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ABSTRACT

A probabilistic method called the multiple paths
method (MPM) is presented to solve the potential equa-
tion. Unlike other probabilistic techniques there is no
need for the generation of a grid resulting in less compu-
tation time and simplicity. The method is based on the
calculation of the probability of abscrption of a particle
at a point on the boundary. The random walk is along a
“path” which is a line passing through the starting point,
where the potential 1s to be determined. The results show
good agreement with other probabilistic methods and nu-
merical techniques.

Keywords: Probabilistic potential theory, probabilis-
tic methods, Multiple paths method, Laplace’s equation,
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1 INTRODUCTION

Numerical methods are frequently employed in solving
electromagnetic problems {1-4]. Other techniques include
probabilistic methods such as Monie Carlo (MCM) [5,6,7]
and the exodus method [8]. In this work a new method
called the multiple paths method (MPM) based on
stochastic processes is presented to solve the potential
equation in a two dimensional region. Unlike other prob-
abilistic techniques the generation of a grid is not needed
resulting in a less computation time and greater simplic-
ity, particularly in the case of irregular regions. Consider
Laplace’s equation:

V2V =0 with V = V; on the boundary (1)

in probabilistic methods the evaluation of the potential,
V(zo,¥e) at a point (zg, yo) in the region is based on the
following equation:

Vizo,30) = D peVp(k) (2)

k=1

where py is the probability of absorption of a random
walking particle at point K on the boundary, V, (k) is the
prescribed potential at that point and m is the number
of trial points. The accuracy of the potential increases
with an increasing m. In this equation V, (k) is known
and only pi is to be determined. In the present method
different lines called “paths” are drawn passing through
the point (o, yg) whose potential V{zg,y5) is to be de-
termined and the random walk is considered along these
paths. The complexities arising from the irregularities
of the boundary are not present in this method. The
method is applied to regions of uniform permittivity as
well as different dielectric constants. Since there is no
need to generate a grid for a random walk, the evaluation
of the potential requires much less computation time.

2 MULTIPLE PATHS METHOD (MPM)

Consider Laplace’s equation, (1) with Dirichlet boundary
conditions in which the potential, V(zo, yo) at (2o, y0o) is
to be determined. In order to determine p; in {(2) an
arbitrary point in the region is chosen randomly. The
line passing through (zo,yo) and this point intersects the
boundary at points K and K’ with the prescribed poten-
tial V, (k) and V, (k') respectively and K K’ which includes
the point (z¢, ¥g) is called a path. We divide the path into
n segments with equally spaced stations one of which is



located at (2o, y0). Figure 1 shows such a segmentation. For the probability of absorption after n walks, employing
The length of KK’ is denoted by A while B is the dis= mathematical induction, it can be easily shown that
tance of K’ to the point (zo,yo}. If B is divided into m

stations, we have m = B/d and therefore; [Tey = Zp,—_.,-H;ml(c) s VWn>1,ieT  (5)
A JET
n= (E) xm (3)  where T is the state space. From system of equations (5),

we deduce that

ML) =TT+ D _piTl;(c) ; ¥a>LieT (6)

jET
— A y
+ds —B— Since [] is a probability function; [T, > 0 and [],{c) is
the unique, bounded, solution of system of equations (6).
K (%0,30) K’ F;;:5 are the elements of the state transition matrix [9].
In view of the system of equations (6) and Fig. 2, we have,
T=1,2,...,n—1 and the transition matrix, P, is given
Fig- 1: A Segmented path with a separation ‘d’ between two by:
neighboring stations. 1 0 0 -+ .. 0
g 0 p 0
We consider two cases; (I): n is an integer which is the p=]0 ¢ 0 p (7)
ideal case and (II): n is not an integer, in which case we . .
can either change m and continue the process until case o 0 0 --- --- 1

(I) is reached or we can round off n to an integer. In
the latter case we will introduce an error which is not
significant for small segments corresponding to a large n.
We will show, however, that for homogeneous regions the : ; : X
process is independent of choosing m and such a consig- ©f starting from state i and ending at state zero (point
eration for m and n is irrelevant. Now consider a par- JX) and similarly v; is the probability of starting at state
ticle at (zo, o) for this path and let the probabilities of ¢ @nd ending at state n (point K’). Hence Y = I1:(0).
absorption of the particle at K and K’ be p and p; re- 204 vi = [Li(n). From the system of equations (6} we
spectively. The problem is now one of a random walk on  Will have:
the specified path (Fig. 2). The probability of absorption

to state ¢ when we start from state ¢ (transition state)

is denoted by [];(c) and the probability of absorption to

state ¢ starting from state i, after n walks, is denoted by Uz = qu; + pus
IT7 (c) Hence,

in which, p+¢=1.

