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Abstract

A theoretical basis for numerical electromagnetics, the
so-called Finite Integration Theory, is described. Based
upon Maxwell’s equations in their integral form, it re-
sults in a set of matrix equations, each of which is a dis-
crete analogue of its original analytical equation. Appli-
cations of this discretization process are described here
in the context of the numerical simulation of electro-
quasistatic problems and of time-harmonic field compu-
tations including a new type of waveguide boundary con-
dition, which is presented here for the first time. In both
fields the process of mathematical modelling and dis-
cretization yields large systems of complex linear equa-
tions which have to be solved numerically. For this
task several modern Krylov subspace methods are pre-
sented such as BiCG, CGS and their more recent stabi-
lized variants CGS2, BICGSTAB(I) and TFQMR. They
are applied in connection with efficient preconditioning
methods. The applicability of these modern methods
is shown for a number of examples for both problem

types.

1 Imntroduction

A well-known discretization approach in the computa-
tion of electromagnetic fields is the so-called Finite In-
tegration Theory (FIT). FIT and the related software
were originally developed for frequency domain applica-
tions [29], {30], [31] and later for solving many different
problems including static, low frequency, high frequency
and transient fields for designing large scale accelerators
(32).

In the following we will give short overview on the ba-
si¢ ideas of FIT. In order to avoid the restriction to co-
ordinate grids and to improve the capability of a grid to
approximate curved boundaries, we will present a gen-
eralized form of the discretization approach, which is
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applicable even to non-coordinate grids having the fol-

lowing properties. One can define a general grid doublet
{G -G}

o The solution volume G is simply connected and con-
tained in B3 (or R?).
o G is a finite set of non-empty sub-volumes:
V={W..Va,hinVi={4}h UV,=G

¢ The non-empty areas A; are defined as the intersec-
tions of two volumes:

A= {4;...Ap} with {A;} == NV,

o Lines L; are defined by the intersection of areas:
L={L1...La, } with {L;} := N4,

¢ Points P; are defined by the intersections of lines:
P={P ...P,.} with {P;} :=nNL,.

On such a grid G it is more convenient to use integrated
fields as state variables rather than the field components
directly.

If we define a grid veltage along a grid line L; and a
magnetic flux quantity by:

e;:fﬁdé’;b;:/ B.dA (1)
L; A;
we can rewrite the first Maxwell equation on G:

L. 88 -~

E. ds=— | — - -dA

fEa=-[5 @
in eract representation as:
ab;
Zcikek = _E- (3)
%

The coefficients ¢; x build a 3N x 3N matrix C (N =
number of grid points), consisting only of the entries
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{-1,0,1}. This matrix can be considered to be the dis-
crete analogue of the analytical curl-operator.

So far no approximation and no discretization is ap-
plied. The only step from the original field equation to
the latter one was to replace field components by their
exact integrals along lines or over areas.

Similarly we continue with replacing the second
Maxwell equation but on G rather than on G, where
G is defined such that each point P of G is located in-
side V; of G. On this dual grid G = {V,.,} we introduce
. magnetic voltages h;, electric fluxes d; and currents j;
as:

_JdA (4)
Ai

Ay

hi= | H-d%; ,di=
L;
As an example Fig. 1 shows the allocation of the state
variables on an orthogonal cartesian grid doublet.

4

7 qas _Q’hiq
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Figure 1: One cell of the grid G and the dual grid G.
The allocation of the electric field and flux components
are shown as well as the allocations of the corresponding
magnetic quantities.

& &

With these new variables we can again map the origi-
nal equation

fﬁ-d‘s:/(%uj-d?a (3)
to a grid equation exactly:
Zc,khk = LY (6)

The third and fourth Maxwell equation is similarly trans-
formed into

ng'kdk =4¢i ; Esikbk =0 ; with ¢; =] pdvV,
k k Vi
(7)

where the coefficients &x, Sik and s;x again build topo-
logical matrices C, S and S.

So far we have mapped all Maxwell equations to a
grid space doublet without any specialization. The final
discretization comes into the procedure only now that we
have to relate electric voltages and fluxes, and magnetic
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voltages and fluxes as well. In the above derivation the
magnetic voltage and the magnetic flux are independent
variables. The relation f must be of the form:

Jo B 44

Ji A

The matrix D, is now the discrete representation of the
permeability. Thus in this derivation the approximation
is introduced through the material relations rather than
difference expressions for derivatives.

f(B,H)=

D#,l‘

In general this matrix is not diagonal but sparse with
some diagonals of non-zero elements. Furthermore D, is
symmetric for reciprocal materials. In the case of coordi-
nate grids as well as for a few other orthogonal grid dou-

blets (cf. [28]) the discretization of the material equation

has a second order accuracy and the material matrices
are truly diagonal if the material tensors are diagonal or
isotropic.

