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Abstract: The MMP modeling of different scatter-
ing structures is discussed. It is shown that highly ac-
curate neer and farfield simulations are possible, not
only for simple academic structures such as spheres
or cubes, but also for a multiturn helical wire of finite
thickness and an absorbing ferrite cylinder placed
on a cable. Some lypical problem clessifying fig-
ures (symmetry, ervor, number of equations, maich-
ing poinis etc.} are defined in order lo classify and
compare different problems. MMP’s symmelry ezr-
ploitation concept (reducing both memory and cpu
time) is explained. Although the amount of calcula-
tion increases when edges or lips are preseni, rather
small radii of curvature may be treated using (curved
or straight) line multipoles.

1 Introduction

The MMP program package [1,2,3] (multiple multi-
pole program) is a frequency domain tool for com-
putational electromagnetics with piecewise homoge-
neous, linear and isotropic, possibly lossy materials.
The basic MMP-approach consists of a series expan-
sion of the unknown electromagnetic field using (two-
vector-valued} expansion functions which are solu-
tions of Maxwell’s homogeneous equations. ‘Homo-
geneous’ has two meanings here: 1. ‘no impressed
sources’, i.e., no impressed charge density g and no
impressed current density 7 and 2. po spacial {(and
time) variation of the material parameters. Since
material properties may change from subdomain to
subdomain, all expansion functions are restricted to
a single subdomain. Impressed sources may be taken
into account by including their fields in the ‘zero-th
term’ of the expansion {excitation).

An intelligent choice of the expansion functions
keeps their number low and therefore yields a low
number of unknowns. Since the original multipole
expansions (we call them point multipoles or conven-
tional multipoles) are excellent for sphere-like struc-
tures, but less efficient for thin wires, edges and cor-
ners, special expansion functions {‘line multipoles’)
have been developed for the latter cases {3,4]. The
purpose of this paper is

¢ to give a short description on the behavior of both
point and line multipole functions,
¢ to show how the MMP modeling process is modi-
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fied when line multipoles are used, possibly be-
side conveniional multipoles and other expansion
functions,

¢ to discuss the advantages and drawbacks of the
line multipoles vs. the point multipoles in differ-
ent applications,

¢ to discuss the solutions for the solved problems.

Starting with MMP’s most simple example (scatter-
ing at a sphere), we shall describe the modeling of
more complicated structures and show the increase
of both memory requirements and computation time
when the structure deviates from a sphere and when
dielectric, lossy or magnetic materials are involved.

The use of geometrical symmetries — even if
the field itself is not symmetrical — reduces both
memory requirements and computation time. MMP
decomposes the full problem in up to eight (even
and/or odd) symmetrical subproblems which are
solved individually. Superimposing the subsolutions
delivers the {generally non symmetric) field for the
full problem. The symmetrical problems solved in
this paper will clarify the advantage of MMP’s sym-
metry exploitation concept.

It is one of MMP’s strengths that the accuracy
of a sirnulation may be reliably estimated within the
numerical technigue, i.e., for the validation of the
results neither comparisons with other calculation
techniques nor measurements are necessary. In spite
of this fact, in specific cases a comparison with the
results of a different technique may be quicker than
the exclusive use of MMP’s intrinsic validation tools.

A second point is that MMP — in particular its
front ends, the PC version [2] and the unix version
mmptool! [5] — offers very comfortable platforms for
the graphical representation of both the errors and
the results. This makes it possible to discuss both
the physical behavior of the fields (by examining field
plots) and the quality and reliability of the solution
(by examining error plots).

! It must be stated that the two front ends are based on
different philosophies. Therefore, they are really different and
not only modified versions of the same program. All graphical
representations in this paper are produced with the mmptool.



