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Abstract: In the analysis of microstrip radiating
structures integral equation methods rate among the
more accurate approaches. By far the most demanding
part in the use of these methods is the actual
numerical implementation. This paper presents a
detailed illustrated description of the numerical
implementation of a spatial domain mixed-potential
integral equation analysis of microstrip radiating
structures.

INTRODUCTION
In the analysis of microstrip radiating structures
integral equation methods rate among the more
accurate approaches. The most widely used is the
"full-wave" electric field integral equation (EFIE).
When both vector and scalar potentiais are used in the
formulation of the EFIE, it is often referred to as the
mixed-potential integral equation (MPIE). There have
been two paths followed in the implementation of the
integral equation methods to microstrip geometries;
these can be classified according to the manner in
which the somewhat cumbersome Green functions
appropriate to the problem are dealt with numerically
in the moment method solution of the integral
equation. In both cases one starts with a Green
function derived in analytical form in the spectral
domain. Expressions for the moment method matrix
elements are then established, consisting of three
double integrals, over the spectral domain, domain of
the testing functions, and domain of the expansion
functions for the unknown current-density,
respectively. It is in the evaluation of this expression
that two different approaches are used. In the full-
wave spatial domain approach this is done by carrying
out the integration with respect to the spectral
variables numerically in order to convert the Green
function to spatial domain form, and then proceeding
further with the other two integrations. In the full-
wave spectral domain approach, the expression for the
moment method matrix elements is manipulated in
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such a way that it becomes one consisting of two-
dimensional spatial Fourier transforms of the
expansion and testing functions (and this can usually
be done in closed form) whose product with the
original spectral domain Green function must be
integrated in the spectral domain. In both cases the
moment method solution provides the expansion
coefficients of the unknown current-density directly in
the spatial domain of course. An exposition of the
difference between the two approaches is given by
Pozar [1,Sect.IV, Part B].

Published information on the application of the
integral equation approaches (no doubt in order to
satisfy the space restrictions associated with journal
articles) essentially takes the form of some useful
suggestions on how to overcome numerical
difficulties, but has to stop short of the details needed
for a direct implementation of the analysis in a code.
This is unfortunate since by far the most demanding
part in the use of integral equation analyses for
microstrip antenna problems is the actual numerical
implementation. One does not always want to ask
others directly for their computer codes since these
are often not available for distribution for proprietary
reasons, or the codes are directly related to the
livelihood of the developer who has for this reason
invested a considerable amount of time in its
development (and this is quite understandable). This
paper therefore presents a detailed illustrated
description of the numerical implementation of the
MPIE analysis of Mosig and Gardiol [2], hereafter
simply referred to as the MPIE formulation; it is our
experience that the discussion on implementation
given in [2,3] is the most detailed available in the
literature at present. We include the information we
would have liked to have had available when we
began implementing the techniques of [2,3]. It will be
assumed that the reader has references {2], [3] and [4]
at hand, although matters will be summarised in
Section 2.

! D.A. McNamara was with the University of Pretoria. He is now with COM DEV Lud, 155 Sheldon Drive, Cambridge, Ontario,

NI1R 7THS6, Canada

40



2. BRIEF OVERVIEW OF THE INTEGRAL
EQUATION MODELLING SCHEME

Since the Green functions forming the kernel
of the integral equation are those for a horizontal
electric current element (at z=0) in the presence of a
grounded dietectric slab, the only unknowns are the
current/charge-densities on the etched conductors. The
integral equation is obtained by "replacing” the etched
conductors by an equivalent surface current-density
1.(x,y,0) and enforcing the boundary condition that the
total tangential electric field at all points on the slab
surface occupied by these conductors be set equal to
Z,(zx]), where Z, is the surface impedance of the
conducting material. The validity of using the surface
impedance concept has been carefully studied by
Theron and Cloete [5]. These integral equations are
expressed in terms of vector and scalar potentials
A(x,y,0) and ®(x,y,0), respectively, and thus the
Green functions used are those associated with these
potentials, namely G, and Gy, as described in [2]. A
method of moments procedure with sub-sectional
expansion and testing functions is used to solve the
MPIE, with overlapping rooftop functions in both the
x and y directions selected for the expansion functions
of the surface current-density. These are placed as
follows: the surface of the etched conductor is divided
into elementary charge-density cells, with two adjacent
charge-density cells forming a current-density cell.
Figure 1(a) shows two charge-density cells. The
current-density is represented by overlapping rooftop
expansion functions. So-called razor test functions,
shown in Figure 1(b), which extend along segments
linking the centres of adjacent charge-density cells,
are used. Although not a fundamental limitation of the
technique, we have here arranged matters so that the
antenna structure must be segmented into rectangular
cells of equal size; this simply eases some of the
already substantial computational burden.