The same arguments lead to the discrete permittivity
and conductivity as (in general not diagonal) matrices:

(8)

Summarizing this derivation yields the so-called Maxwell
Grid Equations (MGE), corresponding one-to-one to the
analytical equations on any non-regular grid doublet
obeying the above definitions.

d=D.e ; j=D.e

Integral Form:

4= .= }g -
-—B.dA = E.-dr 9
/] -z » ®)
fj B.ai = 0
av
(J+3") dA = f i - df
ot 8A
/-D-dz ff/ odV
av v
D = ¢FE
B = uH
J-}, = kE
Matrix Representation:
-b = Ce
Shb = 0
j-{~ & = éh
Sd = q
d = D.e
b = D,h
jL D,;E
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So far this theory is state of the art and the basis for
existing computer codes solving problems in time do-
main, frequency domain and in statics [14].

It represents the only known theory that not only al-
lows practical solution on a computer but also maintains
all analytical properties of the electromagnetic fields
when changing from B3 to the grid space.

1.1 Algebraic Properties of Maxwell’s
Grid Equations

Grid-fields, as obtained by FIT, have analytical and al-
gebraic properties that ensure accurate numerical results
and enable an algebraically exact, self-testing of numer-
ical results.

These properties may be considered useful in two
ways. One aspect is that many numerical problems are a
priori eliminated, such as spurious modes and parasitic
charges.

Another aspect is that the matrix theory can be used
instead of the analytical equations to study properties of
fields in an algebraic manner, without actually solving
the equations numerically.

For grid doublets there exists a dual index system such
that the point P; is located inside V; and, vice versa, F;
inside V;. All other elements of G, G receive an index
defined by this system as well. This numbering scheme
ensures that the following key properties hold [33], [5],
[10], [4]:

c cT

5C

(10)
(11)
Both equations represent a topological property result-
ing from the duality of the two grids. The analytical and

algebraic properties resulting from these basic equations
are [33]:

o

CS=0 ~ curlgrad=10 (12)

SC=0 « diveurl =0 (13}
and similarly for the dual grid operators:

CS=0 ~ curlgrad=0 (14)

SC=0 o diveurl =0 (15)

As an example for a proof using algebra we consider
the (well known) fact, that resonant fields in loss free
structures can have only real eigenfrequencies. For the
case of MGE it requires only a few lines to prove this.
We rewrite the MGE in frequency domain as:

Ce
Fry—1
CDh, b

(16)
(17)

—iwb

+iwD.e
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We combine both equations to

€D, 1Ce = wDee, (18)
introduce an energy density normalization by
e=Dl/2¢ (19)

and finally obtain:
(D:-12¢p;1/2) (D;12¢D; 15 Te = w?e  (20)

This equation is a simple, algebraic, linear eigenvalue
problem with an (obviously) symmetric and real matrix
of the form AT A. Thus one knows from the algebra that
all eigenvalues w? are real and non-negative, g.e.d.

To prove another very important property we start
again from the eigenvalue equation (18) and multiply it
from the left with S:

$Cp;lCe=w*SDce (21)
As the left hand side vanishes due to SC = 0 we are left
with:

0=w?SD.e (22)

This equation allows only two distinct cases for the so-
lutions { e,d } :

e,d:{

As the original eigenvalue problem is real and symmetric
we can create a set of orthonormal eigenmodes en such
that

w? =0 sd#ﬂ
w?#0 Sd=0

Te.
ei EJ

Thus the solution space & of equation (20) is made of
two orthogonal sub spaces:

= 6ij (23)

=050, (24)

This relation is in so far essential as one is only inter-
ested in solutions of 1, and not in static fields contained
in £2g. However, as the eigenvalue problem contains
both solutions, this fact is also responsible for a signifi-
cant problem: for N grid nodes there are approximately
N zero and 2N non-zero eigenvalues. This almost ex-
cludes a numerical approach with iterative methods as
it is almost impossible for large N to compute the N +1
th eigenvalue and vector. The solution to this problem is
found by transforming the eigenvalue equation (18)into
a discrete Helmholtz-like equation in analogy to the an-
alytical step:

curl curl = graddiv — v?2 (25)
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This transition to V2 is not possible in a one-to-one
manner as it implies a constant material property func-
tion. Thus a similar transition with MGE will be more
general as there is no restriction to constant material
properties. The generalized Helmholtz-Grid-Equation
reads as [33] [10):
(€D:1C + D18TD4EDg)e = w2

o 1 28D3)e = we (26)
where the term D1§TD2 §D3 corresponds to the grad-
div operator and Dq,D9,D3 are diagonal matrices
which can be comstructed in such a way that the
Helmholtz-Grid-Equation in homogeneous regions turns
into the standard discretization of the v2 operator.
However, this form is valid for any non-constant mate-
rial distribution. This is one of the rare cases where the
grid equation is more general than the commonly used
analytical one.

The solution space 2 is again a set of two distinct
orthogonal sub spaces:

2= 060 (27)

where the §2,, has not been altered. All static solutions
with eigenvalue zero in §2( are turned into eigensolutions
of

- - 2
D,5TDySD3e =w Dee (28)

These eigenmodes are not solutions of Maxwell‘s equa-
tions. However, the advantadge of this transformation
is that the eigenvalues of 3, are also positive and real.
The disadvantadge on the other hand is that these so-
lutions are naturally obtained together with Maxwellian
solutions. Historically these solutions were probably first
observed by simply discretizing the wave equation with a
conventional 6-star operator and investigating the fields
obtained. As solutions in §2. can often be identified by a
trained user as non-Maxwellian, they were named ghost
modes, spurious modes or simply unphysical solutions.
With the exact relations shown above this contamina-
tion can be taken care of exactly within the MGE. Thus
the widespread problem of spurious modes, which are
subject to enormous effort in e.g. Finite Element stud-
ies, is simply a non-problem for MGE [29] [30] [31] {33].

