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Abstract

This paper presents a detailed numerical comparison,
of the magnetically-induced extremely low-frequency
electric field and current density within an anatomi-
cally realistic model of the full human body , as com-
puted using two different numerical techniques.

The first technique is a recently-described full-wave
quasi-static finite-difference time-domain (FDTD)
method. The use of a time-ramped excitation involv-
ing pairs of oppositely-directed plane waves allows for
the calculation of decoupled magnetic and electric in-
duction in complex heterogeneous bodies, in relatively
short (5 ns) simulation times.

The second method is an implementation of Steven-
son’s method applied for isolated conducting bodies.
With the lowest-order external magnetic field repre-
sented by a vector potential, the lowest-order internal
electric field can be represented by a scalar conduction
potential, and the magnetically-induced contribution
can be calculated in isolation.

Both methods have an underlying similarity in their
finite-difference approach, but are nevertheless very
distinct. Each code was used to calculate the fields, in-
duced by three orthogonal uniform magnetic fields, in
a 7.2 mm-resolution human full-body model. Three-
dimensional correlation coefficients of better than
09.9998% were observed between current densities
computed by the two methods. Individual edge electric
fields typically agree to 3 significant digits.

1 Introduction

Accurate numerical modelling is an important compo-
nent of the assessment of any potentially detrimental
health effects of power-frequency electromagnetic fields
on humans, if such effects are related to the induced
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electric fields and currents in tissue. Two commonly-
used [1] numerical techniques are the finite-difference
time-domain (FDTD) [2] method, and the impedance
method (IM) [3, 4, 5]. In this paper, numerical com-
putations using a modified FDTD method (6] will be
compared to those computed using a less well-known
scalar potential finite difference (hereafter frequently
abbreviated as SPFD) technique, for magnetic excita-
tion in an anatomically realistic heterogeneous human
full-body model.

Although standard finite-difference time-domain codes
are powerful and general, their direct application to
extremely low-frequency modelling can result in exces-
sively long simulation times on account of the stability
criterion. For linear structures, however, it has recently
been demonstrated (6] that the use of a time-ramped
excitation involving pairs of oppositely-directed plane
waves, can lead to an FDTD method that yields ELF
fields in complex heterogeneous conducting bodies, in
relatively short (5 ns) simulation times. By choos-
ing the incident polarization appropriately, it is pos-
sible to treat the electric and magnetic source cases
in a decoupled manner, as is desirable in a quasi-static
framework. When applied to a human full-body model,
the numerical FDTD implementation was shown [6]
to give results that were both self-consistent, and in
good agreement with previously-published data, for
both electric and magnetic excitation. Nevertheless,
as with any numerical model, independent verification
of the numerical results is of utmost importance.

Interior calculations for magnetic sources have com-
monly been carried out using the Impedance Method,
in which physical electric currents are represented by
fictitious loop currents driven by the electromotive
forces associated with the time-varying magnetic flux.
The method has some attractive features. It can han-
dle complex heterogeneous conductors, and gives rise
to a sparse, naturally-preconditioned matrix system
with only 13 non-zero diagonals. For the case of a



magnetic source, the forcing terms are available di-
rectly from the source fields. Solutions can be obtained
using iterative methods. There are some drawbacks,
however. Although the IM can be modified to incor-
porate injected currents, the result is not a comfort-
able match — fictitious external faces must be added
around each surface node to support the partial loop
currents that comprise the true injected current, and
there is indeterminacy in the representation of a sin-
gle scalar injection current in terms of multiple loop
currents. Moreover, the underlying system of equa-
tions can be shown to be highly over-determined and
is therefore singular. Nevertheless, iterative solution
methods such as successive over-relaxation can in prac-
tice converge [3, 4, 5] to one of many possible solutions,
and the indeterminacy is removed in the differencing of
fictitious loop currents to yield physical edge currents.
Also, in the case of multiply-connected domains, the
method must be medified [7] to allow for generalized
loop currents around the boundaries of insulating in-
clusions, or else physically incorrect solutions can be
obtained. This modification becomes particularly oner-
ous in three-dimensional modelling, but is nevertheless
of major importance in human body modelling — in-
sulating cavities occur in the airways, cranial sinuses
and nasopharyngeal cavities, and pockets of gas may
occur in the digestive tract.