3. THE DISCRETISED (MATRIX) FORM OF
THE INTEGRAL EQUATION

Let there be M of the x-directed rooftop functions,
and N of the y-directed ones. Their introduction,
along with the razor testing functions extending from
the centres of two adjacent charge cells (that is, along
C,, in Figure 1), converts the integral equation to the
matrix equation [C][I]=[V] which is written {3,4] in
terms of sub-matrices as
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Figure 1 X-directed current cell with a rooftop basis function and
razor testing function. The associated charge distribution over the
current cell is also shown.

Here the C=, C¥, C™ and C* are sub-matrices of size
MxM, MxN, NxM and NxN, respectively. Thus
matrix [C] is of size (M+N)x(M+N). The clements
of the sub-matrices are given by {3,4]
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In the above, Z, is the free space characteristic
impedance, k, the free space wavenumber and §; the
Kronecker delta. The Z, is a surface impedance
accounting for the finite conductivity as well as
surface roughness and finite thickness of the metallic
upper conductor [3]. An expression for C}} is obtained
by interchanging the couplets (x,y), (a,b) and (M,N)
within the expression for C¥; reciprocity requires that
for cells of equal size Cf} = CJ.

I* and ¥ are column sub-vectors of size Mx1
and Nxl, respectively. Their elements are the



coefficients of the x-directed and y-directed expansion
functions for the current- density. The excitation
column sub-vectors V,® and V, are similarly of size
Mx1 and Nx1, respectively. Thus the column vectors
(I] and [V®] are both of size (M+N)x1.

The precise expression for the elements of [V]
depends on the type of excitation geometry being
considered. Here a coaxial probe feed will be
considered for which a simple, yet sufficiently
accurate model was introduced in [3]. This model
assumes that the current on the coaxial probe is
constant and is therefore only accurate for thin
substrates (up to about A/10 thick). According to this
model the excitation current spreads over a single
charge cell as described by the following expression:
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More complex feed models valid for thick substrates
are discussed in [6]. The associated excitation surface
charge-density distribution over the charge cell is
given by a rectangular pulse of value l/jwab where I
is the total current carried by the inner coaxial
conductor. Figure 2 gives an illustration of the electric
surface current-density and charge-density
distributions associated with the coaxial probe feed
model; note that only the x-directed component is
shown in the figure for the sake of clarity. It has been
found [7] that the contribution of the excitation
current (as opposed to the charge) to V® can usually
be neglected; otherwise it must be computed from the
expression for I'3* (') given in (8) with J.. ()
replacing T, (T,). If we recognise that the matrix
elements according to (3) represent the effect of a
charge doublet (Figure 1) integrated along a test
segment, then since with the above coaxial probe
model the excitation is a single pulse of charge
(Figure 2), the elements of the excitation vector may
be seen to be approximated by [7]
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where feedpoint r is located at the centre of a charge
ceil. The moment method matrix C is ill-conditioned
due to the fact that some rows are almost linear
combinations of three other rows. Therefore careful
evaluation of its elements is necessary to obtain results
of sufficient accuracy. On the other hand, C is
diagonally dominant, therefore less stringent accuracy
requirements apply to the off-diagonal elements.
Certain approximations may then be considered. One
of these approximations involves the integral term in
(2) which may be approximated as follows:
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The validity of this approximation is illustrated in
Figures 3 and 4 showing the real and imaginary parts,
respectively, of both terms in (6). In fact, this
approximation may even be considered for the
diagonal elements, since the contribution of the vector
potential to the value of the matrix element is
overshadowed by that of the scalar potential [7). A
conjugate gradient method (8] is used for the iterative
solution of the moment method matrix equation.