Incidentally, for the reader interested in physics be-
yond Maxwell‘s equations, the solutions in 2, are not
at all unphysical. It is true that they are not electro-
magnetic solutions but they are in fact solutions of the
Schroedinger equation.

2 Electro-Quasistatics

The practical background of the electro-quasistatics orig-
inates in energy engineering. An important problem
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in high-tension power plants are arc-overs on moist or
contaminated insulators. The electrostatic field of the
charge-free space prevails essentially below a critical
voltage U/z. However, the dielectric material loses its
insulating characteristics above Ug. It becomes the car-
rier of a discharge which builds up a conducting connec-
tion along the insulator. It is caused by slowly varying
fields (50 Hz), for whick the displacement current is a
significant quantity. This class of problems is denoted
as electro-quasistatics. The electro-quasistatic fields can
be determined by solving a complex potential problem.
Diseretization leads to a large sparse system of complex
linear equations with a symmetric matrix.

As a typical application, high voltage devices, which
are driven with 50 Hz a.c. voltage, have been studied.

“There exists a voltage dependant electric source field Eq
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and an a.c. current with density #0/8t. This a.c. current
is linked with a time dependent magnetic field which, in
turn, causes an electric rotational field Ew with density
curl By = —8B /8t. The importance of this eddy field is
determined by the rate of magnetic field variation. This
rate is so low for 50 Hz that the local contribution of the
eddy field strength is negligible compared to the source
field strength.

2.1 Modelling

As a subject one considers lamellar, low frequency fields
with important effects by the displacement current.
Thus . B

éB D

5 = 0, 5 #0
is assumed. Under these assumptions Maxwell’s equa-
tions for the time harmonic electromagnetic field reduce
to

(29)

curlE = 0 (30)
curlH = iwD+«xE+Jg (31)
divD p (32)
divB = o. (33)
The system (30) - (33) leads to
div ((iwe + £)E) = ~div (Jg). (34)

The electric field E may be described as the gradient of
a scalar potential because of (30). Note that this is a

complex potential:
E=- gradp. (35)

Thus the governing equation for the electric scalar po-
tential becomes:

div ((iwe + &) grad p) = div (E‘) (36)
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2.2 Numerical Simulation with ¥FIT

The application of FIT leads to the following equivalence
between continuous and discretized equations

div((iwe + x)grady) = div(Jg) (37)

— S§(D.+wD.)8Tag = Sjp, (38)
Introducing the notation

A= gDngT, A, = nggT, Pg = §__}‘0 (39)

the governing complex linear system for the field problem
becomes

(Ax+iwAo)2E = Dy (40)

Comparison with electrostatics and stationary currents
shows that the real part of the complex symmetric ma-
trix A = A, +iwA, is just the matrix A, for station-
ary currents and the imaginary part is the matrix A.
of electrostatics, scaled with the frequency w. A isa
sparse (N x N) matrix connecting neighboring poten-
tials. Electro-quasistatics is now implemented in the
MAFIA [14] static solver S.

3 Waveguide Boundaries in the
Frequency Domain

An important issue in numerical electromagnetics is the
computation of reflection and transmission coefficients of
structures terminated by infinitely long waveguides. In
[5] an algorithm is described to simulate such waveguide
boundaries using MAFIA’s [14] time domain solver T3.

In the following a variant of this method will be de-
rived to be used within the frequency domain module for
driven problems W3 {cf. [10]).

Transforming Maxwell’s Grid Equations into the fre-
quency domain yields

(41)
(42)

Ce —iwb

¢p; b iwD.e +

Tnserting (41) in (42) we get the so-called curl-curl-

equation
("JDL'ICe —w?’Dce = —iwj, (43)
corresponding to the analytical form
curl g~ leurl B — w2eE = —iw]. (44)
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The system matrix of (43)
A, =€p;lc-uD,

is complex symmetric in the general lossy case and real
symmetric in the loss-free case having real material co-
efficients ¢ and p.

A, is a large sparse (3Np x 3Np) matrix, connecting
only neighbouring components of the solution vector e.
Thus the introduction of any boundary condition only
requires the correcfion of those entries of A, which
concern the tangential E-components at the boundary
plane, as demonstrated in Fig. 2.

(
)

Figure 2: Introducing boundary conditions: Only the
curl around E;, has to be corrected, whereas the curl
around Eyorm lies completely inside the grid.

&
H=?

Enorm

In the following we consider the waveguide termina-
tion shown in Fig. 3.

1 2

I - ~— Iz

L

Oy — —1 02

Az
Figure 3: Coefficients of an incoming, respectively, out-
going wave at a waveguide boundary.