2 The Behavior of the Multipoles

Let us describe the behavior of multipole functions,
first the well known point multipoles and then the
line multipoles. The conventional multipole func-
tions have a local behavior which means that they
mainly ‘act’ close to their singularity although the
functions are nonzero (but small) quite far away. We
say that their area of (main) influence is a sphere,
or more precisely, a spherical shell with a certain
thickness. In the case of scattering at a sphere (see
fig. 1) a point multipole forms an orthogonal set of
expansion functions and the convergence is excel-
lent. If the shape of the scatterer deviates from a
sphere the convergence becomes poorer. The clas-
sical approach to avoid such type of problems is to
use multiple multipoles, each of which is responsible
for the field in a sphere around its singularity. The
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modeling process (the choice of the expansion func-
tions) is essentially reduced to the geometrical prob-
lem of filling up a complicated scatterer with spheres.
These spheres must be placed in such a way that the
part of the boundary inside each sphere is simply
shaped. The process has been completely automated
and is part of the mmptool [5,6].

If the shape of a field domain includes sharp tips,
edges, corners or thin wires, a large number of point
multipoles is necessary. This means that the number
of unknowns increases rapidly. However, the number
is drastically reduced when line multipoles are used.
The behavior of line multipole functions is essentially
the same as that of point multipoles: Each function
has large values close to the singularity and all func-
tions of a line multipole together form a complete set
for the expansion of any field in the environment of
the singularity. The essential difference is the shape
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Figure 1: For any incident field, the scattered field f may be written as a sum of multipole functions, starting with
a dipole and ending up with functions of higher order and degree. With the set of all multipoles up to the max-
imum order N, any variation of f along # € [0, x] describable by an N-th order polynomial in cos¢ may be rep-
resented exactly. Similarly, with the set of all multipoles up to the maximum degree M, any variation of f along

é € [0,27] describable by an M-th degree Fourier series in ¢ may be represented exactly. Note that M and N may
be chosen independently, but it is always true that M < N. For N,M — co the functions form a mathematically

complete set of expansion functions.

i

Figure 2 Curved line multipoles are singular on a line L of finite length, vary sinusoidally along ¢ and like a
(Legendre-)polynomial along z (Fourier type longitudinal functions are also available). This behavior is strictly true
only close to L since the coordinates z and ¢ are not unique away from the curved line L.
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of the singularity: point multipoles are singular in
a point, line multipoles are singular on a line (arbi-
trarily curved, with finite length, see fig. 2). Hence,
the area of (main) influence of a line multipole is
a sausage's surface (with thickness) rather than a
sphere, and the modeling consists of filling the scat-
terer with sausages (line multipoles) and/or spheres
(point multipoles). It is important to note that max-
imum order (behavior along the line) and maximum
degree (behavior around the line) may be chosen in-
dependently from each other. This is very useful in
practical applications. It is often known a piori that
the field varies much more around an edge than along
the edge. In fact this is the key point in the use of
line multipoles versus point multipoles. Using line
multipoles allows a drastic reduction of the number
of unknowns in such cases.

3 The Use of the Multipoles

We shall describe the MMP modeling of three groups
of problems. In the first group, we treat the scatter-
ing at spheres (conducting, dielectric, coated) as well
as structures sirpilar to spheres, in particular ellip-
soids. This group is described mainly for reference
and as an introduction, since such types of problems
are not really problems for MMP. Both cpu times
and storage requirements are extremely low, while
the relative accuracy 7 is very high (g < 107%). In
fact these are almost analytical solutions. The sec-
ond group consists of three (well conducting) bodies
illuminated by a plane wave. The bodies are a cone
(with a tip and a curved edge), a cube (with edges
and corners) and a 4-turn helical wire. The size of all
the bodies in this group is roughly one wavelength
A. The third group consists of only one example: a
ferrite tube on a long wire, where the excitation is
not a plane wave but a current source at one end of
the long wire.

