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Abstract— We introduce an algorithm for calculating
spectral domain Green’s functions of planar, circular
cylindrical and spherical multilayer structures. The three
spectral domain problems are interpreted as multilayer
spatial demain problems with electromagnetic sources in
the forms of current sheets, tubes and shells, respec-
tively, and with harmonic spatial variation. The algo-
rithm, which is the same for all three geometries, is based
on dividing these three fleld problems into appropriate
subproblems by using equivalence, and onr determining
the tangential field components at the interfaces between
the layers of the structure. The algorithm is implemented
into three versions of a Fortran routine called G1DMULT,
cne version for each geometry. The only difference be-
tween the three versions is in two subroutines which cal-
culate the fields due to harmonic current sheets, tubes
and shells, respectively, located in an infinite homoge-
neous material. We have tested the routine by calculating
the properties of microstrip patch antennas and periodic
structures,

I. INTRODUCTION

NTENNAS on planar or curved ground planes or

substrates find many applications in communica-
tion and radar systems. Microstrip patch antennas and
arrays are often used because of their thin profile, light
weight and low cost, and because they can be made to
conform with a curved structure. Periodic elements on
substrates can be used as frequency or polarization se-
lective subreflectors in reflector antenna systems or as
radomes. When the curvature of the substrate is small,
such antennas can be analyzed by assuming it to be pla-
nar. If this is not the case, more precise methods must
be used.

The purpose of this paper is to introduce a general
numerical algorithm GIDMULT for computing Green’s
functions in the spectral domain. The algorithm is based
on the ideas in [1] and has the advantage of analytic sim-
plicity. It is applicable to planar, circular cvlindrical and
spherical multilayer structures with an arbitrary num-
ber of material layers. The knowledge of the Green’s
functions of such multilayer structures is needed when
analyzing e.g. microstrip antennas [2] and frequency

selective surfaces [3] by applying the integral equation
approach and the moment method. We also describe
how layers with corrugations and strips are included in
G1DMULT, provided that their periods are small com-
pared to the wavelength. Another advantage of the lay-
out of GIDMULT is that it can be reused even for two-
dimensional structures, such as multiregion cylindrical
structures of arbitrary cross-section.

The spectral Green’s functions for planar and circu-
lar cylindrical multilayer structures have been studied
by a lot of authors, e.g. {4]-[10]. In one of the methods
the z-component of the electromagnetic field (or vector
potential) is determined by fulfilling the boundary con-
ditions [4]-(8], and from this the other components are
calculated. For multilayer structures this method leads
to finding the reflection and transmission coefficients of
waves propagating inside the structure [6]-[8]. In the
second method, called the impedance method, the prob-
lem is reduced to two one-dimensional transmission line
problems, one for TE; and one for TM; case. In the mul-
tilayer case the method leads to solving the transmission
line problem with 2 lot of transmission line pieces by
using the reflection and transmission coeflicients at the
layer interfaces [10], in the same way as for the former
method. Qur approach has similarities to the first of
these approaches. The main difference is that we deter-
mine the transverse components of the electromagnetic
field at the boundaries between the layers by solving a
system of linear equations. The number of equations is
four times the number of material interfaces. This is
done by dividing the problem into equivalent subprob-
lems, one for each layer in the multilayer structure.

We have previously presented the general methodol-
ogy and common terminology by which planar, cylin-
drical and spherical multilayer structures can be ana-
lyzed and described [1]. In all three cases the prob-
lem is transformed into the spectral domain resulting
in a one-dimensional (1D) problem to solve. We refer
to this approach as analysis by using a spectrum of one-
dimensional solutions (S1DS). The basis of the approach
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is to interpret the spectral domain problem as a spatial
domain problem which consists of the multilayer strue-
ture and sources in the form of current sheets, tubes
and shells in the planar, cylindrical and spherical ge-
ometries, respectively. The present paper describes how
the metkodology has been reduced to an algorithm and
implemented in a Fortran subroutine GIDMULT for cal-
culating the Green’s functions of all three types of multi-
layer structures (G1IDMULT = Green’s functions of 1D
MULTilayer structures).

