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Implicitness and stability of time domain integral equation scattering analyses

S J Dodson, S P Walker' , M ] Bluck
Mechanical Engineering Department, Imperial College of Science Technology and Medicine

ABSTRACT. Time domain integral equation analysis
of scattering problems has been inhibited by the
instability generally observed. Usual treatments are
explicit. We here describe an implicit approach,
which allows timesteps to be selected to model the
temporal variation of the field, rather than being
constrained to small values by the need for the wave
propagation during a timestep to be less than the
smallest nodal spacing. For realistic bodies, this
alone can result in computational cost savings by a
significant factor. We present an investigation of the
stability of the implicit approach, and show that it
is much less prone to instability than the explicit. For
realistic bodies, with rationally chosen timesteps,
the implicit approach is for all practical purposes
stable. This is so without recourse to the various
temporal averaging schemes which have been
proposed for stabilisation of the explicit form.

1. INTRODUCTION

Analysis of electromagnetic scattering via time
domain techniques is increasingly employed?!. For
truly transient applications (as emp and emc can be)
the advantages are obvious. Otherwise, broad band
responses may be of interest, or even for a single
frequency computational costs can actually scale less
badly than those of frequency domain approaches?.
The most widely used time domain technique is finite
difference time domain, FDTD?S.

A discouragement from use of time domain integral
equation methods has been that they are often found
to be unstable. Almost all such studies reported,
and all associated analysis of stability, have been for

explicit formulations. These references include a body -

of work investigating this instability, with various
essentially averaging procedures proposed to inhibit
it; this we will discuss further below.

We have earlier described!012 an implicit
formulation and noted that it is for all practical
purposes stable, and similar observations have been
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made by Gravellel3. In this present paper we will
investigate the stability of the implicit approach,
and will identify a simple criterion via which the
user can attain stability.

It is a curvilinear isoparametric approach, with the
temporal variation similarly represented by
quadratic shape functions. As noted, the approach is
implicit; that is, the timestep At can be as large as is
required to model adequately the temporal variation
(and constrained ultimately by sampling theory),
rather than be limited by the requirement that the
distance the wave propagates in a timestep, cAf, be
less than the smallest nodal separation Ax.

This generalisation of the choice of timestep has two
important practical consequences.

(i) On smooth regions of the body the discretisation
will be determined by the wavelength (pulsewidth)
of the field variation, but local mesh refinement is
often needed to model geometrical features. An
explicit formulation constrains the timestep to a
value small enough to suit the smallest meshed
spacing, with a corresponding multiple in
computational costs. An implicit approach allows the
timestep to be no smaller than is required to model
the temporal variation of the field.

(ii) It provides stability, as we shall see below. From
a large number of calculations of scattering from a
variety of targets, selecting the timestep as will be
discussed below, we have found stability problems in
only a handful of cases, and this is then readily
circumvented.

In the next section we will discuss the literature

_associated with stability of scattering calculations.

In section 3 we develop the discretised form of the
time domain integral equation. In section 4 we will
consider its stability properties algebraically, and
investigate them practically.
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2. LITERATURE REVIEW

In 1985 Rynne? addressed the issue of stability of
explicit time domain treatments of scattering
problems. Exponentially —growing errors were
observed, changing sign at each timestep. It was
concluded that their main source was in the numerical
evaluation of the time derivative (of function f , at
timestep k+1), and that careful evaluation of this
terrn was required. The actual remedy proposed was
in fact use of a generally less accurate time derivative

approximation (namely Ao ( - f H)/ 2At

rather than " = (fk"'l —fk)/Af), on the grounds
that it tended to cancel the oscillatory errors. The
following year Ryme5 proposed a more accurate time
derivative approximation which also cancels errors.
He also claims that the instabilities are related to
the natural frequencies of the associated interior
problem, and proposes spatial and temporal
smoothing procedures to suppress them. The temporal
version involves a retrospective averaging:

= +2ff +f'}/4, which seems to suppress the
instability with modest loss in accuracy.

Again for an explicit approach, in 1990 Smith® also
suggests that the instabilities are associated with
internal resonances, and discusses the matrix

relationship  f*"' =Mf" Dbetween solutions at
successive timesteps. This relationship is a special
case of the more general implicit form, which we will
return to below. He goes on to show that the
retrospective averaging noted above has the effect of
modifying the eigenvalues of the matrix M, and
suggests that this will almost certainly stabilise the
solution. In the examples quoted the retrospective
averaging degrades the accuracy of the results by ~4%
of their peak value. The process doubles the
computational cost if employed at each timestep, but
it was found sufficient to use it only occasionally, to
eliminate instabilities as they began to become
troublesome, and then to wait for their reappearance.