3.1 Quantities to Be Discussed

In order to be able to compare different calculations

of different problems, we define the following figures:

sg: A three digit number defining the geometrical
symmetry. The digits specify the reflective sym-
metries with respect toz =0,y =0and z =0
respectively. Each digit is either 0 (=no sym-
metry) or 1 (=symmetrical geometry). The ex-
amples below are self explanatory.

s¢: A three digit number defining the decompaosition
of the field into symmetrical and antisymmetri-
cal paris. Each digit is either 0 (no decompo-
sition), 1 (only the antisymmetrical part (odd
part) must be computed), 2 (only the symmet-
rical part (even part) must be computed) or 3
{both the even part and the odd part must be
computed) {2, 3:sect. 9.1]. Regardless of the sit-
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uation, any field may be decomposed into sym-
metrical parts, but the decomposition is only
useful when the geometry has the same sym-
metry. Therefore, a digit in s; is only nonzero if
the corresponding digit in sz is nonzero. Certain
fields need not be decomposed because they are
already symmetrical, e.g., an z-polarized plane
wave traveling in the z-direction has its own
symmetry s = 123, and a complete decompo-
sition yields only two nonzero parts. Note that
any ‘3’ in s; doubles the number of subproblems
to be solved.

Npat: Number of matching points. Note that only

one half (1 nonzero digit in s¢), one quarter (2
nonzero digits in s¢) or one eighth (if 5 = 111}
of the full structure must be discretized, and
Numat covers only this fraction of the total struc-
ture.

Neq: Number of equations. Each matching point is
associated with up to six equations to match
the different compenents of the electromagnetic
field. Note that N., does not alter for differ-
ent subproblems. All equations form a usually
overdetermined system of equations.

Npar: Number of parameters (= number of expansion

functions). For symmetrical problems Npar =
Npar1 + Npar2 + ..., where Npar; is the number
of expansion functions in the i-th (anti-)symme-
trical subproblem. Since the subproblems are
computed one after each other, the memory re-
quirement of the largest subproblem equals the
memory requirement of the full problem. For
large Npar, a subproblem with Npar parameters
requires roughly 64x N3, bytes. Of course, Npar
must be smaller than (or at the most equal to)
Neg.-

t: Cpu time in seconds on a SPARC10 worksta-
tion. t = t) +ta+ ...+ 1y, where #; is the
cpu time for the i-th subproblem and ¢, is the
time for the calculation of the errors on all the
matching points. Note that ¢; includes both the
calculation of the matrix elernents and the least
squares solution using Givens plane rotations.

7: The error, defined as the mean mismatching on
all the matching points divided by the mean field
values on the matching points. A special scal-
ing is used, based on the field energy, in order
to make electric and magnetic fields numerically
comparable (see [2] or [3]).

3.2 Spheres and Sphere-like Structures

MMP’s easiest example is the scattering at a sphere.
We place the sphere’s center at the coordinate origin
and obtain s = 111. Since any orientation of the co-
ordinate system yields the same sy, the symmetry of
the problem is equal to the symmetry of the incident
plane wave: s; = 123 {without any lack of generality.



See fig. 3.) and only two symmetrical subproblems
must be solved. A single multipole expansion in the
center of the sphere is necessary in order to end up
with a practically exact solution (n < 10~*). The ta-
bles below give the data for three cases, each at two
different frequencies: f; = 300 MHz and f» = 1 GHz.
The three cases are the conducting sphere, the di-
electric sphere (s; = 4) and the coated conducting
sphere (thickness of dielectric coating: 1cm, & = 4).
The diameter of the spheres is 1 m or — in terms of
free space wave lengths — 1X at f = 300 MHz.

The expansion of the outer field (field in air) con-
sists of a single point multipole expansion. In the
second case (dielectric sphere} an additional regular
expansion for the inner field is required, while in the
third case (coated conducting sphere) both ingoing
and outgoing waves have to be used to model the
field in the coating. Note that it makes no sense to
use line multipoles in this case, because the area of
influence of a single point multipole covers the whole
boundary.

The number of matching points is the same for
each spherical surface. This explains why Nma: i3
doubled for the coated sphere. Beside this, it must
be stated that three equations (boundary conditions})
per matching point must be satisfied on a conductive
surface (two for the tangential components of the
total E-field and one for the normal component of
the total H-field; these components should be zero),
while six equations must be satisfied on the boundary
between dielectric materials.