II. DEescripTiON OF G1DMULT ALGORITHM FOR
PLANAR SUBSTRATES

The algorithm for the planar case is illustrated on the

left in Fig. 1. The same procedure is used for the cir- -

cular cylindrical and spherical cases and the differences
will be described later. The original 3D problem (Fig.
1.a) is transformed to the spectral domain (Fig. 1.b) by
performing the Fourier transformation

j(kr,ky,z}zf / I(z,y, 2)e7e el dody |
oo - (1)

¥z,y,2)
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The sources in the spectral domain are interpreted
in space as a spectrum of current sheets of the form
J(kze, ky)e7*eTe~T*v¥ and M(k;, ky)e7k=Te %% which
extends infinitely in z- and y-direction, in the same
way as the structure. Each current sheet excites two
plane waves, one propagating upwards away from the
sheet and another downwards away from it (see Ap-
pendix). The presence of the multilayer structure will
cause a number of transmitted and reflected waves in
each layer, with propagation constants equal to kz, ky
and k., = x,/k2 — k2 — kZ in the z, y and z directions,
where the index n denotes the nth layer, kn = ko\/€rnfirn
is the wave impedance of the nth layer, €, and prn
are the relative permittivity and permeability of the nth
layer, and ko = 2m/Ag is the free-space wave number.
Notice that all the waves have the same propagation con-
stant in the z and y directions for all layers, which is a
consequence of the boundary conditions. Therefore, the
problem of determining the Green's functions is a har-
monic 1D problem in space with known harmonic vari-
ation in z and ¥ directions and unknown variation in z
direction. We have to solve this 1D problem for a spec-
trum of k; and ky, and in order to find the 3D solution
we must combine the solutions by a summation over the
complete k, and k, spectrum, corresponding to an in-
verse Fourier transformation.
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The algorithm G1DMULT is based on subdividing the
spatial harmonic problem into one equivalent problem
per layer (Figs. l.c and 1.d), where the fleld in each re-
gion is formulated as the field radiated by equivalent cur-
rents at the layer boundaries. For example, the E-field
in the layer j is expressed as

E; = Giedss + GEPOT; + GEF M
+ Gféoﬁmmj - é%ojmojj:rci + é%ﬂnoM;zci (3}

where J j and 1\7Ij are equivalent electric and magnetic
current sheets at boundary j, j;“" and Mjmm' are exci-
tation electric and magnetic currents in layer j (if any),
and Gho™? j5 the Green’s function of the homogeneous
problem {see Appendix). By using J; = £ x H; and
Mj = F£ X% f]j eq. (3) can be expressed in terms of
the unknown tangential E- and H-fields E; and H; at
the boundary j between layers j and j + 1 and known
excitation currents. The boundary conditions that the
tangential E- and H- fields are continuous at the layer
boundaries give 4 linear equations per boundary. The
tangential E- and H-flelds are evaluated by solving the
system of 4(Nygyer — 1) equations with 4(Nygyer — 1) un-
knowns, where Nigyer is the number of layers in the mul-
tilayer structure. After they have been determined, the
total E- and H-fields at any desired z-location can be
found by using the equivalent problem in Fig. 1.d.

The core of GIDMULT is two subroutines G1DJ and
G1DM for calculation of the fields radiated by electric
and magnetic current sheets in an infinite homogeneous
material (Fig. 1.e). The used formulas are given in the
Appendix. The rest of the Fortran GIDMULT routine
is simply a programming of the logical layout of the al-
gorithm.

The input variables of the planar version of
G1DMULT are:

« the spectral variables k., k, which can be generally
complex,

« the parameters describing the multilayer structure:
the z-coordinates of the interfaces between the dielec-
tric layers, and the complex wave impedances and wave
numbers of all the layers,

» the z-coordinates and amplitudes of the current sheet
sources J¢¥° and M®*¢, which can have z-, y- and z-
components.

- the z-coordinates of the desired points at which the
output fields are calculated.

The routine calculates the values of the z, ¥ and z com-
ponents of the E- and H-fields at the desired z-locations
as a result of the excitation currents. The spectral do-
main Green’s function is calculated by GIDMULT by
choosing unit amplitude of the excitation current sheet,
and evaluating the fields as a function of k; and k.