In (2), (3) and (5) T;* and Ty are discrete Green
functions (not to be confused with the Green functions
themselves) which have as sources complete basis
functions as opposed to conventional elementary point
sources. T'3*(r|r) is then the x-component of the
vector potential at r created by an x-directed rooftop
distribution of surface current at r;, whereas I'y(r|r,)
is the scalar potential at the same observation point
resulting from a rectangular distribution of unit
surface charge at r,;. The discrete Green functions are
now defined by the following dimensionless
expressions [3]:
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where p, and ¢, are the permeability and permittivity
of free space. A similar expression to that given in (8)
holds for T'}?. S, represents the surface of the current
source cell centred at r, (Figure 1) while the charge
source cell centred at r,; extends over S;. II is a two-
dimensional unit pulse function over S, and
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Tr)=1-|x|/a over §;. The Green functions
appearing in the above expressions for the discrete
Green functions, are given by the following
expressions:
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where J, is the Bessel function of zero’th order and
first kind, Dp=u,+ucoth{uh), Dy, =€ u,+ utanh{ih)
and N=u,+utanh(uh); uo=(N"~k3)'?, u= N\~ k3",
h is the substrate thickness and R=|r—r’|. For the
case of a lossy dielectric, e,=¢,'(1 —jtané) where tané
is the loss tangent, Figure § illustrates the effect of the
distance between source and observer (R) on the
Green function integrands; the real part of the
normalised G} integrand is shown for R=0.5\, and
0.05),. It can be seen that when the observer (r)
approaches the source point (r), the zero’s of the
integrand move away from the origin. In the limiting
case (R=|r—r’|-=0) the first zero tends to infinity,
producing a non-oscillating, non-zero function to be
integrated over a semi-infinite interval. This produces
the singularities in the Green functions at the source
point. Now, in the evaluation of the discrete Green
functions the situation arises where the observation
point r for the potential due to a particular source cell
falls within its own source cell boundaries. For this
reason the integrands for the discrete Green functions
are singuiar at r due to the Green functions becoming
singular. This situation is illustrated in Figures 6 and
7. We will call any evaluation of the potential due to
a given source cell at any point in its own source cell
a "self term". By now writing (7), in the evaluation of
the self term, as
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where an expression for I'y,(ry |ry) is given in [3] and
1
2n(e,+ l)eolroj—

Gy, (r,Ir') -

(12)

it is possible to evaluate the scalar potential discrete
Green function self term since the difference term in
(11) is numerically integrable as illustrated in
Figures 8 and 9. Even though the difference term is
well-behaved at r’'=r, both terms comprising the
difference term, i.e. Gy and Gy,, become singular.
The evaluation of the difference term at the source
point is therefore done as follows:
Gulrylry+8) — Gy,(ry |ry+8) where § = 0. In this
way an accurate estimate of the well-behaved
difference term may be obtained at the source point.
In similar fashion the singularity in the real part (the
imaginary part of the I'}* integrand does not exhibit
singular behaviour even in self term evaluations) of
the vector potential discrete Green function may be
dealt with. In this case, however, an expression for
T'ir could not be found in the literature, however,
analytical integration yields:
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where o, =tan"'[b/Q(a-1))l, a,=tan"'[b/(2(a+r))]
and a,=tan"'{b/(2r)]. This expression was derived
for an x-directed current cell centred at (0,0) with an
observer on the source cell at xr,. Therefore,
numerical techniques required in the self term
evaluation of both the discrete Green functions have
now been discussed. For the off-diagonal matrix
elements approximations for the discrete Green
functions were suggested by Mosig and Gardiol [3].
It is worth mentioning that these approximations have
also been implemented successfully by the present
authors.
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Figure 2 Electric surface current and charge distributions
associated with the coaxial probe feed model.
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Figure 3 Real parts of the actual integral (- ) and
approximation (6) {—C—O—) suggested by Mosig and
Gardiol [1]; f=1.206 GHz, ¢,=4.340.0868; h=0.8mm and