For the lower frequency (f = f; = 300 MHz),
the diameter of the sphere equals approximately the
wavelength (d & 1), and we obtain:

case n t1,2 ts Npariz Nmat  Neg
cond. 7.4-10-% 05 1 16 255 765
diel. 9.2:10-% 2 2 36 255 1530

coat. 7.9.10°% 6 5 54 510 2295
while for f = f1i = 1GHz, it is d = 3.3A:

case n '61,2 tq Nparl,z Nmat Neq
cond. 26-107% 15 2 39 255 765
diel. 1.5107%* 6 4 76 255 1530

coat. 1.3-107% 185 11 115 510 2295

The same problem with an ellipsoid of revolution
requires more computational effort. With respect to
the coordinate system indicated in fig. 4, it is still
sg = 111, but if the angle of incidence is chosen ar-
bitrarily, we must set sy =— 333. For simplicity’s sake
we choose a special polarization, defined as follows.
First step: Choose the y~axis in such a way that the
wave vector ki of the incident wave is parallel to the
y-z-plane (no lack of generality). Second step: Use a
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Figure 3 The z-polarized incident wave travels in
direction z. Omuly one eighth of the sphere’s surface
must be discretized. (d = A or d = 3.31)

special polarization, so that the electric vector of the
incident wave (Einc) is parallel to the y-z-plane. This
implies that the magnetic vector of the incident wave
(Hinc) points in +z-direction. In this case, sy = 233
is sufficient and only four symmetrical subproblems
must be solved.

Using a single point multipole expansion in the
center of the ellipsoid delivers relatively poor results,
but if two multipole expansions are used (see fig. 4),
the accuracy becomes much better. For comparison
we give the figures for an ideally conducting ellipsoid
with one and two multipole expansions as well as for
a dielectric ellipsoid (¢, = 4), all at f = 300 MHz.
For the field in the dielectric, a single regular expan-
sion, i.e., an expansion with spherical bessel func-
tions rather than spherical hankel functions and with
1ts origin at the center is sufficient. Depending on the
maximum order and/or degree of the multipoles, the
number of parameters (Npa) varies slightly for the
different symmetrical subproblems.

Again, only one eighth of the ellipsoid’s surface
must be discretized. We choose Nge = 348 and
obtain Neq = 1044 for the conducting ellipsoid and
Neq = 2088 for the dielectric one. In this case, the
following figures are obtained:

case n t12 tsa t; Nparrz Nparas
lexp. 3.0107® 8 7 12 96 108
2exp. 4.7107% 14 12 19 144 130
diel. 2.3-10-% 47 45 27 208 200

3.3 Structures with Edges, Tips and Wires

Whenever sharp edges or tips occur the field may
become infinite at these locations. This is a prob-
lem for any numerical techniqgue. MMP does not al-
low sharp edges but it does allow edges with rather
fine roundings. The amount of calculation increases
when the radius of curvature becomes smaller. Be-
fore the invention of the line multipoles [4], this was
one of MMP’s most severe Iimitations. Now, reason-
ably sharp edges may be modeled, but the amount of
calculation still increases with the sharpness. Figure



(H inc)
Figure 4 The larger diameter of the ellipsoid (a
body of revolution with the z-axis as revelution axis)
is roughly one wavelength (d = A). The incident
wave travels along an oblique straight line in the y-
z-plane and Ei,c is in the same plane, implying that
Hine is parallel to the z-axis.

5 gives both the geometrical models and the expan-
sions for three different bodies (cone, cube and helix),
all ideally conducting and with overall size =~ A. Let
us first discuss the symmetry and the expansions for
these three examples. After that, we shall give the
characteristic numbers for each problem and finally,
we present some field plots and error plots and make
some remarks.