Fig. 2 shows the flow chart of the routine GIDMULT.
The program consists of three loops inside each other.
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{b) Harmonic 1-D problem
jmo

Linm,6) J(nm)e

Tk k) €0 3

(e} Basic homogeneous harmonic 1-D field problem

jmo

(ON

3 imo ke

I-..(n.m,B) j(n,m) e

'j e‘jkxx e‘ikyy

Figure 1. Structuring of a 3D field problem with a planar layered structure into a harmonic 1D
prf)blem and its subproblems. The G1IDMULT subroutine solves the harmonic 1D problem.



246

Start
subroutine G1DMULT

Input parameters defining
structure and complex kx, ky

rGo intc Boundary Conditions Loop Id—
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CallG1DJ and G1DM to
calculate E and H from

1.M=xxn
2.M=yxn
3.d=nxx
4, J=nxy

Excitation Sources
Call G1DJ and G1DM to calculate
E and H in considered region
from Jexc and Mexc (if any)

rSolve 4*Nboundary EquationsJ

Call G1DJ and G1DM 1o calculate
E and H at the desired location
inside or cutside the siab

| Retum to main program |

Fig. 2. Flow chart of routine GIDMULT for solving 1D field prob-
lem.

The first loop is taken over all layer boundaries j, 1 <
j £ Nigyer — 1, referred to as the boundary condition
loop, in order to generate the 4(Nigyer — 1) equations
to determine the two components of both the tangential
E- and H-fields at each boundary. The second loop is
referred to as the adjacent region loop. This loop selects
the regions below and above each boundary j. The in-
tention is to comsider the two components of both the
tangential E- and H-fields in both regions, and to set up
the four equations to make them equal at the boundary
j. Any of these field components are given by a sum
of contributions from the equivalent currents due to the
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tangential E- and H-fields at the both boundaries of the
considered region. Therefore, the inner third loop goes
over the lower and upper boundary of the considered re-
gion below or above the boundary j. This third loop is
referred to as the region boundary loop. The tangen-
tial E- and H-fields are calculated by using the two core
subroutines G1DJ and G1DM (Fig. 1l.e). At the end
of GIDMULT the system of 4(Niayer — 1) equations is
solved by using LU decomposition for banded matrices,
and then the output E- and H-fields are evaluated at the
desired z-locations along the z-axis.

III. DEscrIPTION OF G1IDMULT ALGORITHM FOR
CIRCULAR CYLINDRICAL AND SPHERICAL
SUBSTRATES

Cylindrical substrates:In the cylindrical case, we use
the cylindrical-Fourier transformation

J(p,m, kz) =fr [m I(p, ¢, 2)e" ™€ dzdg
~r e @)

o0 o
Noo 2 =g O [ Jomk)emienitrah,
m=—ca ¥ T (5)

In this case we can interpret the spectral sources as
current tubes in space with harmonic variation in ¢ and
z. The spectral variables are m and k., and the structure
varies with p. Similarly to the planar case k. is gener-
ally complex, while m is an integer. After the Fourier
transformation we have a 1D problem in p. The expla-
nation of the routine is the same as for the planar case,
with planes and sheets changed to tubes (see Fig. 1).
The only difference compared to the planar case is in
the two core subroutines G1DJ and G1DM which calcu-
late the value of the electromagnetic field due to electric
and magnetic current tubes (see Appendix and Tig. l.e).

The expressions for the electromagnetic field due to
the current tube contain Bessel and Hankel functions
(eqs. (17)-(24)). To improve the numerical efficiency we
tabulate their values for the arguments needed in the
G1DMULT routine, i.e., for each k, we make a table of
the values of the Bessel and Hankel functions for all m
and for all arguments /k2 — k2p corresponding to the
p-coordinates of the boundaries and of the source and
observation points (see egs. (17)-(24)). The reason for
doing this is that an mth order Bessel/Hankel function
in most commercial libraries is calculated in the recur-
sive way by evaluating all Bessel/Hankel functions from
Oth to mth order, which is not very time efficient unless
storing and reusing intermediate results like we do.

