement could be realized by iterating on
conductivity if necessary.

The Boundary Element Approach

The problem to be analyzed is shown in Figure 1. The coil is
excited at 50 Hz and is traveling down the pipe at velocity V. We
analyze the problem with V=0 m/s and 10 m/s. The boundary element
approach (BEM) employed asks what fictitious free surface currents
K, could be placed on the skin of this pipe to account for the
magnetization of the iron and the eddy currents. Actually 2 sets of
surface currents are employed. A skin of currents just inside the
pipe shell perimeter is used to represent the fields everywhere in
the pipe. Another set of currents just outside the shell models the
field in the air. The surface currents on the air side at r just
less than 14 mm, dictate the field in the air region 0<r<14 mm. The
surface currents just outside the skin at r=20 mm, dictate the
field for r>20 m. Once the surface currents are known, the magnetic
field is found simply from Biot-Savart’s law.

For the eddy current problem without movement, the pertinent
equations for H and E are

VxH=0E+J (1)
E=-jwA-Vd® (2)

Writing (1) in terms of the vector potential A yields
With the specified gauge of (3), the curl curl equation can be
replaced by
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VxVxA-k2A=pJ +poVd

Where_gcz=jcopa, (3)
and V-A=pod.
VRA+k2A=-pJ,. (4)

Pipe relative permeabllity = 50
Pipe conductivity = 5.0 E 06 mho/m

L1

Z2=0 is8 at center ;
of the coil :

Translation of Coil, Velocity 10 m/=m

Figure 1 Coil traveling axially down a conducting pipe with velocity V. All dimensions are in millimeters,
The coil is excited at 50 Hz. L1 and L2 are displaced 3 mm outside and inside the pipe respectively.

The integrallzsolution for the vector potential due to a source
current 1is 7,

A(r) =|.|.fG(r, r'Y K (r’)ds’.
where

m (3)
G(r, ) =W [kl il
2T o lr—r’i

Figure 2 helps to elucidate the approach. The fields in
regions 1 and 2 are represented in terms of the surface currents
and external impressed fields H, and E, as

H'=H,+H(K}) (6)

H=H(K;) (7)
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Figure 2 Two-region problem analyzed with BEM.
E*=E,+E(K}) (8)
E"=E(K;) =-jwA- (9)

It only remains to impose the boundary conditions on E and H which
are

fix (B} -E]) =-AxE,; (10)
Ax (H}-H) =-AxH, (11)

Here A is the outward normal to region 1. Note that the condition#:|E|=0
is automatically insured by the use of the equivalent currents to
directly compute B. Employing these boundary conditions yields the
governing equations

jm[pzfe(kz,r, r) Ki(r" ds'-u,$6(k1, 7, ") K; (r') dS'|=-E{ =0 (12)
Sl SI

Results
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*fK} (rh -—Q—G(kz, r,r’y dS’+fK§ (r”) iG(kl,.r..r’) ds!
< on’ o on’

Equations (12) and (13) were applied to the problem both with
the pipe having no relative permeability and with u,=50. Both in

179 linear boundary elements were

+1/2 (K7 (2) +K7 (1) ) =-AxH;

this case and those to follow,

used, resulting in 366 unknowns. The field was predicted along the
The radial and axial fields for the
nonmagnetic pipe with the coil traveling at zero velocity are shown

lines L1 and L2 of Figure 1.

in Tables I and II.

Table I Radial Magnetic Fields

i nonmagnetic pipe, velocity =0
Z (mm) Br on L1 Br on L1 Br on L2 Br on L2
analytic analytic

1.05e-08 9.42e-08

1.2 0.000184 0.000186 0.000824 0.000831
0.000688 0.000693 0.00345 0.00344
12 0.000627 0.000631 0.00119 0.0012
18 0.000396 0.000398 0.000532 0.000536
24 0.000237 0.000238 0.000264 0.000266
30 0.000143 0.000144 0.000142 0.000143
36 0.000089 0.00009 0.000081 | 0.000081
42 0.000057 0.000058 0.000049 0.000049
48 0.000038 0.000038 0.000031 0.000032
54 0.000026 0.000026 0.000021 0.000021
60 0.000018 0.000019 0.000014 0.000014
66 0.000013 0.000013 0.00001 0.00001
72 0.00001 0.00001 0.000007 0.000007

Table II Axial Magnetic Fields

nonmagnetic pipe, velocitx = 0
z Bz on L1 Bz on L1 Bz on L2 Bz on L2
Analytic Analytic