At extremely low frequencies (ELF), electromagnetic
induction in compact isolated conducting bodies can
be handled by a simpler and more attractive scalar po-
tential method. The indeterminacy in the underlying
equations is removed, and the result is a matrix system
which is approximately a factor of six smaller than in
the impedance method formulation of the same prob-
lem. In Stevenson’s Method [8}, the electromagnetic
fields external and internal to the conductor can each
be be expanded locally in a power series in frequency.
The lowest-order internal electric field is proportional
to frequency, and is driven by the static incident com-
ponents of the (external) electric and magnetic fields.
This results in a capacitive component associated with
the surface charge density induced by the applied elec-
tric field, plus a system of eddy currents driven by the
applied magnetic field. If a vector potential for the
applied magnetic field is available, it is possible to ex-
press the internal electric field solely in terms of a static
scalar electric conduction potential. This potential has
two forcing terms, one associated with the external
surface charges, and the other, which is distributed
throughout the interior of the conductor, with the mag-
netically induced electromotive force. Again, as with
the modified FDTD, it is possible to treat electric and
magnetic sources in a decoupled manner. Since the
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method appears to be less well-known, a self-contained
description is provided in Section 2.3. The correctness
of Stevenson’s Method can be illustrated by examining
the low-frequency limit of canonical problems, such as
Mie scattering of a plane wave [8] from a uniformly
conducting sphere.

Section 3 presents comparisons, from calculations us-
ing the FDTD and SPFD methods, of the electric fields
and current, densities indueed by three orthogonal uni-
form magnetic fields, in a human full-body model at
7.2 mm resolution. Full three-dimensional correlation
coefficients of better than 0.999998 were observed be-
tween the current density distributions computed by
the two methods. Individual edge electric fields typi-
cally agree to 3 significant digits. In a companion pa-
per [9], further validation of the SPFD method results
is provided by a comparison with an analytical solution
for low-frequency magnetic induction in a equatorially-
stratified sphere.

2 Description of the Methods

2.1 General Description

A three-dimensional domain is described in terms of
Cartesian coordinates (z, y, ) with associated unit vec-
tors {&,%,%2}, so that a typical position vector is
r=xz&4+yy+ 22 A compact body, having a max-
imum diameter L and electrical conductivity and per-
mittivity distributions o(r) and £(r) respectively, is
located in this domain, and subjected to incident time-
harmonic electric and magnetic fields E°(r) et®* and
B*(r) et™! of angular frequency w.

It is assumed that the inducing frequency is sufficiently
low (quasi-static) that the body is much smaller than
both the free-space wavelength, L <« A = 2n/ky =

2mc/w and the skin depth, L <« § = [wueo(r) /2]"1/2,
and that conduction currents completely dominate dis-
placement currents, o(r) 3 we(r). The permittivity
distribution plays no further role in the present analy-
sis. Since the body is non-magnetic, the magnetic per-
meability has its vacuum value g = 47 x 10~ Hm™!
everywhere. Under these quasi-static assumptions, it
is known that the internal electric field is in quadrature
with the applied fields {8].

The task is to compute the fields induced in the con-
ductor by the applied fields. The solution will be con-
sidered using both the FDTD and SPFD methods.
In both methods, the three-dimensional computational
domain is discretized into a uniform set of elementary



parallelepipeds or voxels. Within each voxel the electri-
cal properties are assumed constant. The electric fields
are defined as a set of discrete vectors on a staggered
array defined by the voxel edges [10], with field values
defined at the edge centers. Representative vectors are
depicted in Figure 1. Magnetic fields are defined on a
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Figure 1: Representative discrete electric and magnetic
field vectors, defined on conjugate staggered grids as-
sociated with the voxel edges and faces. The figure
also illustrates representative discrete samples of the
conduction potential, at the nodes defined by the voxel
vertices.

conjugate mesh defined by the voxel face-normals.