In 1991 Rao and Wilton? presented explicit time
domain scattering computations, using essentially the
simplest time derivative approximation noted above,
and observed instabilities. In the following year
Vechinski and Rao® proposed methods to stabilise
the earlier work. They employ a temporal
retrospective averaging, and this same averaging
scheme has recently (1994) been employed? by the
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same authors to stabilise similar analyses of
scattering from dielectric targets.

3. IMPLICIT FORMULATION

We will consider analysis of electromagnetic (MFIE)
scattering from a perfect conductor embedded in
dielectric, although we believe the observations are
more general, and certainly from our own experience
apply directly to scalar (acoustic) problems!4. For
any point r an the surface of the body, the field is
given by an integral over the rest of the surface (r' and
s’) of the history of the field there. With R=r -1,
with wave speed ¢, and time ¢ and retarded time

1"F =t~ R/c, we have
2rH(r,ty=4rH__(r,1)+
(r.t)= 4 H,, (5.1 @

mne

R - S GNY) : FRRORN 1 S
gL(n x H(r',t ))x?+(n x— (r'.t ))xcRds

More details of the numerical treatment are
available elsewherel® 11, 14 but in essence the
surface is divided into elements, over which the
geometry is approximated using polynomial functions:

S.(&m)

where &7 are the parameterised spatial co-
ordinates. We will here use 9 noded quadrilaterals,
but in principle a wide range may be employed. The
geometry of each element is thus described by

(=356 ®

o= 1,..,9 (2)

where j = j(m,r)are the global node numbers of the
local nodes on element m, and 1, , is the position
vector of each of these nodes.

The vector from the ith spatial node to some (1) co-

_ordinate location on the mth spatial element is then

9
R(ri ; ér n)im = rz' - Elsa (é! n)rj(m,a) (4)

Explicitly indicating the dependence of ¢ on R, and with
[5(¢,m) | the Jacobian, (1) can be written
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2zH(r,,t)=4xH,, (1t}

+2H{i5a (&7 (n xH(Zj mt(R,t) ))X——}l} g W)ﬁ‘fdﬁ‘

m=1 £ a=1

S 1S e B ) e Bl s

m=1Z g |a=]
(5)

Using an isoparametric formulation, the spatial
variation of the surface magnetic field over an
element 1 may be written

H(E o) =3 S (6 ) (©)

a=1

We model the temporal variation using quadratic
elements of length 2Af, with associated basis
functions T(7), with 7 the intrinsic time. The
temporal variation of the magnetic field over a
temporal element [ is

3
Hf{m,a}(7)| P AC): v )

=1

where k = k(], 8} are the global timestep numbers of
the local temporal nodes an temporal element /, and

H“‘B are the field values at the spatial nodes, at

(m.ax)
the three timesteps of the temporal element within
which the time of interest falls.

We thus approximate the field at some intrinsic
location &,n within spatial element m, at an infrinsic
time 7 within temporal element [, as

H(E 7)), ZZS (&n)T, ®)

a=1p=1

Any particular location in (space, time) will lie in a
single (spatial, temporal) element. Thus for a nine
noded quadrilateral spatial element, and a three
noded temporal element, the field at some location in
it, at some time in it, is expressed as the weighted
sum of the 27 (spatial and temporal) nodal values
which surround it in the 'space-time' box.

We now evaluate the field for a particular timestep
k+1, with t =(k+1)At. For the lossless dielectric of
interest we require historical field values at retarded
times. It is convenient to arrange that the present
timestep, k+1, for which the field is being found,

forms the final node of a temporal element. We then
compute the number , *, of time elements ago that the
element in which the relevant retarded time falls,
via;

= nef 25 ©)
24t |

and identify the set of timestep numbers

k(l', ,6’) =k—-2 ~2+p associated with that

element. The infrinsic time #(R} within the element I’
corresponding to the retarded time is then found via

(2 +1)At-R/c
At

We may then write equation (5), using (6) to (10), as
2?CHk+l —47[Hk+l

me,!