To obtain the tangential E-field at the boundary plane
9, a modal expansion at plane 1 is performed, one grid
step in front of the termination. The eigenmodes in a
waveguide satisfy the analytical orthogonality relation

fL(E‘,-(z,y) % H}(2,9)) - dA = &;,
or in gridspace
(e,—,h_,-) = eiK.hj = 6,"'

with a topological matrix K (cf.[5]). The indexed vec-
tors e; and h; refer to the 2-dimensional modes in the
waveguide, and are expanded to full 3D-length where
necessary-
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The tangential field in plane 1 can be written as a
superposition of all these modes

e(z,y,7n1) = Zaiei(-’ﬂ, ), (45)
1

where the a; are given in gridspace by
a; = (e(zl),h,-).

Each of these coefficients a; can be split up into two
parts propagating along =z-direction, named I and O
as shown in Fig. 3.

Assuming k. (w) to be the propagation constant of the
waveguide mode, the coefficients at planes 1 and 2 satisfy

Il = e—ik;AzIz , o2 = e—ik;Azol
aa=h+01 , a3=L+0: (46)

From this we get the following algorithm to obtain the
tangential E-components at plane 2:

1. Compute the discrete 2D-eigenmodes (including
their propagation constants) of the infinitely long
waveguide using MAFIA’s eigenmode solver E.

9. Perform a modal expansion of the tangential electric
field at plane 1, yielding coefficients a; for a number
of maodes.

3. Compute az = I + O3 at plane 2, where I, repre-
senting a wave coming from outside the structure,
is known a priori. From (46) we have

az = Iz(l _ e—2ik.Az) + ale—ik,Az.

4, Compute the tangential electrical field at plane 2
from (45).

Finally this algorithm has to be transformed in a
matrix-equation conforming to (43). The tangential field
at the boundary plane is (considering only one eigen-
mode)

e(z) = aze
- [Iz(l - e-2:‘k.Az) +ale-ik,Az] e;
with
are; = (e(z1).by) e
= (e;hfK) e(z1).
Including this formula in the matrix-equation (43), we

get a new linear system

Ase = b2:
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with the extended system matrix

A2 = A] + szge"‘k"‘A' Z(e:hTK): (47)

where the summation has to be performed over all modes
considered in the modal expansion.

The excitation by the incoming wave(s) with coeffi-
cients I ; is included in the right hand side

by = —iwj —w'De Y I (1 — g7 318 )ey,
i

The new system matrix is

—ik, Az

e compler due to the propagating term ¢ and

e nonsymmetric due to the fact, that the modal ex-
pansion is performed in plane 1, but its results are
applied in plane 2.

The final computation of the desired S-parameters is
quite a simple task, since the amplitudes of the outgo-
ing waves Oy at the boundary plane (respectively their
power O%) just have to be normalized {o the power of
the exciting mode (I%).

4 Solution of the Linear Prob-
lems

To obtatn the solution vectors of the discretized problems
it is necessary to solve a large sparse indefinite system
of complex-valued linear equations. With the calcula-
tion of three-dimensional structures the dimension &V of
the system matrix is usually in the order of magnitude
103 — 107 which necessitates the application of iterative
methods in the solution process. An important class of
iterative methods available for this task are the so-called
Krylov subspace methods in which

Tn €ETo+ Km (48)

holds for the iterative approximates z, to the true solu-
tion A~b, where one has a Krylov subspace

m=1
Km = Km(A, 7o) :={v € RV v = E c:iAlrg}  (49)

i=0

with rp = b — Azp. This includes the original CG (Con-
jugate gradient) method by Hestenes and Stiefel {11] and
its descendants to which one often refers to as conjugate
gradient type methods.

The subject of Krylov subspace methods is still an
exciting active field of ongoing research and the num-
ber of recent publications in this field documents the
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interest with which these methods for the solution of
non-Hermitian linear systems of equations have been re-
ceived by computer scientists and numerical engineers.

Unfortunately Krylov subspace methods for non-
Hermitian systems are not sufficiently robust to be ap-
plied as blackbox solvers. There are examples of system
matrices for which each of the methods presented here
will fail to reach a prescribed level of accuracy or fails to
even converge at all. Not all of these examples are of aca-
demic nature and thus a careful testing of the different
methods available is mandatory in order to see which
solver is most suited for a given problem. The range
of methods tested here does not include algorithms like
the well-established GMRES method by Saad and Schulz
[19], the GMERR method by Weiss [34] or the just re-
cently published GMBACK method by Kasenally [13].
To be competitive these methods generally require, even
in restarted versions, the storage of a large number of
basis vectors of length N. Thus, as memory efficiency
is here an important consideration for three-dimensional
problems, these methods cannot be recommended. Also
not considered are methods based on the normalized
equation such as CGNR and the CGNE method by Craig
[3]. The normalization of the system matrix results also
in a squaring of the condition number which may severely
affect the iteration process. The expected slow speed
of convergence did not encourage their application right
from the start.

Both the system matrices of equation (40) arising
in electro-quasistatics and the discretized eddy-current
problem without the new waveguide boundaries yield
symmetric systems of complex linear equations (4 =
AT # AF) which then have to be solved.