We also noticed numerical problems when the argu-
ment of the Bessel and Hankel functions is large and
imaginary (Im(arg) < 0 due to the chosen branch cut of
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the function \/k2 — k2 [7]). This happens e.g. when per-
forming the inverse Fourier transformation for calculat-
ing the input impedance of cylindrical patch antennas. If
we consider the expressions in egs. (17)-(24), we see that
they contain products of the Bessel and Hankel function.
The arguments of Bessel and Hankel functions in egs.
(17)-(24) are almost the same for thin substrates (i.e.,
when the radial distance between the observation and
source point is small), which is usually the case in prac-
tice. Furthermore, the asymptotic behavior of Bessel and
Hankel functions for large negative imaginary argument
is Jm(—gv) ~ e¥ and HZ)(—jv) ~ e~ [11]. Therefore,
in order to avoid numerical difficulties, we evaluate the
Bessel and Hankel functions with extracted exponential
parts, since the Bessel and Hankel functions have op-
posite exponential behavior for large negative imaginary
arguments. Thereby, we avoid the numerical problems.

Spherical substrates. In the spherical case we again
analyze the problem in the spectral domain. We choose
the vector Legendre transformation defined in {12] and
[13], ie.,

- jr
J(Tan m) = izﬂ

L —jmé
27rS (n,m) /_ﬂ/_ L(n,m,8)J(r, 0, ¢) sin fe™I™?dbdg

Jr
J(T,9,¢) = JB -
Jo m=—
- L 0 0
L(n,m,8) = 0 Lgo Lgg
0 Lgs Lgs

L= lei(cosﬂ)\/n(n +1)

8P™ (cos6)
Loo = _‘59—““ 8)
imP™ (cos 8)
Leo = sin @
I ]mP}ml(cos )
06 = sin @
P (cos 8)
Loo= =3
i
S(n,m) = 2n(n + 1)(n + |m|)! (9)

(2n + 1)(n ~ |m|)!

(6)

where P,Lmi(cos #) are the associated Legendre functions
of the first kind. In this case we interpret the sources
as spherical current shells with harmonic variations in §
and ¢ (the variation in #-direction is actually a quasi-
harmonic Legendre-type variation). The spectral vari-
ables are n and m (both are integers), and the structure
varies with r. Note that each spectral 8 or ¢ components
is obtained from both the spatial § and ¢ components.
In this case a spatial interpretation of Jy (or Js) as a har-
monic current shell with only #-directed (or ¢-directed)
currents is not correct since there are also spatial ¢-
components {or #-components) of the current present.
The explanation of the routine is the same as for the
planar case, with planes and sheets changed to spheres
and shells (see Fig. 1). The two core subroutines G1DJ
and G1DM now calculate the electromagnetic fields due
to an electric and magnetic current shell in an homoge-
neous region {see the Appendix; the details of the spher-
ical case can be found in [13]). These two subroutines
are the only part which makes GIDMULT for the spher-
ical case different from the planar and cylindrical cases.
The rest of the routine is the same for all three geome-
tries. The Legendre polynomials are not needed within
G1DMULT since they occur in the transformation from
the spatial to the spectral domain and G1DMULT is a
spectral domain routine.

IV. IMPLEMENTATION OF ASYMPTOTIC CORRUGATION
AND STRIP BOUNDARY CONDITIONS IN
G1DMULT

Previously, multilayer planar/cylindrical/spherical

oC o0
z Z i (n,m,8)J(r,n,m)e’™® structures have been analyzed by writing the fleld quan-
=—oon=m (7) tities within each region as the superposition of a for-

ward and a backward traveling wave, and solving for
the unknown coefficients of these waves by enforcing the
continuity of the tangential field components at each in-
terface [8]. Although in our approach we also consider
traveling waves, the way of determining the tangential
field components at each interface is different. We cal-
culate the transverse field components simultaneously in
contrast with computing the reflection and transmission
coefficients in a recursive way.