a=b=6.666 mm.
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Figure 4 Imaginary parts of the actual insegral f- J
and approximation (6) (—O—©—) with the corresponding

real part shown in Figure 3.
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Figure 5 Normalised integrand of Gi*(r/r’) for R/N=0.5¢ )

and RAN=0.05(—X—X—) where h/\,=0.07 and f=1.206 GHz

Figure 6 Real part of the integrand, before pole extraction,
in the expression for the T, selfterms.
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Figure T Imaginary part of the T, integrand corresponding
to Figure 6. Note that the maximum value is infinite.
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Figure 8 Real part of the difference term integrand in the
evaluation of the Ty selfterm.
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Figure 9 Imaginary pars of the difference term integrand
corresponding to the real part shown in Figure 8.

4. DETAILED ILLUSTRATION AND
DISCUSSION OF THE NUMERICAL
EVALUATION OF THE ASSOCIATED
INTEGRALS

We next consider the evaluation of the Green
functions. Figure 10 shows the integrand of
(2x/ug)G3* as a function of Ak, at 1.206 GHz for
€,.=4.34—j0.0868, and the particular circumstances
h/A=0.07 and R/A,=0.5 (A, is the free space
wavelength). The scalar potential counterpart, i.e. the
integrand of 27¢,Gy as a function of Ak, is shown in

Figure 11. As seen from these figures, discontinuous
derivatives, singularities and oscillations in the Green
function integrands pose distinct problems,
complicating the use of numerical integration
techniques. Mosig and Gardiol [9] therefore suggested
that the semi-infinite integration intervals in (9) and
(10) be subdivided, allowing these problems to be
addressed separately. For convenience, the Green
function integrals are written as

- &
fF(A)dl - fF(A.)d). +
0 (H]

ke, -

fF().)de F(A)dA

k ko\/z

(14)

The numerical difficulties in the evaluation of the
Green function integrands in each of these sub-
intervals will now be discussed, and the use of
proposed solutions illustrated.

4.1 Interval AE[0,k]

The term wu,=(A’—kJ)'? appearing in the
expressions for Dy, Dy, and N introduces branch
points in the Green function integrands at A=k,.
Manifestations thereof are the discontinuities in the
derivatives seen at A=k, (Figures 10 and 11).
Standard numerical integration routines may be
inefficient in the integration of functions with such
discontinuous  derivatives. To obtain accurate
numerically integrated estimates for the Green
functions over the first interval, Mosig and Gardiol
[4] have proposed the substitution A=k,cos t. Suppose
the integrands may be written as F(A), then this
substitution implies that

k 2x
[FO)dA- [ Fecost)(~ksint)dt
0 Ix2

(15)
Figures 12 and 13 show F(kios t)(—ksint) as
functions of t, with F representing the integrands of
(2x/pg)GX* and 27e,Gy shown in Figures 10 and 11
respectively. The integrands are found to be smooth
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and easily integrable. In this way then, it is possible
to deal with the effect of the branch points in the
Green function integrands at A = k,,.

4.2 Interval A€ [k ky(c, )]

Since the integrand of Gy (9) contains Dy, in the
denominator, a singularity due to the existence of the
dominant TM, surface wave mode, appears in the
interval [k, , ko(e,')"?], as seen from Figure 11.
According to a pole extraction technique described in
[4]), the 2x¢Gy integrand may be expanded as
follows:

J(AR)AN
"B:b: - FQ) - [HA)‘F“(M]"'F*(M
where F,,(A\) = Res/[A—(A,+j»,)]; Res is the residue
of F(k,) (where k=X + jv) at pole k =\, + j»,
(F(\) is a special case of F(k,). This leaves k,, and
Res to be determined. The present authors have used
Miiller’s method [10] with deflation to determine k,, -
a root of the univariate complex function Dyy(k,).
This method is numerically implemented in the IMSL
routine ZANLY [11].