A solution method which has already proven its fea-
sibility [10] for this process is the COCG (Conjugate
Orthogonal Conjugate Gradient) algorithm by van der
Vorst and Melissen [26]. This method is effectively a
symmetric variant of the complex BiCG algorithm (Bi-
Conjugate Gradient) of Jacobs [12]. In the BiCG method
the iterates fullfil a Petrov-Galerkin condition

b— Az, LL, with @, € zo + Ky, (50)

where one has Krylov subspaces K, = K,(4,rg) with
ro = b= Azp and L, = Ko (A%, ), where 7y is an addi-
tional non-trivial starting vector. The choice of 75 = 7o,
which is the conjugate complex of the starting residual
7o, in the complex symmetric case allows the simplifica-
tion of the calculation of the factors @, and S, in the
BiCG algorithm, since an additional expensive matrix
vector multiplication with the conjugate-transpose sys-
tem matrix A¥ is no longer needed. In the following the
inner product is defined as (z,y) := ¥ ¢ = §¥ z, where
7 is the conjugate complex of the vector y. The vectorial
formulation of the COCG algorithm reads:
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COCG algorithm (without preconditioning)
Let A€ CN*N A= AT be CV gz CV
Choose zg € CV

po =10 =b— Azo; po = (ro,To);

Forn=0,1,...do:
O0n = {(Apn,Pn); @n = pn/on;
Zngl =  Zn+ OnPn;
Pagl = Tn = 0nApn;
If 2,4 is accurate erough: Stop.
Pnsl = (T'n+1, F1t1+1); Bn = Pn-i-l/Pn;
Pnt1 =  Tapl+ FnPas

End.

As long as the system matrix is complex symmetric
this method may be suspected to be the best choice since
there is only one matrix vector multiplication to be per-
formed at each iteration step.

In practice however, for reasons of stability, this prob-
lem sometimes has to be tackled by other, more expen-
sive modern CG-type methods which where mainly de-
veloped for more general systems of complex linear equa-
tions. Their application becomes essentially necessary
with the introduction of the new waveguide boundaries
to the discrete time harmonic equation, due to the non-
symmmetric system matrix. Here the BiCG method can
be applied. It is also the basis for more modern methods
which will be presented in the following text:

BiCG algorithm (without preconditioning)
Choose zg; 10 =b— Azg;

paa=pa=0 paa=1

Choose g, such that pg = {ro, 7o) # 0;

Forn=0,1,...do:
ﬁn = Pn/Pn—l;
Pn = rp+ !3_npn;
Dn = Fat 61151:;
Vn = Apg;
On = ('Un,Fn); Opn = Pn/gn;
Tppt =  Tnt OnPn;
If 2,41 is accurate enough: Stop.
T4l = Tn = Qn¥n;
Fagr = Tn— &nAHﬁ,,;
pnsr = (Pat1, Fas1)s
End.

According to Sonneveld [25] the calculation of the vec-
tors p, and r, can be considered as the construction of
so-called BiCG polynomials of degree n ¢n,¢n € Iln
(where T, = {gla(t) = Ypeoait,(0) = L,a: € R}),
which fulfil the corresponding three-term recurrence for
Prn and

rn = ¢ (A)ra, pn=Pn 0 (A)ro.

His idea for the CGS (Conjugate Gradient Squared) algo-
rithm was to exploit an eventually existing contraction
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property of the BiCG polynomials, which are also ap-
plied for the calculation of the so-called pseudo-residuals
#, and pseudo-search directions p, in the BiCG algo-
rithm. Implicitly the CGS algorithm then calculates

rn = (85°°)2(A)ro, pa = (¥2°°)2(A)ro,

without requiring the construction of . and p, which
would necessitate a matrix vector multiplication with
the conjugate-transpose of A as in the original BiCG
method. It has iterates

Zn € To + Kon(A, o).

The CGS algorithm theoretically converges if BiCG does
and is usually faster in a lot of practical applications.

CGS algorithm (without preconditioning)
Choose &g; To = b — Azo;

go=p1=0 pa1=4

Choose g, such that pp = (TQ,FO) #0;
Forn=0,1,...do:

Bn = Pn /Pn-l )
Un = Tn-t ﬂn?n;
Dn = un+ ﬁn(Qn + ﬁnpn—l);
U = Apn;
On = {(vn,To}; @n = pn/0n;
Ingel = Un = CQqn¥n,
Tat1 =  Tn+an(tn + gnir);
If zn41 is accurate enough: Stop.
Tatl = Tn—aA(tn + gni1);
patt = (rapi.Fo);

End.

The squaring of the BiCG polynomials is characteristic
of the CGS method and results in either an amplification
of any existing contraction property of the polynomials
or an increase of the residual norms depending on the
choice of the start vector rg.

This cause for the often observed irregular convergence
behavior may result in numerical cancellation which can
severely affect the stability of these methods. Several
new stabilized methods have been developed to overcome
this effect. Fokkema, Sleijpen and van der Vorst {21]
developed generalized variants of the CGS method and
probably its closest relative is the CGS2 method. Here
one has

rn = $a(A)$(A)ro

for a nearby BiCG polynomial &, based on some vec-
tor 5 instead of 7. Another variant of a generalized CG
method is the BICGSTAB (Bi-Conjugate Gradient sta-
bilized) method [27] by van der Vorst. For BICGSTAB
he proposed to define the residuals r, by

tn = Tn(A)bn "% (A)ro,
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7, € I, defined as a product of n l-step MR-
polynomials (Minimal Residual), i.e., n degree one poly-
nomials: )

ma(t) = (1 —wit)(1 —wat)...(1 — wnt).

