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Abstract - An automatic method of synthesizing resistive tapers is developed.
This method embeds a hybrid moment method[Green’s function inside a
nonlinear optimization package. Using this technique, resistive tapers are
rapidly synthesized for complex scatterers which can consist of multiple
resistive strips, as well as large, arbitrary conducting regions. The method is
applied to the optimization of resistive tapers that reduce the diffraction from
conducting scatterers.

I. INTRODUCTION

Resistive strips are used in various applications to modify the
electromagnetic scattering characteristics of an antenna or scatterer. They are
used to reduce the diffraction from conductive edges or discontinuities [1-2],
approximate an infinite ground plane {3], improve the performance of a
compact range reflector [4], and attenuate energy in waveguide [5]. Even
greater control over the scattering characteristics of the structure are obtained
by tapering the value of the strip resistance [6,7].

While a physical-optics based method for synthesizing effective
resistive tapers has been developed by Haupt [8], it is only applicable for a
simple single strip geometry at E-polarization. The more general problem of
defining optimum resistive tapers for multiple strips in the presence of
arbitrary scatterers for arbitrary polarization is usually done in a trial and
error fashion using established tapers as a starting point. The effectiveness of
the proposed taper is computed using the method of moments (MoM or MM)
or other numerical method (or measurements). While the trial and error
approach to resistive taper design has led to a database of "good tapers”, this
approach is slow and may not result in the optimum taper, if one exists.

In this work, an automated method of synthesizing optimal resistive
tapers is developed. Resistive tapers are computed in a minimum amount of
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time within certain physical constraints. In effect, the trial and error method
is replaced by a nonlinear optimization technique which searches for an
optimal solution. The result is improved taper performance and drastically
reduced design times. To implement this concept, the hybrid MM/Green's
function (HMGF) technique described in [9] is applied to a moment method
which analyzes two dimensional conductive and resistive strips at both E-
polarization (TM,) and H-polarization (TE,). This approach is then
encapsulated within a nonlinear optimization program such as [10, 11]. The
resulting method rapidly computes the scattering levels from a number of
different resistive tapers and searches for an optimum configuration within
user defined constraints. This paper shows that the optimization of moment
method analysis is only practical due to the application of the HMGF
technique. In addition, the simultaneous optimization of a resistive taper for
both polarizations is demonstrated, as well as the optimization of multiple
tapers simultaneously.

II. MOMENT METHOD APPROACH

The choice of moment methods is critical to the efficiency of the
optimization process. For E-polarization, an efficient Galerkin method
developed by the author which utilizes pulse basis and pulse testing functions
for metal and resistive scatterers is chosen. For H-polarization, the method of
Liu and Balanis [12] has been enhanced to include resistive strips. This
method uses pulse basis functions and thereby creates fictitious line charges
at cell boundaries. In practice, the method of [12] provides fairly accurate far
field results as long as the cell widths are about 1/10th of a wavelength. Since
point matching is employed, it is very efficient.

Both the E-polarization and H-polarization moment methods use the
electric field integral equation (EFIE). While the EFIE allows for the analysis
of open structures such as resistive strips, interior resonances may exist for
closed perfectly conducting (PEC) structures.

The EFIE for each moment method is developed by relating the
incident electric field E! to the total field Et and the scattered field ES by

(1) Ei(x,y) = E{(x,y) - ES(x,y).
For resistive strips, the total field is defined as

2) El{x,y) = R(x,y) I(x,y)

where R is the surface resistance and | is the surface current density.
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Substituting (2) into (1) and applying basis and testing functions yields

o ()R (e

where Py, is the basis function for the nth source cell, By, is the testing
function for the mth test cell and Jp, is the unknown current on the nth cell.
The first inner product on the right side of (3) contains the resistive term, and
is defined as

@) AZ=(RIyPpn,Bm)

The term AZ is nonzero when the domains of the basis and testing functions
overlap, and when the resistance of the source domain is nonzero.

Pulse basis and testing functions are applied for TMz polarization. In
this case,

5) AZ =(R] T, Ty )

where I1 is the pulse function. This expression is nonzero when m=n and
contributes only to the diagonal terms of the moment matrix.

Pulse basis and point matching are applied for TE; polarization. In this
case,

) AZ= (R]nI'In,Bm)’

which is also nonzero only for diagonal elements of the matrix. Since (5) and
(6) are nonzero only for diagonal elements of the moment matrices, when the
resistances of the cells are modified, only the diagonal terms of the impedance
matrix are changed, and only by a constant value. If other basis functions
such are piecewise linear (triangular) or sinusoidal are chosen, AZ is nonzero
for off-diagonal terms, and more matrix modification is required when
resistance values are changed.