0 0.000889 0.00241

235




1.2 0.000869 0.000876 0.00237 0.0022
6 0.000478 0.000481 0.000166 0.000109

12 0.00001 0.000004 0.000676 0.000681

18 0.000143 0.000144 0.000477 0.00048
24 0.000149 0.00015 0.000315 0.000318
30 0.000124 0.000125 0.000211 0.000212
36 0.000097 0.000098 0.000144 0.000145
42 0.000075 0.000075 0.000101 0.000102
48 0.000058 0.000058 0.000073 0.000074
54 0.000045 0.000045 0.000055 0.000055
60 0.000035 0.000036 0.000041 | 0.000042
66.00001 0.000028 0.000028 0.000032 0.000033
72 0.000023 0.000023 0.000025 0.000026

As expected, the ferromagnetic pipe with p, =50

diminished axial field on L1 outside the pipe. The radial and axial
magnetic fields are shown compared to the analytic solution in

Tables III and IV.

Table ITI Radial Magnetic Fields
magnetic pipe, velocity = 0

z Br on Ll Br on L1 Br on L2 Br on L2
analvytic analytic

7.94e-07 5.96e-07
1.2 0.000015 0.000017 0.00131 0.00132
6 0.00006 0.000065 0.00539 0.0054
12 0.000062 0.000068 0.00154 0.00156
18 0.000048 0.000054 0.000515 0.000525
24 0.000037 0.000042 0.00018 0.000185
30 0.000029 0.000034 0.000064 0.000066
36 0.000024 0.000028 0.000023 0.000023
42 0.00002 0.000024 0.000008 0.000009
48 0.000017 0.000021 0.000003 0.000004
54 0.000015 0.000018 0.000001 0.000002
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60 0.000013 0.000016 5.62e-07 6.65e-07

66.00001 0.000012 0.000015 3.61e-07 3.24e-07
72 0.00001 0.000013 2.87e-07 4.386—gl==

Table IV Axial Magnetic Fields

_ magnetic Eége, velocit¥ =0 ___

z Bz on L1 Bz on Ll Bz on L2 Bz on L2

Analytic Analytic

0 0.000087 0.000459

1.2 0.000085 0.000083 0.000449 0.00064

6 0.000055 0.000061 0.000306 0.000335

12 0.000016 0.000018 0.000079 0.000088

18 0.000004 0.000001 0.000029 0.000033

24 0.000006 0.000005 0.000012 0.000016

30 0.000007 0.000006 0.000007 0.00001

36 0.000007 0.000006 0.000005 0.000008

42 0.000006 0.000006 0.000004 0.000007

48 0.000006 0.0600006 0.000004 0.000006

54 0.000005 0.000005 0.000003 0.000005

60 0.000005 0.000005 0.000003 0.000005

66.00001 0.000005 0.000005 0.000003 0.000005
72 0.000004 0.000004 0.000003 0.000004 |

Velocity Effects

The remalnlng question is how to account for velOCLty'effects
One alternative is to redefine the vector potential in terms of the
axial velocity v of the pipe as

_ povz
A=ae' "z (14)

The governing equation becomes
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V2i-a2d=0
azz(_l:!‘.g_‘f) +jopo.

Solution proceeds by solving for A.

The question in opening this paper seeks a solution without
reformulating the program, i.e., using the same software as in the
zero velocity case. We propose to trick the problem into thinking
it is moving by altering the conductivity in front and to the rear
of the coil. The defining vector potential equation with velocity
is

04 SA)___O_ (16)

VzA—lJ.G(VE * 3t

In cylindrical coordinates, this becomes

1 0 OA\,PA_  OA_ _OA_ A _
36—9(935)+az2 ROV, MO p2 0. (17)

Terms 3 and 4 in (17) both share the common multiplier ¢. One need
merely to augment the conductivity to account for the effect of the
velocity (term 3 in (17)). The steps for incorporating velocity are
as follows:

1) Work the problem assuming v=0. Get A and g—‘; along the tube
(wherever eddy currents exist)

V% +j WA
2) Examine the ratio |—%%

JwA
3) Increase the conductivity by the ratio
V% +7wA

anew=°origim1 ij
4). Repeat if necessary to refine the value of A and %

Note that if the software used forces an entry of real conductivity
as most do, the phase information of your final answer will not be
correct. You are forced to use the absolute value of the ratio in
step 3, but the magnitude should be correct.

Steps 1-3 were performed for problem 9 for the velocities
v=1,10, and 100 m/s. The conductivity profiles along the tube for
these three velocities are shown in Figure 3, Figure 4, and
Figure 5 respectively. Note that as the velocity is increased, the
conductivity becomes more symmetric, indicating the overwhelming
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Conductivity vs Position
v=1 m/s
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Figure 3 Conductivity in the tube for the v=1 m/s velocity case.