The advantage of our algorithm is that it has a
reusable structure because planar, cylindrical and spher-
ical problems can be analyzed with a change of only
the two core subroutines G1DJ and G1DM. In a similar
way GIDMULT can also be extended to analyze two-
dimensional (2D) structures, such as multilayer cylindri-
cal structures of arbitrary cross-section shape. All sub-
problems have current sources and Green’s functions, so
it is easy to formulate the solution. The particular ad-
vantage of our approach is that the algorithm can be
casily modified. For ,example, we have built a corru-
gated metal layer into the algorithm by using impedance
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boundary conditions which depend on the spectral vari-
ables, &, and k, in the planar case and ei"® and k. in
the cylindrical case. The impedance boundary condi-
tions are implemented into the routine by coupling the
unknown tangential E- and H-fields at the appropriate
boundary. This coupling results in multiplying one col-
umn of the matrix, whose elements are the coefficients of
the 4(Nigyer — 1) unknowns in the system of 4(Njayer—1)
equations, by the impedance boundary condition, and
adding the multiplied column to the column belonging
to the coupled field component. By doing this we reduce
the dimensionality of the problem by one.

We can model arbitrary corrugated surfaces by us-
ing generalized impedance boundary conditions referred
to as the asymptotic corrugation boundary conditions
(ACBC) [14], [15], which are asymptotically valid when
the corrugation period approaches zero. The ACBC sim-
plify the analysis considerably. The ACBC states that
the electric field parallel with the corrugations is zero
(since the period of the corrugations is small compared
with the wavelength and the field is shorted by the ridges
between the grooves), and that the ratio of the tangen-
tial electric field component (which is orthogonal to the
direction of the corrugation) and the tangential mag-
netic field component (which is parallel with the corru-
gations) is determined by a two-dimensional soluticn of
the field problem inside each corrugation obtained by
enforcing no field variation in the direction orthogonal
to the corrugation walls. For canonical planar and cir-
cular cylindrical geometries the ACBC corresponds to
using the impedance boundary conditions in the spec-
tral domain. Assuming planar y-directed corrugations,
the spectral impedance boundary conditions at the top
of the corrugations are

= E. Low k
5. =28 = _ipZ ———tan(d,/k% — k2
zy I an k2-k§ an( y)

v

- E (10)
Zye = _ﬂ?. =0,

I

where d is the depth of the corrugations, w is the width
of the grooves, p is the period of the corrugations, and
k and n are the wave number and the wave impedance
of the medium inside the corrugations. The Z,, term
is calculated by considering the corrugations as parallel
plate waveguides which are short-circuited at the bot-
tom [16]. In the cylindrical case we have for ¢-directed
corrugations

try:

L w (k) B (k) = T (ko)) SR (ko)

|

Z~Z¢ oyl = .7 r
P J (ko) HE (ko) = (ko) HEY (kpr)

& &=

Z

2

— =0,

2z

(11)
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where py and p; are the values of the radial coordinate p
at the bottom and the top of corrugations. For z-directed
wedge-type corrugations we have

5o o Be v BUkp)HS (hp) = Jolkpn) By (kpy)
Qr T 5 - ]
H, 70 Jolkp) HY (kov) — Jy(kps)HE? (ko)
Zz¢ = E—: =0. (12)
H,

For determining Z., and Z,, we have considered propa-
gation inside radial parallel-plate and wedge waveguides,
respectively [16).

Another advantage of the algorithm is that strip grat-
ings on one or more material layers can be included in
the calculations by using the asymptotic strip bound-
ary condition (ASBC) [14], [17]. This is asymptotically
valid when the strip period approaches zero. Rigorously
strips inside the multilayer structure can be analyzed by
expanding the electromagnetic field in Floquet modes,
which is a laborious procedure if the source excites a
spectrum of plane waves, such as a Hertz dipole. In
short, the ASBC state that the electric field parallel to
the strips is zero, and that the electric field normal to the
strips and the magnetic fleld parallel to strips are contin-
uous through the strip layer. For example, for ¢-directed
strips we have

Ej =0, E; =0,
+ - (13)
Ef =E7, H} =H,,

where superscripts — and + stand for the lower and up-
per side of the strips. This boundary condition has been
easily implemented into the algorithm by defining a layer
of zero thickness which contains the strips, and by forc-
ing the component of the electric field which is parallel
to the strips to be zero at both boundaries of this layer.
The ACBC and ASBC have not yet been implemented
into the spherical version of GIDMULT.