The residue may furthermore be determined as
follows :

Res-—— §F(k ydk -1 'F(kr—djl(t—)d
2—ﬁf D) "FE[ N —2

(16)
where k,()=A({t)+j#(t), t € [a,b] and C is any closed
path around the pole at k. A condition, however, is
that function F(k,) must be analytic inside C except at
k, [12]. Since C may be represented by any closed
path around k,, it is convenient to choose a circle.
Then we have A(t)=rcos(t) and »{t)=rsin(t) as the
parametric equations; t € [0,2x) and r the radius of
the circle. The value of r is not important, provided
F(k ) is analytic inside the borders of the circle except
at k,. Figure 14 shows the normalised distance
|k,/k, — 1| between the pole at k,, and the branch
point at A=k, as a function of dielectric thickness
(h/x;). It can be seen that in the case of electrically
thin substrates, the pole due to the surface wave is
very close to the branch point. In such cases, radius
r must be chosen carefully to avoid the inclusion of
the branch point into the borders of the circle
inclusion thereof violating the analyticity of F(k,).
With the use of (16) and careful selection of r, it is

now possible to numerically determine a value for
Res. For instance, at 1.206 GHz (k,=25.2733) for
h/A,=0.07, R/A,=0.5, ¢=4.34—j0.0868 and
r=1.0153m' we have Res=0.47323-j0.01815
where k,=27.3059—j0.052039. Once k,, and the
residue are known, the pole in the Gy integrand may
be extracted according to the technique described

above; that is
ke,

ke,
f F(\)dA- f [F(A)-F , (\]dA

k k
koye,
+ [ Fauda
ky
(17

F., is analytically integrable [4] while the difference
term, which is a well-behaved function, may be
integrated numerically. In the lossless case (i.e. for
tand=0) we have k ,=\,, in other words, the pole due
to D, lies on the A-axis which is the path of
integration. Therefore, at A, both terms constituting
the difference term in (17), become singular.
However, by evaluating F(\+8) — F,;,,(A+0J) where
& — 0 it is possible to obtain an accurate estimate of
the well-behaved difference term at A,. In the case of
lossy dielectrics, the pole at k,, does not lie on the
path of integration (Figure 11), nevertheless, strong
variations in the integrand due to the pole still require
application of this pole extraction techmique. An
infinite derivative in the difference term integrand at
A=k, may then be eliminated by the substitution
A=kgcosh t. The real and imaginary parts of the Gy
difference term integrand, after substitution, are
shown in Figure 15; the singularity which has been
extracted is visible in Figure 11, If the integrand does
not contain Dy, in the denominator, the substitution
may nevertheless be performed to obtain a smooth
integrand at A=k,. This is the case for the Green
function GX*(r|r’), for which Figure 16 gives an
illustration of the integrand shown in Figure 10, after
substitution. At this point, we are able to accurately
determine the integrals in (9) and (10) for
0 <A< ke, ). This leaves the interval A> k(e,")'”
which is the subject of the following section.
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43 The method of averages in the interval
ME [ky(e, )", 0]

As seen from Figures 10 and 11 the Green function
integrands show oscillatory behaviour in this interval.
Furthermore, these integrands have envelopes which
converge very slowly and therefore standard
integration routines (such as the trapezium rule and
Gauss quadrature) prove to be very inefficient since a
large number of integration points is required to
achieve reasonable accuracy. Mosig and Gardiol [9]
have found a technique known as the method of
averages, introduced by Hurwitz and Zweifel [13], to
be suitable for application to Sommerfeld integrals
appearing in microstrip problems. This method is
based on the decomposition

w @a+(xel)pi2

>

r-0 a+npf2

[sERfE)dE - g(ER)f(E)dE
(18)
where g(£R) is an oscillating function with period p
and f({) a smooth, non-oscillating function which
behaves asymptotically as O(£%); the integrand
therefore diverges for «>0. Although Bessel
functions of the first kind - appearing in the Green
function expressions - are not strictly periodic, the
method of averages may still be applied. However,
since the zero’s of Bessel functions are not known off-