For the cone, we have (with respect to the coor-
dinate system in fig. 5) s; = 110 and sy = 230. This
is related to an arbitrary angle of incidence, but a
special polarization. Other than with the ellipsoid of
revolution treated in the prev1ous section, we choose
Hine parallel to the y-axis and both Ei and kmc
parallel tc the z-z-plane. Now this results in two
symmetrical subproblems, since there is no geomet-
rical symmetry with respect to z = (. Therefore,
a quarter of the cone’s surface must be discretized.
The density of the matching points is increased to-
wards edges and tips. See the field plots below for the
dlstnbutlon of the matching points (Npae = 1837,

eq = 5511).

A single curved line multipole, placed in the cen-
ter of curvature of the bottom edge, and four point
multipoles, all placed on the z-axis, are used as ex-
pansions. It should be added that, in this particular
case, a ringpole [7] could also be used. However, the
application of ringpoles (for edges) is reduced to the

* case of circular edges while line multipoles are more
general. We do not treat further applications of ring-
poles 1n this paper.

The cube (sg = 111, sy = 333 [both arbitrary
angle of incidence and polarization] — 8 symmetri-
cal subproblems) needs three line multipoles for the
edges and 5 point multipoles: one in the center, one
on the diagonal z = y = 7 and three on the coordi-
nate planes ¢ = 0, y = 0 and z = 0. It is important
to note that point multipoles placed on the symmetry
planes and oriented parallel to the symmetry plane
with any of their local coordinate axes are preferred
to those placed at an arbitrary location. This is due
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to the fact that a correctly placed and oriented point
multipole expansion is inherently symmetry adapted,
i.e., each single function is either even or odd with
respect to a coordinate plane. MMP picks out only
those needed, whenever the local coordinate system
of the point multipole coincides with the global sym-
metry planes. The automatic pole positioner in the
mmptool [5] takes care of this.

Only one eighth of the surface has to be dis-
cretized. We use 1727 matching points, leading to
5181 equations. Again, the matching point density
is increased close to edges and corners (for details see
the field plots below).

The last example in this group, the helix, has
no reflective symmetries (s; = s¢ = 000). Thus,
the full geometry must be discretized. It leads to
3472 matching points and 10416 boundary condi-
tions. The expansion is quite simple: a line multipole
along the wire for each turn and two point multipoles
for the endcaps. Note that the point multipoles at
the ends are essential: A line multipole does not form
a complete set of expansion functions for this region.
(However, as a matter of experience it is complete in
the case of the cube’s corner, where three orthogonal
line multipole ends meet.) A single four turn line
multipole rather than four one turn line multipoles
would also be possible. We prefer four single turn
line multipoles not only for reasons of higher flex-
ibility and the (quasi) periodicity of the field, but
also because only one turn of the helical line must
be specified. (NB: The line associated to a curved
line multipole is specified in local coordinates of the
expansion and is stored in a file named mmp_lyy . xxx
[4] which may be produced with the mmptool [5].)

Looking at cpu times and mean errors for these
three examples, we find that the accuracy is lower
than in the previous cases, but still good for practical
purposes (below 4%). On the other hand, cpu times
are higher. The following values were obtained (we
give mean values for the symmetrical subproblems,
since the deviation among the subproblems is only
small):

case n t;‘ tq Npari Nmah
cone 1.210-% 2131 1371 691 1837
cube 3.8.10°% 1979 10499 468 1727
helix 1.7-102 9194 1900 1152 3472

Note that the number of unknowns for the complete
problem with symmetrical bodies is higher: There
are 2 x 691 = 1382 unknowns for the (slightly sym-
metrical) complete field of the cone and 8 x 468 =
5148 unknowns for the completely arbitrary field
around the cube. Both numbers are significantly
higher? than for the helix. Thus, we see that —

2 nonsymmetrical field around the cone yields 4 x 691 =
2764 unknowns.
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4-turn-helix (h = A)
Figure 5: Three different 1A-sized bodies, a cone of
revolution, a cube and a helical wire. In all three
cases line multipoles are useful for field modeling.
The center of each rectangle on the helix’ surface
is one matching point. See figs. 6, 8 and 11 for the
distribution of the matching points on the surfaces of
the cone and the cube respectively.

at a given accuracy — the number of unknowns in-
creases with the deviation from the ‘expansion’s op-
timal shape’ (sphere for point multipoles, sausage for
line multipoles).