V. NUMERICAL RESULTS

G1DMULT has been tested by comparing the output
values with the values of analytically derived Green’s
functions for single- and double-layered dielectric sub-
strates {9], for strip-loaded dielectric slabs [18], and for
corrugated surfaces [18]. Additional tests have been per-
formed by adding several artificial layers inside or outside
the substrate, all having the same relative permittivity
and permeability as the substrate or the exterior region,
respectively. In all calculated cases the relative error,
compared to the calculations of the analytical Green's
functions, was smaller than 10710.

We have also compared the computational time needed
for using GIDMULT with analytically derived Green's
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Fig. 3. Relative absorbed power of a short dipole near a dielectric half-space, cylinder and sphere. The radius R of the dielectric cylinder
and sphere is parameter (for the dielectric half-space R = oo). Frequency is 1.8 GHz.
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function. Single-layer and double-layer planar geome-
tries as well as a single-layered cylindrical geometry were
considered. The analytic expressions are between 15 and
35 times faster than GIDMULT, depending on the geom-
etry. Thus the disadvantage of GIDMULT is it’s larger
computational time. The advantage is, as mentioned be-
fore, that GIDMULT easily can be used for any number
of material layers and for any location of the excitation.
The analytic formulas are only of usable forms for a small
number of layers, and a small change in the topology of
the problem, such as moving the source to another layer,
requires a new analytic expression for the Green’s func-
tion.

GIDMULT has been implemented in different main
programs for calculating the input impedance and radia-
tion pattern from microstrip dipoles and patches, and for
calculating scattering from corrugated and strip-loaded
cylinders. The results have been tested against measured
results and results calculated by other methods.

Dipole radiation: We have considered a short dipole
radiating in the presence of a dielectric half-space, &
cylinder and a sphere (Fig. 3), which can be looked upon
as a simple model of a mobile phone antenna in the pres-
ence of the human head. The relative permittivity is
€, = 20— j5 which resembles a mixture of human tissues
and bones. The frequency is f = 1.8 GHz. The value of
interest is the relative absorbed power which is defined as
the ratio between the absorbed power and the total ra-
diated power. The radius of the cylinder/sphere and the
height of the dipole over the half-space/cylinder/sphere
are taken as parameters. The absorbed power is calcu-
lated by integrating the Poynting vector E x H* over
the dielectric interface, and by using Parseval’s theorem
to transform the integrand to the spectral domain. The
results in Fig. 3 show that by enlarging the radius of
the cylinder or sphere, the relative absorbed power ap-
proaches the planar case, i.e., radiation in the presence
of a dielectric half-space, which is a good test for our
program. Furthermore, we have compared the results
of our program with analytic results for some canoni-
cal problems [13]. In this example, which makes use of
the Poynting vector, it was not possible to change the
contour of integration in order to avoid the poles of the
Green’s function because the complex conjugate of the
magnetic field H* is not an analytic function (the argu-
ments %, and k, of the function H are complex). We
could have avoided this problem if we had considered
the magnetic field H as a complex function of the real
arguments k, and ky, and had performed the complex
conjugate. Thereafter, we could have extended the func-
tion to the complex arguments k. and k, and deformed
the contour of integration. However, we cannot use this
approach as we do not evaluate the magnetic field ana-
lytically.
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)