33 s.EnHwHI(E n)dzan

(10)

7(R) =

(1= 3 B0 B (a2

(11)

Integration over a single one of the M elements in the
summation in (11), generating a contribution 6H,, to
the field, can be performed using Gaussian quadrature
of order NG x NG:

NG NG 9

8H, =3 > S, (&1 HWHI(E,m, ooy,

=1 g=1 &=1
(12)

where the weights are w, and the dependence of R
and n has been omitted for clarity. Part of the kernel
of (12) is conveniently expressed by writing
(n"xH)xR as a [A'TH, with the matrix [A’] given
by:

mR+mR R -nR,
[41=] -mR  wR+mR  -mR,
| -mR -mR mR+mE

(13)
so that (12) becomes
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NGNG 9 )

8H, =33 3S,(&m,

p=lg=la=l

i[rﬁ(r(m) . %(r(R))}[A,]H

B=1 R cAIR

k(1".8)
)

JHmo

(&, v,
(14)

Note that the retarded time associated with
different Gaussian locations in a given spatial
element may well fall in different temporal elements.
Fach such location would generate 3 sets of 9
coefficients. Since the temporal elements would be
adjacent, the first and last sets of nine would
generally be comunon to the adjacent temporal
elements, resultingin 9 x 3, 9 x5, 9 x7, ..and so n
possible distinct  coefficients  resultng  from
integration over a single element.

Evaluation of the quadrature summations thus yields
a contribution to the field as a weighted sum of the
nodal values of historical field. Special
treatments!l 15 are required for the singular and
hypersingular integrands which arise when the field
node i lies in the element m over which integration is
being performed.

Thus far we have implicitly allowed the field H to
have three (say) cartesian components, such that
integrations of matrix [A’] would result in 3 by 3
matrices (for each node, and repeated for each
temporal node). Application of the perfect conductor
boundary conditions permits one of the three H
components to be expressed as a linear combination of
the other two, in tum reducing the results of the
integrations to 2 by 2 (sub)matrices.

Writing these 2 by 2 submatrices as &, we can
assemble all M of equations (14), and then write (11)
as
k k & < k+1 15
+1 +1 w +1-w

j=lw=0

Here we have written the submatrices & as a
complete three dimensional array; layers of size
nodes by nodes, with as many layers as the W
timesteps in a single transit. The submatrix o, gives

the influence of the field at node jat timestep k+1-w
on the field at node i at timestep k+1.

Each layer is individually very sparse; recall
integration over a single element results in
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coefficients relating to only a small number of
adjacent temporal elements for each node, a
consequence of the Dirac delta in the Green function in
a lossless dielectric. In any one i, location (field node,
boundary node combination) there will be one group of
adjacent non-zero layers, typically 3, or maybe Sor7
in number. All other entries will be zero.

Equation (15) expresses the field at a given location,
at any particular timestep k+1, as a weighted sum of
field values elsewhere on the surface at retarded
times up to ome transit time ago. Some of these
historical values will be from less than At ago (those
associated with w=0, or timestep k+1 itself) and
others not. All field values at timestep k+1 and their
associated weights are moved to the left hand side:

N N W

k+1 0 k+1 _ k+1 wyyk+l-

2 HN -3 ot B = 4nHL + D ) o HE
j=1 j=lw=l

(16)

where the lower limit an the temporal summation o
the right hand side has consequently become 1.

When it is written as a single equation for the set of
all N surface nodes i the coefficients an the left hand
side of (16) form a matrix [a], say (with the 2z term
taken onto the diagonal of [a]). Matrix {a] only has
entries multiplying the field values presently being
sought. It is sparse; on any one row it has entries only
for nodes associated with quadrature locations falling
within the 2cAt radius sphere centred an the node in
question; that is, for locations where the retarded
time lies within the support of the temporal shape
function associated with the present timestep.

The matrix formed by the coefficients on the right
hand side of (16) has W layers, w=1 to W, (as
opposed to the single w=0 layer of [¢]) reflecting the
fact that historical values from up to one transit time
ago will influence the present field.

Everything on the right hand side of (16) is known,
and can be multiplied out and added to the incident
wave term to form a vector, [c] say. At each timestep
we thus generate the required set of new surface field
values by solving the sparse matrix equatior:

[a]H*! =]c] (17)