In the full-wave FDTD method, the vector electric and
magnetic fields are solved for directly, both interior and
exterior to the conductor, by time-stepping. Absorbing
boundaries are used to truncate the numerical mesh.

In contrast, the potential method is naturally confined
only to the conductor (see Section 2.3), with potentials
defined at the vertices of the voxels, as illustrated in
Figure 1. It will be seen below that each discrete poten-
tial value is related to at most 6 others, so that the un-
derlying matrix system has only 7 non-zero diagonals.
Electric fields along the voxel edges are computed e
posteriori, using finite differences of the potential field.

By way of comparison, it may be noted that the
impedance method (which is also quasi-static) works
with loop currents around the voxel faces, and so also
is an intrinsically vector method. The final reduction
of loop currents to physical edge currents yields the
current density components along the voxel edges, as
with the FDTD and SPFD methods. Each loop cur-
rent is related to up to 12 others, leading to a matrix
with 13 non-zero diagonals. Moreover, as it is a vector
method, the number of unknowns is slightly more than
3 times as great.

The primary output of both the FDTD and SPFD
codes is the set of discrete electric vector components.
To allow for physical interpretation of the results, elec-
tric field vectors are defined at the voxel centers by
averaging the three sets of four parallel edge compo-
nents, and the current density is then computed by
multiplication by the voxel conductivity.

For purposes of illustration, the methods will be ap-
plied to an anatomically realistic human full-body -
model, which is described in detail elsewhere [6]. It
is a composite model, incorporating a Yale Medical
School [11] head and torso model, augmented with legs
and arms generated in our laboratory by the applica-
tion of segmentation algorithms to CT and MRI data
of the same man, obtained from the Visible Human
Project at the U.S. National Library of Medicine. The
tissue conductivities correspond to published [12], or
where applicable, recently-measured [13], values. Par-
ticular care has been taken to ensure the correctness
of the final model, verifying for example such items as
continuity of major blood vessels and bone marrow,
integrity of the skin, and encapsulation of bone mar-
row within bone, by visualization using IBM'’s Data
Explorer program. The model provides a suitable com-
plex heterogeneous domain for the rigorous comparison
of numerical results. The original 3.6 mm resolution
was decreased to 7.2 mm for this work. The end-result
is described by a set of 213, 782 cubic voxels with 7.2-
mr edges. The model is oriented facing the § direction
with the long axis of the body along the £ direction.
The source fields are taken to be uniform magnetic, at
the 60-Hz power frequency.

2.2 FDTD Method

The finite-difference time-domain code is fully de-
scribed and illustrated elsewhere [6]. This is a full-
wave vector code, modified to take advantage of the
fact that the phase of the external and internal fields
is known in the quasi-static case. Indeed, felds exte-
rior to the conductors all have the same phase as the
incident field. Interior fields, however, are first-order
fields in the quasi-static approximation and are pro-
portional to the time derivative of the incident field.
If a ramp function is used for the incident field, all
fields will eventually have a linear (exterior) or con-
stant {(interior) behavior. The amplitude of the fields
can then be read directly from their rate of change
(exterior) or their actual values (interior). To obtain
a solution, it is therefore sufficient to register all field
values on two subsequent time steps after the tran-
sient response has decayed. The excitation function
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used in this analysis is a ramp function with a smooth
start to avoid high-frequency contamination. Absorb-
ing boundary conditions [14] are used to truncate the
numerical domain. On account of the retarded na-
ture of any reflections and the short simulation times,
these absorbing boundaries work well for low-frequency
evanescent waves, even when placed close to the con-
ductor. Another feature is that uniform electric and
magnetic sources can be considered in isolation, by us-
ing oppositely-traveling plane waves with phases and
polarizations adjusted to produce either uniform elec-
tric or magnetic source fields in the region of the con-
ducting body.