The very first quality test for a calculation is the
distribution of the errors (local mismatching) on the
boundaries. Figure 6 shows the error distribution on
that part of the cube which is really discretized (the
eighth in the first octant of the coordinate system).
For clarity the whole cube has been drawn. Note
that due to the nonsymmetrical field the error has
different values on the rest of the cube. Neverthe-
less the distribution on the first octant gives a good
impression. The absolute amount of the error values
must be compared with the incident field or —e.g. at
tips — with the total field close to the boundary. In
this particular example we notice that the maximum
error occurs neither at the edge nor at the corner but
on the flat surface. This indicates that the line mul-
tipoles used for the modeling of the edge and corner
field are a better choice than the point multipoles for
the flat surface field. This could be changed by using
higher order point multipoles or — as an alternative
— more point multipoles. Figure § shows the error
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Figure 6: The full cube model. Note that only the
front eighth (shaded proportional to the local error)
must be discretized, and all calculations are done on
this eighth only. At the top right the orientation of
the incident plane wave is shown. Note that in this
particular example, Hine is parallel to the cube’s top
(z =0.5) and Kinc is parallel to (—1,0.527, —2).

Figure 7: The picture shows the instantaneous value
of the total electric field E in the symmetry plane

y = 0. The triangles point in the direction of E
and the contour lines indicate its magnitude. The
incident wave travels from bottom right to top left.
The animated representation of this field with the
mmptool shows the creeping of the wave around the
bottom left edge of the cone. See also fig. 10 for (3).
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Figure 8: The error distribution on one quarter of
the cone. The visible inner surface is shaded pro-
portional to the local absolute error mec. On the
outer surface (not visible), surface orthogonal nee-
dles (partly visible) are attached with length propor-
tional to moc. This is called ‘hedgehog’ representa-
tion of the error. The largest errors occur somewhat
away from the bottom edge. These errors could be
reduced with one or two additional line multipoles
placed close to the maximum moc. Note the higher
matching point density close to both the edge and
the tip. For the tip see also fig. 11.

distribution on the cone. Again the maximum error
occurs on the flat bottom surface. This is obvious
since the area of influence of the multipoles, i.e., a
spherical surface of a certain thickness for point mul-
tipoles, can hardly follow a flat surface.

A second quality test is a closer look at the be-
havior of the field in the space around the scatterer.

Figures 7 and 9-11 show the behavior of the total

electromagnetic field close to the different scatterers
(nearfield representations). These pictures verify the
quality of the solutions. It is good practice to first
inspect the power flux (Poynting vector S). This vec-
tor (in particular also its time mean value (S)) must
be tangential to the scatterer’s surface. Any compo-
nent normal to the surface is erroneous and indicates
a local insufficiency of the expansion. On the other
hand one can learn what really happens around the
scatterer. As a matter of experience the energy often
takes unexpected ways although its behavior may be
clearly explained a posteriori. One of the most obvi-
ous effects is the ‘creeping’ around corners and along
curved surfaces (see figs. 7 and 9). This effect is only

75

Figure 8 This picture shows the total power flux
(Poynting vector, time mean value) around the cube
in the E-plane of the incident wave. The center of

- the oblique field representation square coincides with

the cube’s center and is oriented so that the incident
wave is traveling in the diagonal form top left to
bottom right and E},. is parallel to the top right -
bottom left diagonal. Note the interference of the in-
cident wave with the scattered wave reflected by the
cube’s plane sides, the creeping around the edges and
the double-branched shadow. The white triangles in-
dicate the direction and the underlying contour lines
show the absolute value.

present if the electric field is large (only the normal
component, of course!). The instantaneous value of
the electric and magnetic field, respectively, are also
instructive although their behavior is more compli-
cated. Animated representations give deepest insight
into the physical process. Both the mmptool [5] and
also the PC-based front end [2] have powerful movie
capabilities. The PC-version’s movie feature is even
more sophisticated.