The w; are chosen to minimize the Euclidean norm of
Tn !

lIra(wn)ll = min ||[(1 - wA)ra-1(4)8,.° (A)rolla-
wER

The BiCGSTAB method is the combination of a BiCG
polynomial followed by an GMRES(1) minimization step
and thus usually yields smoother convergence curves
than CGS. However, stagnation or even breakdown may
occur if the w; are close to zero. To overcome this ef-
fect Gutknecht [9] proposed the usage of a 2-step MR-
polynomial in every second iteration step. A generaliza-
tion of this idea was given by Sleijpen and Fokkema [20]
with the introduction of I-step MR-polynomials which
led to the more efficient BiCGstab(!) algorithm with

Tn = XmXm—1-.-X0,

where n = ml +1, x: € I; and x» minimizing

“xm(A)’"n—f(A)ﬁbnmca (A)rolfs-

This method can essentially be considered as a combi-
nation of BiCG and GMRES(!} and it holds

2 =2%m €To+ szI(Aw "'0)'

Thus for I = 1 this method coincides with the original
BiCGSTAB algorithm. We also tested an implementa-
tion with I = 2. Even here stagnation may occur, if its
GMRES(2) part stagnates.

BiCGstab(!) algorithm (without preconditioning)

Start:

Choose xgp, Fp; Tro= b — Axg;

p-1=0; po=1, a=0, w=]

For n=0,1,2l,...do:

Po = Pn-1; To = Tn;

p = —wpo;

For j=0,---,i—1do:
p1 = (rj, Fo); B=ap/po; po=pr;
Fori=0,-..,7 do:

pi =1 — Bpi
End;
pi+1 = Ap;; ¥ = {pi+1, 7o) @ = po/7;
Fori=0,---,j do:
T = Ti = QP
End;
rj41 = Arj; 2o = Tp + apo;
End;

Ty =Xy
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Forj=1,---,1do:
Fori=1,-.--,j—1do:
ij = (1foi){rs, mi);
ri = T'j - T,'jr,'
End;
oj = (rj,ri); v = (/oz){ro,vs);
End;
M= Ww=EL
Forj=1-1,...,1:
: !
Yi=v 2:'-_—3'4.1' TiiYis
End;
Forj=1,...,1-1:
" -1
T = Yier Tt Zs‘:j-i—l Tji%i+1)
End;
]
o=@o+ 71To; To=To—NTH Pe=Po— VP
Forj=1,---,1-1:
Po=Ppo—7Pi; To=2To+7% T To="To— VTi
End;
Up4i-1 = Up; Fril =05 Xn4l = T0)
If x4 is accurate enough: Stop.
End.

The TFQMR (Transpose-free Quasi-Minimal Resid-
ual) algorithm by Freund [7] is closely related to the CGS
algorithm (cf. [7],[36]). The quasi-minimal residual ap-
proach was used first in the BiCG-based QMR algorithm
by Freund and Nachtigal [8] and yields smoother conver-
gence curves. It usually exhibits a performance similar
to CGS and CGS2. The vectorial TFQMR algorithm
reads as:

TFQMR algorithm (without preconditioning)
Choose zo;

wy =y =ro=b—Azxo; vo = Ay;

do=0; 7=|lroll; Jo=0; m0=0;

Choose 7o, such that pg = {ro, Fo) #0;

For n=1,2,...do:

On1 = (vn-1,F0); @n_1=pa-1/0n-1;
Yon = Yen-1— Qn-i¥n-1;
Form=2n-1,...,2n do:
Wm+tl = Wm — On-1AYm;
I = [0mssll /et em = 1/+/TF 9%
Tm = Tm=19mCm; fm = Cpln_1;
dm = Ym + (ﬂfn_.lﬂm-llan—l) dm-1;
Tm = Tm—1 + Tmm;
If z. is accurate enough: Stop.
Fn = (w2n+1’ FO); Bn = Pﬂ/Pn—l;
Yol = Wangl + Bnlon;
Un = Ay2n+1 + ﬁn(Ayzﬂ + ﬁn"-’n—l);
End.