Implicitmess / explicitness

Note that if we were to reduce the timestep we would
recover an explicit formulation. The matrix [2] on the
left of (17) would become wholly diagonal, with all
new field values able to be found independently of
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each other by simple sumumation of historical values.
It is the distance from the field node i to the nearest
Gauss quadrature locations which is the determinant
of the degree of implicitness. Quadrature locations
lying within a sphere of radius 2cAt of the field node
will cause there to be a contribution at node ¢ from the
field about to be calculated at the neighbouring node.
It is actually rather difficult to engineer an explicit
treatment once even low order Gaussian quadrature is
used for the integrations. For an edge node of a simple
rectangular mesh of unit nodal spacing, with only 2 by
2 quadrature, influence from adjacent new field values
occurs with a timestep of ~0.2. For 4 by 4, the order we
normally employ, this falls to ~0.07 . Onece this
threshold is crossed, there are at least O(10), and in
practical meshes many tens of non-zero entries on each
line of [a] on the left of (17). With similar (say
quadratic) modelling of the spatial and temporal
variation, the smallest timestep it is rational to
select is about equal to one nodal spacing; about 14
times the timestep beyond which implicitness arises.

One consequence of implicitness is that a matrix
equation (equation {17)) must be solved at each time
step. For other than electrically small bodies matrix
[a] is sparse, with only a fraction of nodes having
entries on each row of fa]. We normally solve [a] at
each timestep using an iterative method, such as the
conjugate gradient or 'conjugate gradient squared’
approaches. With such sparsity, and a very good
initial guess available from the solution at the
previous timestep, the cost of this is insignificant,
and declines as a fraction of total cost as larger
problems  are addressedl®. The dominant
computational cost is the summations of (16), just as
with an explicit approach.

4. INVESTIGATION OF STABILITY
4.1 Algebraic stability analysis

We now consider approaches to the analysis of
stability of the above procedure. The most natural
approach would be to obtain bourds on the behaviour
of successive vectors H* in (17), in terms of the
properties of the associated matrices. However, as it
stands, (17) does not provide a direct relationship
between successive H vectors; the field at any one
time is affected directly by all the previous field in
the last transit fime, via:

_aOHkH = 47L,an-:l

+o'H +o*H v P H 2

(18)
+ aWHkH—W

where the bold unsubscripted o denotes the N by N
matrix of submatrices.

Expressing recursively each H in terms of earlier H
vectors, and for times after the incident wave has
passed, it is possible to write down a relationship of
the form

Hk+1 = [Qk+1 1H0 (19)
where the time dependent matrix £ is a collection of
powers of the matrices formed by the (submatrix)
coefficients ¢ This is difficult and expensive to
evaluate.

An alternative approach is to examine the
relationship between successive sets of vectors of field
values spanning one transit ime. Forming a composite
vector by of length (N x W) by listing together
successive solution vectors, we can write a matrix
equation relating successive such composite vectors
(again, once the incident field has passed):

aO _-H]H'l
1 H*
1 H' |=
1 HIH-]—W (20)
o' o o i b
1 H*!
1 H*?
1 BV

where matrix coefficients are zero unless indicated.
Recall that each individual coefficient of the two
matrices above is itself an N by N matrix of 2 by 2
submatrices. Denoting the composite vector as h*, and
the two matrices A and B, we can write the
relationship between successive composite field
vectors as

hk+1 - [A—1B]hk - th @1)

It is the properties of the matrix M:
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‘—(a”)_' T & o a7
1 1
M= 1 1 =
i 1]
-(ao)_la‘ (cx”)_laz2 (a“)_la3 (a”)_law-
1
1
. 1 -
(22)

and in particular the modulus of its largest
eigenvalue, which will determine the long term
stability of the system.

Although the details are rather different, for the
special case of explicitness this reduces to the form
discussed by Smith®. The left hand side matrix o’
does not arise in that case, and stability then is
determined by the properties of B, rather than the A’
'B product of (21) here.

4.2 Numerical results
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cases excitation was by a Gaussian pulse, of unit
wavespeed, unit magnitude peak value, and with a
width at half maximum of 3 for the spheres and
almond!?, and 3.2 for the cubes.

4.2.1 Eigenvalues and Stability

Practical investigation of stability and associated
eigenvalues is rather difficult. The matrix products

(a° )_‘a“’ are each dense, of size 4N by 4N, and there

are W of them in the upper part of M. For even the 98
node sphere, for example, M is of size ~2 000 by 2 000.

The field history onthe 98 node sphere is shown in
figure 1, for cases with timesteps of 0.17 and 0.2
transits. The latter is seen to be stable; the short
horizontal portion of the response shown at =200
continues indefinitely, whilst the other exhibits
instability, albeit not till after about 70 transits.