In many practical applications, only the scattered
farfield is requested. Figure 12 represents the farfield
(radiation pattern) of both cone and helix. This type
of output is produced in the very same way as near
field plots: One just specifies a surface in the farfield
zone and computes the (scattered) field on it.



Fiqure 10: The_time mean value (S) of the total
Poynting field S, drawn on the same rectangle as in
fig. 7. The interference of the incident wave with the
scattered wave reflected by the underside of the cone
produces the light ‘field free’ zone. The ‘shadow’ at
the top left is separated in two branches which is
typical for 1A-sized scatterers. See also fig. 9.
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Fiqure 11: This picture shows the behavior of the
total Poynting vector’s time mean value ((3)) close

" to the cone’s tip. Note the diffraction (‘creeping’
around the tip) at the top left in the E-plane. The
incident wave comes from bottom back (wave vector
Fine parallel to E-pla.ne).

The representation of the field with ‘thumbtacks’
(pointing in the direction of (5)) gives a good im-
pression of the three-dimensionality of the field.

The matching points in the first quarter (both £ > 0
and y > 0) are gray scaled proportional to the local
error of the solution: Darker rectangles denote larger
absolute errors. Visible maximum: 27"‘;‘”—V with an
amplitude of the incident wave of 1%.

76

helix

cone

Figure 12: Radiation patterns for helix (above) and
cone (below). The contour lines are drawn on a
spherical surface (radius of sphere = 10)) and show
the radial component of the Poynting-vector’s time
mean value of the scattered field only. The ampli-
tude of the incident wave is the same for both cases
and the gray scales are also equal. Darker area’s de-
note higher values.

Note the different orientations of the incident wave
in both cases (Einc, Hinc and Kinc form a right hand
system). The cone as a more solid body has a higher
scattered field.

3.4 A Ferrite Tube on a Wire

QOur last example is a problem from electromagnetic
compatibility (EMC). We study the influence of a
ferrite tube placed on a long straight cable. (The
tube is mounted in order to attenuate waves propa-
gating along the wire, and this particular shape of
the tube is used in the so-called conductive test-
ing.) The geometric model has symmetry of revo-
lution (see fig. 13). A full symmetry decomposition
of an arbitrary field would involve an infinite number
of subproblems. MMP does not support this type of
symmetry, but the symmetry could be partially ex-
ploited by two reflective symmetries. We prefer a
different procedure and perform the symmetry ex-
ploitation ‘by hand’. Since our excitation (current
source at right end in fig. 13, top) has the same sym-
metry as the geometry, we know that the scattered
field must also have symmetry of revolution. Thus,



it is sufficient to use only expansion functions with
this symmetry and consequently, not only the geom-
etry may be fully described in a half plane, but also
the field matching need only be performed on lines
(the contour in fig. 13, bottom) rather than on the
full surfaces.

symmetry pla.ne\
L 23m .6m 2.3m i
1 y—— ]
ferrite tube?r i cableT current
source
ferrite 1)
inner air —fict. bound.
cable— {T——— -
inner air
gu't-er ]
ferrite jair line multipoles

] ) ~, for outer air T
straight line multipoless line multipoles
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Figure 13: Top: A long straight wire with an im-
pressed curreni at the right end and zero current

at the left end. The ferrite tube in the center is
mourted in order to reduce wave propagating along
the wire.

Middle left: Zoom of the ferrite tube’s right front.
The fictitions boundary allows different expansions
for inner arnd outer air.

Middle right: Circular line muitipoles with constant
intensity along the whole circle produce a field with
circular symmetry and relative strong variation close
to the circles.