Note that for this version of the TFQMR algorithm
only an upper bound is given for the residual norm. All
the methods presented here belong to the family of bi-
conjugate gradient-based methods.
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The performance of all Krylov subspace methods
strongly depends on the spectrum of the system ma-
trix. Thus a preconditioning of the system matrix is
almost always mandatory to improve the distribution of
its eigenvalues in the complex plane. This is usually per-
formed by solving a system

PrYAPTY(Pox) = Pr b (51}
instead of the original system Az = b. The better the
matrix M = P, P, approximates A, the better one may
expect the associated acceleration methods to perform.
A common choice for M is an incomplete approxima-
tion of A or, adapted to the requirements of specialized
computer hardware, a matrix s(A),where s is a suitably
chosen low-degree polynomial. For a good survey on this
subject see [1], [17] and [16). The theoretical effects of
preconditioning on systems of linear equations may be
considered to be guite well understood if the system ma-
trix is an M-matrix. For more general systems of linear
equations they are not completely understood and so
the preconditioning of non-Hermitian complex matrices
is still based to a large extent on numerical experience.
For a visualization of the effects of preconditioners on
the spectra of a number of test matrices see [15]. For the
solution of the electro-quasistatic system (40) an SSOR
and an MIC,,(0) preconditioner {1} was applied. Both
preconditioning methods have a positive effect on the
spectrum of the complex symmetric linear system and
yield a considerable reduction in the number of itera-
tions required in the tested CG-type methods.

For the nonsymmetric system of complex linear equa-
tions arising from the discrete time harmonic equations
with waveguide boundaries a different approach was
taken. A memory efficient SSOR left-preconditioning
was applied, which had already been implemented for
the symmetric case with the preconditioning matrix

M=Ea-ptaiEa-n, (52)
w & w
where A is the diagonal, L the strictly lower and U the
strictly upper part of the symmetric part
= _1 2
A, =CD;*C-w D, (53)
of the nonsymmetric systern matrix A2 and & is a suit-
ably chosen acceleration parameter. A common choice
is @ = 1, since there is usually only a small sensitivity of
the preconditioning process to this parameter. We may
refer to this approach as a PartialSSOR precondition-
ing.

A very similar approach for this problem was investi-
gated by Yserentant [35] for indefinite symmetric system
matrices as they arise in the discretization of Helmholtz-
type elliptic equations. He applied a matrix B arising
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from the symmetric, positive definite part of such an in-
definite matrix A as a split-preconditioner to the whole
system and gave estimates on the spectrum of this pre-
conditioned system. Their consequences for Krylov sub-
space methods were also pointed out.

A priori considerations on the feasibility of this ansatz
were confirmed for our applications with the expected
nice performance at the solution of very large systems of
equations (cf. Example 4 and 5).

5 Numerical Results

For the linear systems of equations of the previous sec-
tions the methods presented in the previous chapier were
coded and tested. Here a small number of different test
calculations will be given. Some of them are of rather
academic interest whereas others (in general the larger
problems) correspond to computer simulations of real
world problems. All the calculations have been per-
formed on a SUN Microsystems computer in double pre-
cision.

5.1 Example Calculations for Electro-
Quasistatics:

Exgmple 1:

Fig. 4 shows a typical convergence history for a simple
square plate capacitor model with side length 8 cm and a
thickness of 3 cm. Its dielectric material was assumed to
bave a relative permittivity of &, = 3 and a conductivity
of k = 10-% §/m. A voltage gradient of 15 kV/cm was
assumed at a frequency f of 50 Hz. The dimension of
the complex symmetric linear system to be solved was
45177.

Ezample 2:

As an instance for a more realistic application a cylin-
drical insulator of solid epoxy resin is simulated. The
model is a 30 mm long piece of the cylindrical insulator
with some droplets on its surface. It was discretized with
a 57 x 57 x 73 grid yielding a system of 237177 complex
unknowns. The epoxy resin has a relative permittivity
of €, = 4, the droplets have ¢, = 81 and a conductivity
of about £ = 10~° S/m. A frequency f of 50 Hz and a
voltage gradient of 5 kV/cm is assumed. Fig. 5 shows
a first result for the real part of the electric field when
only seven droplets are taken.

Simulations for high voltage insulators often were
based on electrostatic calculations [2]. Since the elec-
trostatic approach does not take into account the cur-
rent density and the displacement current, it is obvious
that a systematic error is inherent to this model. Fig.

79

Modern Krylov Subspace Methods

MiC(o)CaS

£ T ! ! —
o > ; ; (AL}
& L F B © MIC{0)-CGS2 —— @)
': 0.1 vy o . MICIORTROMB =3y
2 V?;\,M, T MIC(0)-BICGSTAB — ()
A I :
0.001
£ 0.0001 s
_% 10-08 i A A _____
E oA
I 1e-06 :
= HH
B .07 P \
S 1e08 ; AL ;
g i ;(4)“.(2) W H :
5 o 50 100 150 200 250

Number of matrix vector multiplications

Figure 4: Example 1: Convergence history for an exam-
ple with 45177 grid points and MIC(0)-left precondition-
ing with w = —0.5.

6 gives a comparison of the longitudinal electric field
along the insulator from one corona to the other. This
path crosses some of the droplets, each of which caus-
ing a large peak in the field intensity. The electrostatic
model shows large discrepancies in these areas of inter-
est. Consequently, the electro-quasistatic model should
be preferred for simulations of high voltage insulators.

Fig. 7 shows the isometric lines of the real part of
the electro-quasistatic potential when the droplets are
placed in one row along the insulator.