Consider Fig. 2 and suppose that u; is the probability

Uy = g+ pus

Ui = qui—1+ puj

TAOEDWIHE (4)

Un-1 = QGUn-2

and we will finally deduce, for the probability u,, [9]:
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Fig. 2: A path A'K"’ showing the motion of a particle from one 7 —-r
state to the next state. Ur = " p p=g=1/2 (9)




By a similar procedure v, can be determined which finally
yields:

(10)

Therefore the probability of absorption at each boundary
point of the region can be determined from (8), (9) and
(10) accordingly. In view of these equations, the compu-
tation time reduces by a factor of two since determination
of u; provides v simply by (10) and no further compu-
tation is needed. The potential V;(zo,10), based on the
first path is therefore given by:

vp =1 -ty

Vi(zo, 90) = wi(0)Vp(K) + vi(n)Vp (K')

or equivalently,

Vi(zo, %) = Vo (K) = V(K )us + Vp(K')  (11)

where Vi (aq, yo) is the potential at (zy, yo) obtained from
path (1) and V,(K) and V,(K'’) are the potentials at X
and K’ on the boundary respectively.

Equation (11) can repeatedly be used to find the po-
tential at (xzq,yo) for different paths(Fig. 3). If m paths
are selected and V,(zo,y) is the potential obtained at
(zo,yo) for path s, then for the potential, V(zo, ), at

(z0,w0), [5):

Y Vilzo.%0)

V(zo, yo) = == (12)

Fig. 3: Some paths used for calculating the potential at the point

of interest, (zg. o ).

Consider Fig. 1 where the length of KA’ is A and m =
B/d with each segment having a length ‘d’. Then for the
total number of segments in the path , n, equation (3)
yields: » = A/d and since for homogeneous regions, p =
g = 1/2, from (9) and (10) we obtain

4, = — and v,-:l—E

N a1 (13)

In this case a solution will clearly be reached quickly and
accurately since u. and v, depend on A and B and not
the segmentation of the path. As was indicated, the
generation of a grid in the region is not needed in this
method. This is particularly useful for regions with irreg-
ular boundaries.

3 RESULTS

In probabilistic methods such as the Monte Carlo method
with either fixed or random walk, or the exodus method,
the region is subdivided into a grid with square cells and
the probability of absorption of a random walking parti-
cle to a boundary point, u,, is considered. For each trial
particle, the calculation of this probability needs consid-
erable time since we have a two dimensional grid with
the random walking particle along the sides of the square
cells in the grid which results in an increasingly higher
computation time for the calculation of the probability.
In the MPM however, each single path yields two proba-
bilities associated with the end points of the path simply
by equation {13) without further computation. This fea-
ture of the method along with the elimination of the grid
considerably reduces the computation time.

For a better understanding of the method, consider
Laplace’s equation within a normalized 1 by 1 square with
zero potentials on each side except on the upper boundary
which it is assumed to be 100 volts. The results are tab-
ulated in Table (I) for three points and different numbers
of paths, N. Close agreement is observed with the exact
solution with an error less than 5 percent. The potential
is also plotted for different numbers of paths, N, when N
is varied in steps of 10 (Fig. 4). The smooth variations of
potential vs. N shows the convergence of the solution.

Table(I): Comparison of the MPM with the Exact Solution in a 1

by 1 Square
x.y) N MPM | N MCM Exacq
(0.25,0.75) | 50 44.1 | 500 41.8 | 432

60 44.25 1 1000 41.10

70 42.75 { 1500 42,48

80 43.73 | 2000 43.35
(0.50.5) | 50 24.00 | 500 236 | 25.00

60 25.00 | 1000 258

70 25.71 1500 25.27

B8O 25.00 | 2000 25.1
{0.75,0.25) | 30 5.83 | 500 6.6 | 6.80

40  6.25 | 1000 7.5

50 6.00 | 1500 7.6

60 7.08 | 2000 7.3
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Fig. 4: Potential, V, at three points for different numbers of
paths, N.

The Monte Carlo solution with fixed random walk from
previous data [7] is also included in Table (I) along with
the corresponding N, numbers of walks, for each point.
It is observed that for the numbers of paths ranging from
50 to 80, multiple paths method yields comparable re-
sults to MCM with 500 to 2000 walks. This justifies the
considerable reduction in computation time for MPM.

4 COMPARISON WITH OTHER METHODS

Consider Laplace’s equation in a triangular re-
gion (Fig. 5). The MPM results are given in Table (II)
and compared to the known solutions using finite ele-
ment {FE), finite difference (FD) and the Monte Catlo
methods [2,7] for several points in the region. It is ob-
served that the MPM results agree with other methods.
In the case of nonhomogenecus regions a modification of
the random walk probabilities at the interface of the di-
electrics is needed [9]. In this case (8) is used for u, at
the interface and the random walk probabilities should
be evaluated using the appropriate boundary conditions.
For instance in Fig. § the random walk probabilities in a
direction normal to the interface are given by [8,9]:

€1
Pot = s
at 2 (€1 + €2)
(14)
€2
P =
T 2(e + €2)

1
V=0 —V =100
0,0 1
00, T,

Fig. 5: The triangular region under consideration.