hand the large-argument approximation
J.AR) = [2/(xAR)]"*cos(AR-7/4-nx/2) is used to
estimate their zero’s. Then we have

x b))

n
£, = |(m-1)+075+ 2

where {, approximates the m'th zero of J.(AR).
Table 3.1 gives an indication of the accuracy of this
approximation in comparing £, (m=1,2,3,4) with the
actual zero’s of J,(A) determined numerically with the
IMSL routine ZREAL [11]. A question about the
validity of this approximation for small R values
(source and observation points close to each other)
might well arise at this point. In order to answer this
question, definite integrals for which the answers are
known, were evaluated by the authors using (19) in
the method of averages. We know from [14] that

47

1

fJu(l.R) d\ = @0
0

for n > -1, This identity was confirmed for R values
ranging from 2.0x 10 to 2.0 and for both n=0 and
n=1. Further tests performed by the authors on
similar identities lead to the conclusion that (19) will
not introduce a significant error, even for small values
of R, when used in the method of averages.

m'th zero of

TN
2.404825
5.520078

2.356194
5.4971787

8.653727 8.639379 0.16 H
11.79153 11.78097 0.08 II

Table 3.1 Zero’s of J;(\) determined with ZREAL
[11] and (19) respectively.

Figure 17 gives the method of averages in the form of
a flowchart. The first step is to perform an integration
over a half cycle to determine 11,

¢
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[eEPABYEE (m-1)
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I+ [ 8ERAEIAE (m>1)
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21
where £, is the m’th successive zero of the oscillating
function g, with ¢, > a. 12_, is then determined
through the use of a weighted mean

1 1 1,1
w-—lI-—l + wlI-

1 1
Wt + W,

P, -

m-1

(22)




with both I} and I._, having been determined
previously through integration and with the weights
given by wt = (£,/£,)“*"®. In general, (22) is given
by

w:" I: !

-1
W

k-1 gk-1
* Wha I.OI

k-t
+ w‘+l

I - 23)

If m-1#1 then I2_, is calculated through the use of
(23) and the process is repeated until we have I}
(where k=m) which will give an approximation of the
actual value, I(R), despite the fact that no additional
integrations were performed. If the error criterion is
not met, I} (where m = k+1) may be determined
through integration, (21), and I{*' through repeated
application of (23). In this way, an estimate for I(R)
may be obtained.

In the determination of the discrete Green function
self terms, the situation arises where the distance
between source and observer (R) tends to zero. The
effect of this, as discussed earlier and illustrated by
(19), is that the zero’s of the oscillating Green
function integrand move further out from the origin
along the A-axis. In the method of averages, weights
are determined according to the zero’s of the
oscillating function, i.e. wi=(§,/£,)“*"®. Now it is
apparent that, for £, > > £, and k a positive integer
which may be large, the weight wk could become a
very large real number, creating possible numerical
difficulties (numeric overflow or round-off errors, for
instance). The present authors have addressed this
problem through mathematical manipulation of (23)
after which

k-1 k-1
I,:- In 1+p b 24
1+B Ik'l

where f=10exp{(a+2—k)[log;o(§:/Ens1)-
log,.(¢,/£.)]} is now a manageable real number even
though wi~* and wX;] are very large. Consider for
example a situation where §,=200, £,=8x10°
£,=8.1x10°, k=50 and «o=0; then we have
wi=7.923x10™ and wi=1.438x10"7 whilst § =
1.815 !. Therefore, to avoid numerical difficulties
which may be encountered in a straightforward
application of (23), we propose (24) as a means to
determine IX,
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S. INTERPOLATION
As discussed in the previous section, the evaluation
of the Green functions require implementation of

numerical integration routines. This is in addition to
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Figure 16 Fuegrand of (2x/u)GF (real (- ) and

imaginary (—aA—a—aA—)) after substitution.
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Figure 17 Flowchart for the method of averages