Once the basis and testing functions are applied, (3) reduces to a matrix

equation Zx=B. At this point, the HMGF method is applied to the system
matrix.
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III. APPLICATION OF HYBRID MM /GREEN'S FUNCTION TECHNIQUE

To apply the HMGF method, the scatterer is divided into two sections.
One of the sections contains the portion of the scatterer where the resistance
could be modified in the optimization process. This section will be referred to
as scatterer 1 (or S1). The rest of the scatterer (the portion remaining
unmodified) is called scatterer 2 (or S2). This is shown in figure 1.

(EL H)

Scatterer 2 9

Scatterer 1

(PEC) ‘

Figure 1. An example: scatterer 1 and scatterer 2.

In figure 1, S1 is a resistive sheet and 52 is a perfectly conducting closed
triangular cylinder. The resistance of each cell on 51 may be modified while
S2 will remain unchanged. The system matrix Z is partitioned as

‘211 Z12

221 422

(7)

where Z11 contains the matrix elements in which the observation and source
points are located on S1, Z12 contains the elements in which the observation
point is on S1 and the source point is on 52, Zp1 contains the elements with
the observation point on 52 and the source point on S1, and Zp7 contains the
elements with the observation and source points on 52. The order of Z17 is
N1, where N7 is the number of cells on 51, and the order of Zp7 is Np, where
Ny is the number of cells on 52.

Performing the linear algebra described in {9], the matrix equation is
reduced from order N1 + N to order N1 and reformulated as

131



-1 -1
@11~ Z12Z45Z21)11 = By —Z212Z,,B2
(8)

where By is the excitation vector for 51, By is the excitation vector for 52, and
I is the current solution for $1. The solution current on 52 can be found
from

-1 -1
I7 =Z,,B2 - Z,,Zp1]1
22 22
9

The monostatic and bistatic scattering from the combination of 51 and 52 can
be computed from the solution currents I and Ip.

IV. APPLYING NONLINEAR OPTIMIZATION

In order to apply nonlinear optimization to this method, the echo
width of the scatterer is computed by solving (8) with the initial (first guess)
resistance values. This computation is three to four times slower than
analyzing the entire scatterer with a traditional moment method approach,
due to the computation of the complete Z; inverse and several matrix
multiplies. At this poinf, the inverse of the Zp? matrix is stored, as well as the
Zq9 and Zp7 matrices. These matrices will not change in the following
optimization iterations.

Once the initial resistive configuration is analyzed, the nonlinear
optimizer computes new resistive values for the cells on S1. The system
matrix in (8) is recomputed by subtracting and adding values to the
appropriate diagonal terms. When the system in (8) is solved during
subsequent iterations, the matrix fill time is very small and the solution time
is drastically reduced compared to traditional moment methods. A
comparison of the CPU time required for optimization of this method and a
traditional moment method are shown in figure 2. These performance
figures demonstrate the feasibility of performing nonlinear optimization on
moment method calculations.
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Figure 2. Comparison of the CPU time required for optimization with and
without applying the HMGEF technique.

The operation of the nonlinear optimizer requires the definition of a
penalty function, which is the function to be minimized. While this function
could be related to any quantity computed by the moment method (surface
currents, near fields, etc.), in this case the penalty function F is defined as

2 1 Ng o
(10) F=3Y — Y o(6))
a=1Ne i=1

where a=1 is TM; polarization, a=2 is TE, polarization, Ng is the number of
monostatic angles, ¢ is the echo width in wavelengths, and 8; is the ith
monostatic angle. The function F is essentially a sector average of the echo
width.

The optimizer attempts to minimize F by modifying the resistive
values on S1. A flow chart of the optimization process is shown in figure 3.
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Figure 3. Flow chart of the resistive taper optimization process.

The choice of nonlinear optimization routines is limited by the type of
function to be minimized. Since gradients of the function to be minimized in
this work (10) are difficult to obtain, optimization methods which do not
require explicit gradients are chosen. In addition, the resistance values of the
cells are constrained to positive values that can be manufactured (it is difficult
to accurately produce and measure resistive strips with resistances much
greater than 3000 ohms/square). Thus, a constrained optimization is chosen.

In this work, the rotating coordinates method described in [10] and the
Complex algorithm [11] are both applied. Both are direct search routines
which utilize different search strategies. As in the case of all nonlinear
optimizers, convergence to the absolute minimum is not guaranteed. To
avoid nonoptimal local minima, the optimization process is carried out with
different starting points and step sizes.
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V. RESISTIVE TAPER OPTIMIZATION APPROACHES

The method developed in this paper is applied to the optimization of
resistive tapers on S1 in two different fashions. In the first, the resistance
value of each cell is an optimization parameter, while in the second approach
the coefficients of a polynomial function are the parameters.