Bottom: The same as middle right, but in a perspec-
tive view. The straight line multipoles on the cable
axis are for inner air, outer air and ferrite. Inner and
outer air line maltipoles overlap close to the fictitious
boundary.

Further data: diameter of the infinitely well con-
ducting cable: 4mm; inner and outer radii of fer-
rite tube: 11.2mm and 18.3 mm; relative permeabil-
ity of ferrite: p. = 160 + 37i at f = 30 MHz and
fe = 29 4+ 1101 at. f = 100 MHz; relative permittivity
of ferrite: e = 15.

Using a cylindrical r-¢-z coordinate system with
z-axis along the cable, we find that only three com-
ponents of the electromagnetic field (E,, £, and Hy)
are nonzero, while E4 = 0 and H, = H, = 0. This
implies that only E, must be matched on the cable’s
surface, while on the fictitious air-air boundary as
well as on the air—ferrite boundary, three boundary
conditions are necessary.

With respect to the symmetry plane z = 0 (see
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fig. 13, top), a normal MMP symmetry is used. Due
to the fact that there is only one current source at the
right end, we have s; = 001 and s; = 003 resulting in
two symmetrical subproblems. The solutions for two
frequencies yield the following characteristic figures:

f[MHZ] n t1.2 tq Npar1,2 Nmat
30 271073 643 1194 256 984
100 3.8.10-% 670 1254 256 984

Note that both Npat and Npar are relatively small.
This is due to the field’s symmetry of revolution. The
result for f = 100 MHz seems to be quite accurate
for practical purposes. However, a closer look at the
distribution of the local errors and in particular at
the field shows that the solution is not very good (see
fig. 16). This example shows that a small mean error
is not always sufficient for a good solution.

Figure 14: The current distribution on the wire with
ferrite tube at f = 30 MHz. Note that the wire is
roughly half a wave length long and the source is
placed at the right end.

4 Summary

It has been shown that MMP delivers almost exact
solutions {mean error 5 < 0.01%) for conducting, di-
electric and coated sphere like structures. Also the
field of more complicated bodies may be calculated
very accurately (n < 4%). The amount of calculation
increases when sharp edges or iips are present, and at
the same time, the accuracy decreases. Through the
use of (curved} line multipoles, the modeling process
(choice of expansion functions) is simplified and the
range of MMP applications is significantly enlarged
towards more practical situations. The notion of the
area of influence for multipoles (spherical shell for
point muitipole, sausage shaped shell for line multi-
pole) is helpful. The error distributions show that
the mismatching is low as long as the boundaries fol-
low the areas of influence of the multipoles.



= Come Cme O Dm D

i
!
|
!
!
A

R N e
e Co CE- G- B W
jC—omr [T Ce C3me Do b
e = O = o= o

o o o o O -

_fen:ite.tube ,

W R [ e [ Ce Ol D P - m—
T P ot [ [ e [ G- B 8= W=
Wi [Pme (Do [T Cooe- e Do P P -
e [ [T o (o Com— G- e g o

[T T N T~ N~ N~ I — - B B N )
.<:1..C:I...C:l...C..C:...C:l.,.(:l.,(:r..ﬁ-,_\? @ & a a & &

locc oo
e ﬁm@@@@@
¢-<—<-<-<-4-<-4-4-a-4-4-4-4-4-4-
- = = 4 4 = o o

- 4-1-4;14-4-4-4-1-4-4-4-4- - -
- cable

-fen:ite.tul-)e

Figure 15 The field at the front end of the ferrite
tube at f = 30 MHz. Top: electric field and hedge-
hog error representation. The maximum error occurs
on the cable’s surface, close to the fictitions bound-
ary between inner air and outer air and represents
in this case the longitudinal component of the elec-
tric field (actual value in ratio to the normal compo-
nent: 0.4%). Note that the matching point density
is increased towards the front. Bottom: Time mean
value of Poynting field. Note that according to the
principle of least action the energy hardly penetrates
the ferrite.
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