Conducﬂvifz vs Position
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Figure 4 Conductivity in the pipe for the v=10 m/s velocity case.

influence of the tﬂgﬂ term compared to jwA.

dz

Results for the v=10 m/s Velocity case

As seen in Figure 3, the effect of the wvelocity on the
conductivity at v=1 m/s is slight. The analytic results differed
generally only in the second decimal place from the analytic
results for the v=0 m/s study. The v=10 m/s case was on the other
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Conductivity vs Position
v=100 m/s
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Figure 5 Conductivity in the tube for the v=100 m/s velocity case.

Radial B Field
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Figure 6 Radial field for the magnetic pipe, v=10 m/s.

hand quite dissimilar. It was thought that this would prove a good
testing ground for the theory. Shown in Figure 6 is the radial
field predicted along Ll and .2 with its analytic counterpart. The
tabular comparison is shown in Table V.
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Table V Radial Field Predictions
v=10 m/s, permeability = 50

z Br on L1 Br on L1 Br on L2 Br on L2
analytic analytic
0 0.000004 0 0.000007 0
1.2 0.000027 0.000059% 0.000013 0.00106
6 0.000057 0.000055 0.005381 0.00525
12 0.000032 0.000028 0.001499 0.00157
18 0.00002 0.000005 0.000492 0.000561
24 0.000014 0.000023 0.00017 0.000217
30 0.000011 0.000031 0.000059 0.000089
36 0.000009 0.000032 0.000021 0.000038
42 0.000007 0.000031 0.000007 0.000019
48 0.000006 0.000028 0.000003 0.00001
54 0.000006 0.000026 8.27e-07 0.000006
60 0.000005 0.000023 2.42e-07 0.000003
66.00001 0.000004 0.000021 6.19e-08 0.000002
72 0.000004 0.000019 5.93e-08 0.000002
Axial B Field
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Figure 7 Axial magnetic field for the magnetizable pipe with coil traveling at v=10 m/s.
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By comparison Figure 7 shows the axial B field predictions
along with those obtained analytically. In both cases some error is
seen in the smallest component of the field, but the resultant is
very close. Table Vi displays this data along with the analytic
predictions.

Table VI Axial Field Predictions
v=10 m/s, permeability = 50

Z Bz on L1l Bz on L1 Bz on L2 Bz on L2
analytic ' analytic
0 0.000072 0.00042
1.2 0.000068 0.000059 0.000409 | 0.000506
b 0.00003 0.000055 0.000293 | 0.000522
12 0.000011 0.000028 0.00008 | 0.000259
18 0.000007 0.000005 0.000025 | 0.000146
24 0.000006 0.000023 0.000007 0.000089
30 0.000004 0.000031 0.000002 | 0.000057
36 0.000004 0.000032 0.000001 | 0.000039
42 0.000003 0.000031 0.000001 | 0.000028
48 0.000002 0.000028 0.000001 }0.000021
54 0.000002 0.000026 0.000001 | 0.000016
60 0.000002 0.000023 0.000001 | 0.000013
66.00001 0.000002 0.000021 0.000001 ] 0.000011
L 72 0.000002 0.000019 9.20e-07 0.000009

The accuracy suggests that the method is quite effective.
Conclusions

Altering the conductivity to account for velocity effects is
a relatively simple technique for accounting for velocity when the
code does not implicitly have such capability. In this example, the
conductivity was altered in the tube in regions to be piecewise
continuous. Only 14 different conductivities were used to model

0A
Vaz+JmA

JwA
in the center of the pipe at the radial line r=17 mm. In reality 3
further modifications would be necessary to get precise results.

Figure 4. Furthermore the ratio O ew=Coriginai . was computed
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1) Alter the conductivity to reflect radial changes in the ratio

V%§+ij
onewzoorigimlT r.
2). Model a continuous change in conductivity as suggested by
Figure 4.
3). Iterate on the solution to refine the conductivities with a
da | .
v=—+tJwAa
oz

closer estimate of o, =0 after the first iteration.

originall J WA .

The accuracy of the answers reflects the fact that the ratio
does not change significantly as one varies the velocity. Also
reasonable predictions of the fields are realized with a rather
crude modeling of the conductivity.

If a complex conductivity is known, it can be inserted to

correctly account for the v%é term. Since this is unknown a
zZ

priori, one is forced to iteratively approached its corect value.
The problem is worked first assuming it is zero, and then updating
the wvalue as suggested above. The accuracy of the results
summarized below were obtained in a single iteration. They enable
the user to obtain a close result without reformulating the Green’s
function integral. Many users do not have access to the code to
make these alterations even if they could formulate the changes.
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