The first approach provides a very flexible approach to taper
optimization, but often results in resistive tapers which cannot be constructed
due to large fluctuations in the values of the resistances along the strips.
These fluctuations in the optimal taper can be reduced by constraining the
resistive values properly. However, it may still be difficult to create a smooth
taper by optimizing in this fashion, and the effective bandwidth of the taper
{the frequency range over which the taper has acceptable performance) may be
small.

In the second approach, polynomial optimization, the nonlinear
optimizer adjusts the coefficients of polynomials over each resistive taper in
S1. For instance, if the user chooses a quadratic polynomial taper,

(11) R(x)=ax2+bx+c¢ (0<x<1),

coefficients a, b and c are modified by the optimizer. The variable x is the
normalized distance along the strip.

The natural result of this optimization is a smooth taper (with the
smoothness dependent on the order of the polynomial), as well as improved
bandwidth. However, the performance at the frequency of optimization wiil
probably be inferior to the first method. Thus, the first method is better for
narrow band designs, and the second method is better for broadband designs.
A comparison of the echo width and optimal taper computed by these two
approaches for an example problem consisting of a flat resistive strip in front
of a PEC is given in figures 4 and 5.
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Figure 4. Comparison of echo width for resistive strip optimization using
individual cell optimization and polynomial function optimization.
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Figure 5. Comparison of resistive taper functions for resistive strip
optimization using individual cell and polynomial function optimizations.

In figure 5, the optimal polynomial and individual cell values are
shown as smooth and piecewise linear functions, respectively. In the context
of the moment methods used in this work (5-6), the resistance of each cell is
defined as a constant. Therefore, the functions in figure 5 are approximated
by a set of step functions in the moment method discretization.
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VI. OPTIMIZATION RESULTS

The first of two simple example problems is shown below.

2 ) Resistive strip 3 PEC strip 2 )\ Resistive strip

Figure 6. A single resistive strip scatterer.

In this problem, the leading and trailing resistive strips are optimized
at both TM; and TE; polarizations using a quadratic taper that is constrained
to resistive values between 3000 and 1 ohms/square. The initial values of
each resistive strip are 200 ohms/square with no variation along the strips.
The resistive strip scatterer 51 consists of 40 cells (20 cells on the leading edge
and 20 cells on the trailing edge), and the metal scatterer S2 is divided into 30
cells. Figure 7 compares the echo widths of the optimized scatterer to the
initial scatterer for TMz and TE; polarization. The penalty function in both
problems is the average monostatic echo width of the scatterer from +30 to -30
degrees, sampled every 5 degrees.
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Figure 7. A comparison of the initial and optimized monostatic echo width
from the scatterer in figure 6.

The resulting optimal quadratic taper on the leading edge strip is
(12) R(x) = 3000x2 + 131x + 6
and the optimal taper on the trailing edge strip is
(13) R(x) = 2778x2 + 4x + 10.

where the zero value of x in (12) and (13) is located at the junction of the
corresponding resistive strip and PEC.

The optimization results in figure 7 require 496 iterations of the
resistive values and 150 CPU seconds on a VAX 6510.
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Both of the optimization techniques [10, 11] have been applied to this
example, yielding nearly identical results. The results in figure 7 are obtained
using the optimization method of [10].

In the second problem, another identical strip scatterer is placed 0.75
wavelengths above the original scatterer as shown in figure 8.

2 A Resistive strip 35 PEC strip 2 % Resistive strip

2 A Resistive strip 34 PEC strip 2 ) Resistive strip

¥

Figure 8. Two parallel resistive strips.
In the scatterer above, the four resistive strips making up 51 are
divided into 80 cells and the PEC strips making up S2 consist of 60 cells. The

same penalty function is used as in the previous example.

Figure 9 compares the echo widths of the optimized scatterer in figure 8
to the initial scatterer for TMz and TE; polarization.
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Figure 9. A comparison of the initial and optimized monostatic echo width
from the scatterer in figure 8.

The resulting optimal quadratic taper on the leading edge strips are

(14) R(x) = 3000xZ + 4x + 1 (upper)
R(x) = 2990x2 + 4x + 3 (lower)

and the optimal taper on the trailing edge strips are

(15) R(x) = 1975x2 + 12x + 12 (upper)
R(x) = 1065x2 + 14x + 4 (lower).

The optimization results in figure 9 require 430 iterations of the
resistive values and 534 CPU seconds on a VAX 6510.
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VII. CONCLUSIONS

In this work, an automatic method of synthesizing optimum resistive
tapers for multiple arbitrary resistive strips in any scattering environment has
been developed. The optimization is performed simultaneously for both TE,
and TM; polarizations. The results of individual cell and polynomial
function optimization are demonstrated and compared. The efficiency of this
method due to the application of the HMGF technique is shown. While two
dimensional results are shown here, this method could be easily applied to a
three dimensional moment method structure.
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