Fig. 4. Cylindrical patch antenna

Patch impedance, cylindrical case: We considered a
cylindrical patch wrapped around a metal cylinder with
a dielectric substrate, as reported in [19] (see Fig. 4). We
built G1IDMULT into a moment method program for de-
termining the radiation pattern and input impedance of
a cylindrical-rectangular patch. We modelled the patch
current by 7 entire-domain basis functions. The patch
is excited by a probe, so we modelled the probe as a
constant current distribution. By using symmetries we
halved the summation and integration in the inverse
Fourier transformation, i.e. the sum and integral in eq.
(5) were taken from 0 to co. To avoid surface wave poles
in the k. integral, the integration contour was deformed
appropriately in the first quadrant of the complex plane
[20]. The convergence of the ¢ modes and the length of
k. integration were checked for every calculated antenna
(80 ¢ modes and 250k as a upper limit of the & integral
were taken to get accurate approximation of the infinite
summation and integration). Table 1 shows the com-
parison between the measured and calculated resonance
frequencies and the resistances of the three coaxtally fed
cylindrical-rectangular patch antennas. The resonance
frequency is defined as the frequency where the real part
of the input impedance has a maximum (at the reso-
nant frequency the imaginary part is positive due to the
inductive self-impedance of the coax probe). The anten-
nas are produced on a dielectric substrate with e, = 2.32
and thickness 0.08 cm, and they are excited in the TMg;
mode (i.e. the patch current is mainly z-oriented). The
radius of the ground plane is penp = 5 cm. The lengths
and widths of the patches are: L; = Lo =6.5 cm, L3 =
3em, W, =8 cm, Wo =11 cm, W3 =4 cm. More de-
tails about the measurements can be found in [19]. The
agreement between the measured and calculated results
is good. We have also tested the program for the case
when the patch antenna is printed on a two-layer sub-
strate, and the results can be found in {21}.
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antenna 1 2 3

fres meas. 1499 GHz 1497 GHz 3.166 GHz

Fres cal. 1.498 GHz 1.495 GHz 3.199 GH=z

R;, meas. 52.5 0 36.7 0 118.1 O

R;, cal. 63.0 0 41.6 (1 1140 Q
TABLE [

COMPARISON OF RESONANCE FREQUENCIES AND RESONANT
RESISTANCES FOR CYLINDRICAL-RECTANGULAR MICROSTRIP
ANTENNA. THE MEASURED RESULTS ARE FROM {20].

Scattering from circumferential strips and corru-
gations: In order to evaluate the accuracy of the ASBC
and ACBC, we have also developed a program for analyz-
ing a grid of circumferential strips in a multilayer cylin-
drical structure by using a rigorous Floquet-mode expan-
sion/moment method approach. This program also uses
the G1DMULT subroutine for evaluation of the Green’s
functions. The two approaches are compared in Fig. 5 for
normal incidence. The shown scattered fields are normal-
ized to E;\/2j/nkp exp(—jkp). The dielectric cylinder
has €, = 2.1, radius p = 1.27 cm, and the strips are lo-
cated at the dielectric-air interface. The frequency is 10
GHz, and the period and width of the strips are p = 0.8
em and w = 0.3 cm, i.e 0.27X and 0.1)g, respectively.
In the rigorous Floquet-modes approach four basis func-
tions are used in the moment method procedure, which
is sufficient for this strip width [22]. Results show that
the ASBC give accurate results for the periodicities and
widths of strips which are used in practice. For cor-
rugations the comparison of the ACBC results with the
mode-matching result is shown in Fig. 6. The parameters
of the corrugations are ¢, = 4.8, the inner and outer ra-
dius pp = 0.38 cm and p; = 0.6 cm, and the width of the
grooves and the period of the corrugations are w = 0.3
cm and p = 0.4 cm. The equivalent blockage width is
defined in 23] and is a complex parameter representing
the amplitude and phase of the forward scattered field.
The results obtained by the mode-matching are taken
from [24].

VI. CONCLUSION

We have developed a routine called GIDMULT for cal-
culating the Green’s functions of planar, circular cylin-
drical and spherical multilayer structures in the spectral
domain. The routine has the same layout for all three
cases. The only difference is in the subroutines which
compute the electromagnetic field in the homogeneous

oy
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Fig. 5. Scattered field from a dielectric cylinder loaded with pe-

riodic circumferential strips. {a) geometry, (b} TM,. polarized
normal incident field, {c) TE; polarized normal incident field.
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Fig. 6. Amplitude of equivalent blockage width of a corrugated
cylinder.

space radiated by a current sheet, tube and shell, re-
spectively. The advantage of the algorithm upon which
G1DMULT is based is its simplicity. For example, it
was easy to implement anisotropic spectral impedance
boundary conditions, by which we have analyzed corru-
gations and metal strips inside the multilayer structure.

We have also used G1IDMULT as a subroutine in mo-
ment method programs for calculating input impedance
of microstrip patches and dipoles, and properties of pe-
riodic structures.