©0 1, 3

Fig. 6: A 3 by 2 region with two dielectrics.

Table (II): Comparison of the (MPM) Sclutions to the Results of
Finite Element (FE), Finite Difference (FD) and the Monte Carlo
Method (MCM)

(X.Y) | MPM | EEM | FDM | MCM
(0.2,04) | 36.35 | 36.36 | 34.88 | 36.34
(0.2,0.6) 58.31 59.09 | 58.72 55.46
(0.4,0.2) | 36.20 | 36.36 | 26.74 | 36.93
(0.4,0.4) | 68.63 | 65.15 | 65.41 | 69.60
{0.6,0.2) 53.07 | 59.09 | 56.69 | 53.76

While for the tangential probabilities:

Pt+=P1—=1/4 (15)

The multiple paths method is employed to obtain the
solution in 2 3 by 2 rectangular region of Fig. 6 with
€1 = €g and €2 = 2.25¢. The results are compared to
the previously given data [8]. For simplicity, the values of
normal random walk probabilities are used as an average
which simplifies the calculations. Since the potential at
the interface does not change significantly, particularly for
smaller steps an average value is justifiable [10] in return
for much less computation time. The solutions show good
agreement with the data obtained by previous techniques.
These results are given in Table (III) and compared with
the exodus method, Monte Carlo method and finite dif-
ferences [8]. The exact value is also given as a reference.

To have an estimate of computation time and conver-
gence, the MPM results of Table (IIT) are compared with
the MCM, FD, and the exact solution in Table (IV). For
the multiple paths method (MPM), the corresponding



numbers of paths, N, is also presented ranging from 50
to 100. The MCM results are for N = 2000 walks and
the FD results are reported for 1000 iterations [8]. The
fast convergence makes the method suitable for real time
computation.

Table (III): Comparison of the MPM with Other Methods,
Exodus, Monte Carlo and Finite Differences. The Exact Value is
Also Given as a Reference

(x,¥) Exodus MCM FD FM | Exact
(0.5,1.0) | 13.41 | 12.40+1.113 | 13.16 | 13.18 | 13.41
(1.0,1.0) 21.13 20.8541.162 | 20.74 | 21.69 | 21.13
(1.51.0) | 23.43 | 23.58£1.213 | 22.99 | 23.29 | 23.43
(1.5,0.5) | 10.52 | 10.13+0.879 | 10.21 | 11.62 | 10.51

59.36 | 58.89+2.138 | 59.06 | 39.41 | 59.34

Table (IV): Comparison of Convergence of Multiple Paths
Method (MPM) with MCM and FD

(xy) | N MPMIN MCM | N ED
(051.0) [ 60  13.18 { 2000 13.4041.113 | 1000 13.16
{1.01.0) | 50  21.69 | 2000 20.85%1.162 | 1000  20.74
(1.51.0) | 60  23.29 | 2000 23.5841.213 | 1000 22.99
(1.50.5) | 200 11.62 | 2000 10.13+0.879 | 1000 10.21
(1.51.5) | 100 59.41 | 2000 58.89+2.138 | 1000  59.06

9 CONCLUSIONS AND DISCUSSION

A probabilistic method called the multiple paths
method (MPM) was introduced in this work. The method
is based on the calculation of the probability of absorp-
tion of a particle on the boundary. The random walk is
chosen along an arbitrary path passing through the point
whose potential is to be determined. A random number
generator is used to select a random path. Unlike other
probabilistic methods in which a grid is generated a sim-
ple path is used for the random walk. The simple result
given by (9) and (10) provides less computation time and
faster convergence. In rectangular grids, however, each
random walk ends up at one point on the boundary and a
large array storage is needed. The MPM results are com-
parable to other probabilistic techniques and numerical
methods as well. There are two factors affecting the er-
ror and computation time in probabilistic methods: The
finite pumber of trials and the finite number of steps in
a grid. In the new method the probabilities p and q are
independent of the number of steps for a homogeneous
region and therefore the method is fast and accurate for
a uniform medium.

Although MPM introduces less computation time and
is simple to apply it still needs improvements. For con-
cave regions and near the boundary, there may arise sit-
uations where a “shadow region” is not accessible by any

path and hence part of the boundary may not incorporate
in the calculation which can be a source of error. If part
of the boundary is occluded by another and the concave
region can be divided in two convex regions the shrinking
boundary method can be used. The value of the potential
on the border line of the two regions can be incorporated
as new boundary points into the calculation. A combina-
tion of the MPM and a floating random walk, shrinking
boundary method or an exodus method routine can be
effective in these special cases.
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