2.3 SPFD Method

Under the present quasi-static assumptions, Steven-
son’s method [8] can also be applied. Each of the
incident, scattered and interior electromagnetic fields
can be expanded near the conductor in a power se-
ries involving the parameter {—iko), where ko = w/c
denotes the vacuum wavenumber of the fields, and
c= (Eg,ug)_l/’ = 2.998 x 108 ms™?! is the vacuum speed
of light. As explained by Van Bladel [8], the zeroth-
order interior electric field in the series expansion is
zero, and the interior magnetic field is equal to the
zeroth-order applied magnetic field.

The first-order interior electric field has two sources.
The first is the surface charge distribution pgy{r) in-
duced by the zeroth-order applied electric field Ej(r).
The second source is the applied zeroth-order exter-
nal magnetic field B§(r), which gives rise to the eddy
currents that form the main focus of this work.

Mathematically, the first-order internal fields Ei(r)
and Bj(r) satisfy the differential equations

¥V % Eﬁ_('r)
V x Bi(r)

—iwBj(r)
poo (1) E(7)
throughout the interior of the body. At its surface,

where the outwardly-directed unit normal vector is
7i(r), the appropriate boundary condition is

(2.1)

o(r)Afr) -B1(r) = iwpsy(r) . (22)
Because of linearity, the contributions arising from the
applied magnetic and surface charge forcing can be
computed independently, by alternatively setting ei-
ther the external magnetic field, or the surface charge
density terms above to zero. The ‘electric’ contribu-
tion will be ignored for the remainder of this work,
and the main focus will be on the internal electric field,
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and associated current density, generated by the mag-
netic source. The internal first-order magnetic field is
strictly dependent on the internal electric field, and can
be computed afterwards, if desired.

The problem, therefore, is to solve the differential equa-
tions .

V x Ej(r)

V- [o(r) Ei(r})]

~iwBE(r)
= 0

(2.3)

(which are just the first member of equation (2.1) com-
bined with the divergence of the second) within the
body, subject to the boundary condition

A(r)-Ei(r) =0 (2.4)
at its surface. It is supposed that the static limit of
the applied magnetic field can be described by a vector

potential,
o(r) =V x Ag(r).

It then follows from equation (2.3) that

(2.5)

V x {Bi(r) + iwAg(r)} = 0.

Consequently, the term in braces can be expressed as

the negative gradient of a scalar potential ¢(r), and

the electric field has the representation
Ej(r) = —Vy(r) — iwAo(r). (2.6)

This scalar potential must then satisfy the differential
equation

V-lo(r) Vi(r)] = V- [~iwo(r) do(r)],  (27)
subject to the boundary condition
A(r) Vy(r) = —iwn(r)-A(r). (2.8)

In a numerical implementation, the potential is taken
to be defined at the voxel vertices. A finite-difference
approximation for equation {2.7) at a given node can
then be constructed by an application of the diver-
gence theorem to an imaginary voxel with that node
at its centre. It is convenient to adopt a local indexing
scheme, where the target node is labeled 0 and both
the nodes and edges connected to it on the +z, —xz,
+y, -y, +z and —=z sides are indexed from 1 to 6 re-
spectively, as shown in Figure 2. Quantities associated
with nodes or edges are then labeled with the local in-
dex of the associated object. With this shorthand, a
simple finite difference equation

6 6
(Z s—r) 7,{)0 - Z Sr'l/)r
r=1 r=1

6
iw »_(~1)" 5.4, Ao,
r=1
(2.9)



Figure 2: Local indexing scheme at a node.

results. In this equation, £, denote the various edge
lengths in the local indexing scheme, and Aq, denotes
the component of the external magnetic vector poten-
tial tangent to the r*" edge, evaluated at the edge
centre. The coefficients are the edge conductances
$; = Grar /€., where &, denotes the average conductiv-
ity of the four voxels contacting edge r, a is the area of
the voxel face normal to edge r. The above equations
are to be modified in an obvious manner if the central
point is connected to less than 6 neighbouring nodes in
the conductor.