VII. APPENDIX

In this appendix we will give the formulas for
the E- and H-fields radiated by the electric current
sheet/tube/shell in the homogeneous space. The fields
radiated by the magnetic current sources can be easily
determined by the concept of duality [16].

Planar case. The electromagnetic field radiated by an
electric current sheet located in the plane z = 0 in the
homogeneous space is given by

. ok [(F-J E)k)ef**  2<0
kma y = —=%5"1r = = = by :
E( ky z) 2kz {(J _ (J R k+)k+)e—3k=z z>0
(14}
- k JIxk-ei*r  z<0
H(kg, ky,2) = =— ¢z = )
( ¥ Z) ka {J x k+€_3k"': z >0 y (15)
where
B o= (ko + kg~ k:2) [k
( T vl -.z)/ (16)

kT = (ko + ky§ + k22)/K .
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The propagation constant in z direction is defined by
k2 = k2 — k2 —k2 (Im k. < 0), and k is the wave number
in the considered medium. The H-fleld is discontinuous
at z = O in such a way that J = (x(Hz=0"-H(z=

0-)).

Cylindrical case. The electromagnetic field radiated
by an electric current tube of radius p; in the homoge-
neous space is given by

a) from JoAm, k)

Ez(Pa m, k)
o _ﬂk_g.ps H’(?s)(kaS)Jm(ka) :z X ps (17)
2k Jm{kpps)Hr(r?)(ka) Jz P2 Ps
H.(p,m k) =0 (18}

b) from Js(m, k:)

Ez (Pa i, kz)
- E’?_T_{C_z Hr(rf)(kpps)Jm(kpp) J:¢ pEps (19)
2 k| Jmlkops) HD (kop) Jo P2 05
ﬁz(ﬂam, k-‘o")
_ T {Hf(f) (ko5 Imikop) f¢ P<Ps (o)
2 ! (kops) HY (kop) Jo 0> Ps

where k, = /k? — k2. The other components of the
electromagnetic field are calculated by using the follow-
ing expressions

Ey = —-ng% E, -i-jnkﬁg % (21)
B, = -j’;—g %E; - n%’; a. (22)
o= -ints Tomen @
ﬂp=%§g% Ez—f,:—% ng (24)

The fields caused by a p-directed electric current source
J, are evaluated by using transverse magnetic replace-
ment current M7™?

N (g, k) = F(Gh: — 20T (29)
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This eguation is simply to derive from the general re-
placement relation between electric and magnetic cur-
rents [25]

M™P(z,y,2) = TV x I(z,4,2) - (26)

Spherical case. The electromagnetic field radiated by
an electric current shel! of radius r; in the homogeneous
space is given by (J, and E® denote Schelkunoff’s
spherical Bessel/Hankel functions [16])

a) from Jy{(m, n)

Ey(r,n,m) = s ?éz)r(kff)j,'}(kr) J:e r<rs
| r Jrr:(k'f's) 512) (kr) Jo r > T
(27)
E,.(r,n,m)
nrs - B (ke ) nlkr) Jo 7 <1
—3 nn+1) :, b 4
4 Jh(krs)Hy (kr) Jg r >,
(28)
Hytr,n,m) = 1 A (br)dalkr) Jo <1
h r |\ Jalkro) B (kr) Jo r>r,
(29)
b) from Jy(m,n} )
Ey(r,n,m) = _nrs :7(12)(krs‘)jn(k?‘) .}f¢ <y
- v Jnlkr) B (kr) Js r>7s
{30)
Holr,n,m) = 372 B (ko) Jyhr) Jo 7 <
h r | alkr) B (k) Ty 1>
(31
H,(r,n,m)
j Fr{2) 5 = <
= % n{n + 1) ?“(k(k’"{)ér;(k?’) Jo T,
w(krs) Hn (k1) Jo r>rs.
(32)

The fields caused by r-directed electric source J,
are evaluated by using transverse magnetic replacement
source
My n,m) = Ho/an D, (39)
which can be derived from (26). Eq. (33} is valid if
J. =0 for § = 0° and # = 180°, or if the source has no
¢ dependence.

5| =
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