5.2 Example Calculations for Time Har-
monic Problems Including Waveg-
uide Boundaries:

Ezample 3:

The first small test example of this subsection for time
harmonic problems including waveguide boundaries is
only of academic interest. A filament strip is included
inside a rectangular domain with a waveguide bound-
ary condition at one side {cf. Fig. 8). The domain
is discretized with a 4 x 3 x 4 grid and yields an non-
symmetric system of complex linear equations with 144
unknowns. For the application of the Partial-SSOR left-
preconditioning to the system matrix the convergence
of all tested CG-type methods did deteriorate (cf. Fig.
10 and 11). This had to be expected since the num-
ber of gridpoints belonging to the waveguide boundary
was considerable, compared to the whole number of grid-
points. Note the stagnation of the preconditioned and
the non-preconditioned BiCGSTAB algorithm even for
this small example.

Fig. 9 shows the distribution of the eigenvalues of
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Figure 5: Example 2: Arrow plot of the real part of the
electric field for an insulator with some water drops.

the system matrix with and without the new waveguide
boundaries.

Ezample 4:

In this test example the S-parameters of a 3 db waveg-
uide coupler (Fig. 12) are calculated. It was discretized
with a 52 x 2 x 128 grid yielding a system of 40704
complex linear equations. For this larger problem the
application of the PartialSSOR-preconditioning to the
system significantly reduced the number of iterations re-
quired in the solution process (Fig. 15). Note that the
CGS-related methods CGS2 and TFQMR exhibited the
same rate of convergence as CGS (Fig. 14).

As aresult, Fig. 16 shows the reflection-coefficient 511
for three frequencies, compared to the result of a time
domain calculation (¢f. [3]). The agreement between
both algorithms is excellent.

Ezample 5:

The structure shown in Fig.17 is a piece of a chip show-
ing two micro strip ports and two thin wires connecting
the strips with resistive blocks on the material. The re-
sistive blocks have a conductivity x = 13000S/m, while
the substrate has permittivity, ¢ = 9.0. The geometri-
cal extensions are about 700um x 300um. The problem
here was to determine the cross talk from one wire to
the other at a frequency of 10, resp. 40 Ghz. This struc-
ture was discretized with a 71 x 20 x 85 grid, which
required the solution of a non-symmetric linear system
of equations with 362100 complex unknowns. The stabi-
lized convergence behavior of the PSSOR preconditioned
TFQMR method allowed this system to be solved with
about 3000 iterations in 17.46 h on a SUN Sparc 20
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Figure 7: Contourplot of the real part of the potential
Re(®g) in the cutting plane of four droplets in a row
along the z-axis.

computer to a prescribed level of accuracy. The non-
preconditioned BiCG method did not converge for this
problem, as shown in Fig. 18. The S-parameters ob-
tained again agree excellently with the solution of the
time domain calculations.

6 Conclusions and further work

Several modern Krylov subspace type methods were im-
plemented to solve the discretized complex linear system
of equations which arise from the two areas of computer
simulation of eleciromagnetic fields: First we presented
the electro-quasistatics with its complex symmetric lin-
ear systems of equations. In most cases they can be ef-
ficiently solved using the COCG algorithm, whereas the
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Figure 8: Example 3: 4x 3 x4 grid of the small academic
example.
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Figure 9: Example 3: Distribution of the eigenvalues
of the system matrices. The nonsymmetric matrix aris-
ing from the formulation including waveguide boundaries
has also eigenvalues with non-vanishing imaginary part.

more expensive MIC,,-preconditioned stabilized meth-
ods BiCGSTAB and BiCGstab(2) can here be considered
to be a feasible choice to circumvent any BiCG-related
irregular convergence behavior of the COCG method.

The COCG method has already been successfully ap-
plied for the solution of complex symmetric linear sys-
tems in 3D eddy current computations with the fre-
quency domain solver module W3 of MAFIA [10]. These
systems of equations became non-symmetric after the
introduction of a new type of boundary condition for
waveguides. It was shown that only BiCG, CGS and
their stabilized variants CGS2 and TFQMR perform ap-
propriately in their solution. With BiCG converging,
we may assume the BICGSTAB method to suffer here
from the stagnation of its GMRES(1) part. It stagnated
here even for the PSSOR preconditioned system. In the
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Figure 11: Example 3: Convergence curves of the tested
solvers with preconditioning. The convergence rate is
here worse than for the non-preconditioned system due
to the small number of mesh points.

BiCGstab(2) method the better residual minimization
property of its GMRES(2) part seemed to remove the
stagnation problem, but still the overall performance was
not competitive. Further work will aim at the improve-
ment of the convergence properties of the BiICGSTAB
methods including recent results of Sleijpen and van der
Vorst [23], [22], [24].

The very next step has to be an improvement in terms
of an even more efficient preconditioning of this system.
A direct approach will surely be the inclusion of the yet
omitted nonsymmetric part of the system matrix into
the SSOR preconditioning matrix, though we might ex-
pect only a small improvement to the overall iteration
process for large problems. More hope is set in the im-
plementation of preconditioners which are based on a so-
phisticated incomplete factorization such as (M)ILU(k)
[1] or ILUT(k, ) [18], their variants without fill-in could
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Figure 12: Example 4: Real part of the electrical field
Re(E) in a 3 db waveguide coupler.

be coded in an efficient Eisenstat implementation [6].
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