When this equation is written for each vertex of ev-
ery conducting voxel in the distribution, the result
is a heptadiagonal system of eguations of the form
(N —E)y = f. This set of equations is diagonally
dominant, symmetric, positive semi-definite. It is also
singular, since the potential is indeterminate to within
an additive constant. It can be symmetrically pre-
conditioned to the form (I — A)x = b, where A =
N-Y2EN-Y2 y = N-Y2z and b = N~¥/2f. The
singularity can be removed by augmenting the system
with an equation requiring thet the potential have zero
mean. The net result of augmentation and precondi-
tioning is a system, based on a symmetric sparse matrix
with two borders, that is amenable to solution using the
conjugate gradient iterative scheme.

3 Results

Results computed by the FDTD code for incident uni-
form magnetic field directed along the three Cartesian
axes are described in detail elsewhere [6], and shown
to be both self-consistent and in reasonable agreement
with results computed by other methods. In these
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computations, the bounding box containing the body
model was surrounded by a single-voxel air layer, and
the whole surrounded on all sides by a 15-voxel thick
absorbing boundary. Thus the calculations were per-
formed over a 107 x 77 x 280 array, for an overall do-
main composed of 2,306,920 voxels. Each run em-
ployed 4200 time steps of 1.2 ps, for a total simulation
time of 4.92 ns. All calculations were carried out on a
Hewlett-Packard 9000/735 Unix workstation with 336
megabytes of physical memory. Typical computation
times were of the order of 18 hours.

Results were also computed by the SPFD code, for the
same body configuration and excitation fields. The re-
sulting augmented and preconditioned potential matrix
system consisted of 240, 883 unknowns, and was found
to be reliably solvable using the Conjugate Gradient
Method (CGM) {15] from the PIM [16] package, run-
ning in sequential mode on the above-mentioned work-
station. Typical run times were of the order of 1 hour.

As noted earlier, electric fields and current demnsities
were defined at voxel centers using edge-averaged elec-
tric fields. This leads to fields defined for every voxel
in the 75 x 45 x 248-voxel bounding box containing
the body model, and the calculations can be compared
voxel-by-voxel throughout the conducting voxels.

To illustrate the comparisons obtained, Figure 3 de-
picts the results in a horizontal (left-to-right, back-to-
front) cross-section through the chest area (at a height
z = 1.357 m above the lowest conducting voxel face)
of the model, under induction by an xz-directed (left-
to-right} 1 4T uniform magnetic field. The upper left
panel of the figure shows the magnitude of the elec-
tric field computed by the SPFD code, while the lower
left panel shows the magnitude of the corresponding
current density. The upper right panel shows the mag-
nitude of the voxel-wise vector difference of the FDTD
and SPFD electric fields, while the lower right panel
displays the analogous difference of the current den-
sity. Particular attention is drawn to the approxi-
mately three orders of magnitude difference in scale be-
tween the electric field and the electric difference, and
nearly four orders of magnitude for the corresponding
current density plots.

Figure 4 shows a current density comparison along a
vertical (back-to-front, groin-to-head) cross-section (at
a distance x = 26.28 cm from the leftmost conducting
voxel face), under forcing by a vertical magnetic field
configuration.

To further quantify the agreement between results com-
puted by the two methods, a set of scalar descriptors
is provided in Table I. All measures are taken solely
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Figure 3: Comparison of the SPFD calculations (left-hand column) and voxel-wise differences between the
FDTD and SPFD results (right-hand column) in a horizontal cross section through the chest. The 60-Hz,
1-uT magnetic source field is directed from left to right. The upper left panel depicts the magnitude of the
electric field, while the upper right panel illustrated the magnitude of the vector difference. The lower row
portrays analogous data for the current density. Note the factor of 1000 difference in units between the left-
and right-hand units.
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Figure 4: Comparison of the magnitudes of the current density (left) and difference (right) fields in a central
vertical cross-section, for a vertical 60-Hz, 1-uT magnetic source field.
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Field : |E| (ztVm™") 1JJ| (uAm™%)

Source : B: B, B, Bo By B.