the numerical integration which has to be performed
in the evaluation of the discrete Green functions
(which contain the Green functions). With these
discrete Green functions it is now possible to compute
the moment method matrix elements whose solution
yields the unknown coefficients I, and I,. However, in
order to reduce the computation time, Mosig and
Gardiol, noting the fact that the relevant Green
functions are only dependent on the distance between
source and observer (and not the relative orientation),
consequently suggest the use of an interpolation table
to evaluate the Green functions. This interpolation
table consists of a discrete set of Green function



values tabulated against a set of distances R; where
i=1..P and R, < R; < R_,,. Interpolation is then
used to evaluate these functions at any distance
ranging from R_. to R, (the maximum linear
dimension of the structure). It is suggested that
convergence tests be performed to determine optimum
values for P (typically from 50 to 250) related to
specific problems. Since the value of R, has an
effect on the self term evaluation of the discrete Green
functions, care should be taken when choosing values
for R_,. However, numerical experiments performed
by the present authors, showed differences on the
order of 0.1% in the self term values computed for
R, =107* and for R, =10". Furthermore, careful
consideration should be given to the computation of
R;. In this regard, the following expressions have been
used to good effect:

Ri-&nh{h 1_:’:‘!1-) (25a)
Roin

for R <R <R, and

R, = R * (s~ Rena) 35

(25b)
for R..<R<R,, where R, =(@+b?)". With
interpolation it is possible to reduce the computation
time without sacrificing significant accuracy.

6. COMPUTATION OF FAR-ZONE
RADIATION

In solving for the surface current distribution, we
are interested in the case where both source and
observer are located on the air-dielectric interface i.e.
where z=0. For far-field radiation computation, on
the other hand, this will not be the case. If the
radiator is placed in the xy-plane, far-field radiation
on broadside now implies that z becomes large and
then the following situation arises: since u, is purely
imaginary in the interval 0 <A <k,, and z a very large
real number, exp(—j(ki—A\?)!?z) causes rapid sign
changes in this interval. Furthermore, since u, is real
for A=k, we have exp(—ugz)+0 and thus the
integration interval in effect reduces to 0 <A<k, An
example of a Green function integrand for z=5.0 m

is shown in Figure 18 which illustrates the rapid sign
changes and reduced integration interval just spoken
of. From this figure it is clear that standard numerical
integration routines would not be capable of yielding
accurate estimates of the Green function integrals with
large z values. We therefore resort to asymptotic
techniques to obtain approximate analytic solutions.
Application of the method of steepest descent [13] to
these integrals yields the following far-field radiation
expressions for arbitrarily shaped etched antennas in
terms of the coefficients I, and L [3]:

M N
E-GEri0)Y al,d ™ GPrinY b1 oS @9
i=1 Jj=1

M N
E-GYri0)Y. al ™+ GP )Y bl @T)
fel i1

where g =x,sinfcosg+y,sindsing (k=i,j); x; and y,
are the centre coordinates of the k’th current cell. We
also have

~JZcosdfy(6) 7%

Gy (rl0)= @8)
Ay r
iZ si ~jkot
G (riy -T2 ®) TV g
0 r
—jZ si “Jhr
G¥(rloy-—2 Zpindfe®) (30)
Ag r
- ~jkor
G¥(rl0)- J20stf®) e )
Ao r
TcosO
)=
7 ® [T—je,cosBcotan(kOhT)]
G2)
JAGE cos )

[cos8 - j Tcotan(k, kT)]
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Figure 18 Normalised real integrands of G ( i.e.

T ARJAexp (-4 2)/D g for RMg=0.5 and h/N,=0.07 at f=1.206 GHz

and €,=4.34-j0.0868 ) for z = 0.0 and 5.0 m.

7. SUMMARY

The MPIE formulation rates among the accurate
integral equation analysis techniques for microstrip
radiating structures. After a brief overview of the
modelling scheme, numerical techniques used by the
authors in the implementation of the formulation were
discussed: a detailed and illustrated discussion of the
numerical evaluation of the required Green functions
was given, an interpolation method used to improve
the computational efficiency was discussed and finally
the computation of far-field radiation patterns was
considered. A FORTRAN computer code
implementation of the MPIE formulation is available
on request from the second author.
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