Cor. (%) | 99.05054 99.79887  99.63219 | 99.99897  99.99984  99.99998
Maximum | 123.0281  756.7335 1047555 | 70.7892  75.6733  31.5956

FDTD Average 15.0586  20.4341 13.3078 2.8565 3.9026 2.4186
Std. Dev. 27.8941 39.1021 24.4372 5.7031 7.8438 4.7016
Maximum B1.9336 758.5416 104.7452 | 70.7973  75.8542  31.5978

SPFD Average 149101 20,3426  13.2235 2.8568 3.9021 2.4187
Std. Dev. 27.6243  38.9712  24.3103 5.7037 7.8431 4.7018
Maximum 123.0281 B3.0447 67.7967 0.0424 0.1736 0.0477

A Average 0.1484 0.0916 0.0842 | —0.0003 0.0005  —0.0001
Std. Dev. 2.5218 1.6959 1.3614 0.0033 0.0102 0.0019

Table I: Electric field and current density modulus comparisons for three orthogonal (left-to-right, back-to-
front and foot-to-head)} 1 pT uniform magnetic sources. The correlation coeficient for each field type relates
the FDT'D and SPFD calculations. The remaining rows show various scalar comparisons between the two
calculated fields, plus measures of the voxel-wise difference between the fields computed by the two codes.
All measures are taken solely over voxels belonging to the body model.

over voxels belonging to the body model, i.e. specif-
ically excluding air cells external to the body. Scalar
descriptors include the voxel-wise correlation between
between the FDTD and SPYFD fields. In addition, for
each method, the global maximum and average values
are tabulated, as well as the standard deviation. The
latter is included purely as an indicator of the varia-
tion in a given field, not as a statistical measure. These
indicators are tabulated for the FDTD results and for
the SPFD computations, as well as to the difference
(FDTD—SPFD) fields. These comparisons were per-
formed for the magnitude of the electric field and cur-
rent density distributions, under excitation by z-, y-
and z-directed 60-Hz, 1-p¢T uniform magnetic source
fields.

The electric field measured indicate a reasonable agree-
ment between the methods, with the global measures
(average and standard deviation) differing only in the
third decimal place. The smallest electric field cor-
relation coefficient is 99.05%, for the z-directed mag-
netic field. The peak field values for this excitation are
also in poor agreement. On closer examination how-
ever, it turns out that these differences are entirely
associated with the occurrence of non-conducting air
and gas pockets within the body. The electric fields
are not computed and are automatically set to zero
within such non-conducting volumes in the numerical
implementation of the SPFD method. In the FDTD
method, however, fields are computed at all voxels in
the computational domain. The physical interpreta-
tion of the fields within interior non-conducting regions
in the quasi-static FD'TD code has not yet been clari-

70

fied.

As might then be expected and is verified by the fig-
ures, the additional order imposed by the incorpora-
tion of the conductivity distribution and its associ-
ated removal of any contributions from non-conducting
cavities, dramatically improves the current density
correlation coefficients (the smallest of which is now
99.9998%), as well as the overall agreement indicated
by the various scalar measures. The peak values now
differ in the third decimal place at worst, while the
global measures differ in the fifth.

4 Conclusions

Two distinct numerical methods, namely a finite-
difference time-domain code, and a stafic scalar po-
tential finite-difference code, have been used to com-
pute the magnetically-induced electric fields and cur-
rent densities in an anatomically realistic heteroge-
neous human full-body model. With three orthogonal
source orientations, the model provides a rigorous test
of the methods and of the correctness of the computer
coding.

In all cases, the minimum full-body three-dimensional
voxel-wise correlation coefficient for the electric field
magnitude was found to be 0.9905. The corresponding
minimum for the current densities was 0.999998. A va-
riety of other scalar measures verifies the high degree
of agreement that was obtained using the two methods.
Any significant electric field differences which do occur



are attributable to the presence of non-conducting cav-
ities within the body, where the SPFD code does not
presently compute electric fields. The agreement be-
tween the current density fields computed by the two
codes is excellent.

While the resolution is still rather coarse for detailed
organ dosimetry, and there is the possibility of appre-
ciable staircasing errors introduced by the volumet-
ric discretization, the agreement between the methods
provides a degree of comfort in using results computed
by either code.
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