60

50t

~

o
T
h>

Field magnitude
w
=)

Unit radius Unit side Almond
sphere cube 9.936 long
98 0.38 26 0.5 594 0.54
258 0.26 98 0.25 1202 | 0.37
674 Q.16 | 218 0.17
386 0.125
602 0.1
1178  0.07
Table 1. Geometries and meshes (nodes and
typical nodal spacing) wused in example
computations.

The general issue of the effectiveness of the present
IETD approach, and comparison of its predictions
with experiment, ‘analytical results and other
computations, and assessment of accuracy as a function
of nodal separation and timestep, is reported
elsewherell, 17, 18 It has proven to be robust and
effective, capable of predicting the scattering from
large (eg 26 wavelengths, 41,000 node) bodies.

For convenience, relevant parameters for the various
test cases employed are summarised in table 1. In all

20} a
-3
101
-8
o =
0 pi—— . —_—
0 50 100 150 200 250 300

Time (ransits)

Figure 1 Field (log inset) versus time (in transits)
on the 98 node sphere; timesteps of 0.17 transits
(upper curve) and 0.2 transits.

Figure 2 shows the distribution of the eigenvalues of
M for these two cases. For the indefinitely stable
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timestep the maximum medulus is 0.987, whilst for
the unstable one it is 1.052.

In figure 3 we show the variation of maximum
eigenvalue modulus for a wide range of timesteps used
for analysis of the 26 node cube. There is a clear
general drift towards maximum modulus values below
one as the timestep is increased. Additionally (not
shown) the number of eigenvalues above one also
declines as the timestep is increased. These cases are
associated with stable long term responses. This
behaviour is broadly consistent over both the sphere
and cube meshes.

Figure 2 Eigenvalues of matrix M, for analysis of
the 98 node sphere with timesteps of 0.17 transits
(black) and 0.2 transits (white).

Note that this move into a region of lower
eigenvalues is only available via the implicit
treatment. Indeed, for the larger ~half of the
timesteps employed, this (small) problem is wholly
implicit; all nodes have associated quadrature
locations lying within cAt of every other node.

4.2.2 Empirical investigations

It has been demonstrated above that it is the
eigenvalues of M which determine stability. We
have also shown a number of examples where
increasing the timestep decreased the maximum
eigenvalue, and stability followed. It remains to
identify how to select modelling parameters to
achieve this. For practical three dimensional,

arbitrary geometries, it is no easier to identify
parameters which will achieve eigenvalues of M
below one than to identify directly parameters
required to achieve stability, and it is on this which

we will concentrate subsequently, by empirical
investigation.
. ]

1.2 4
@ F 4 L4 i
E ol v ) ]
50 . .
o . . i
E o,
=
g 1 ...- : .
= . . -
s X .
. ! . y
2 oset - " 1
-E { - -
&0
) . ¢
= S, .

A . ;
0.8 r . i

Timestep (transits)

Figure 3 Maximum eigenvalue versus timestep for
the 26 node cube

We will first consider what, numerically, constitutes
total stability. For a propagation problem such as we
are considering, with an incident wave, an unchanging
field will occur only when the field is zero.
Accordingly, we terminate the calculation when (once
the incident wave has arrived)
k+1 k ~6
et - H¥| <10 23)
The calculation was continued beyond this point ona
rnumber of occasions, to test this. As expected, an
endless series of identically zero (to numerical
precision) vectors H is generated.There are two
(coupled) aspects to instability; the time till the
field begins its oscillatory exponential increase, and
the rate of this increase.
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0.3
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0.4 o (98) par 0.25 | 0O s{258) per
® o s(Z18) per ' ©  9(674) per
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o o s(602) per
. Dea -+ 8{1178} per % g2l
c 03+ - £
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R E
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= 0.2 F 2" » 2 .
7 = 0.11,
Co
0.1 0.05 ¥ ©
I Ce g =
.
;%1 8 ° v
g 0
0 ¢ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Timestep (transits)

Timestep (transiis)

o ) Figure 5. Instability criterion versus timestep in
Figure 4. Instability criterion (the reciprocal of transits for various sphere meshes.
the munber of pulse widths till the field re-
attains the incident field magnitude) versus
timestep in transit times, for various cube meshes.

We will adopt a measure of instability which

incorporates both. We take as a criterion the

reciprocal of the time required for the field to reach 0.02
again the magnitude of the incident field. This time .
is expressed in terms of pulse widths. Indefinite
stability thus corresponds to a zero value of this
measure. 0.015 L

e 8(594) par

X (1202} per

Figures 4-6 show results for cubes, spheres and the
almond, with the timestep quoted in terms of a
fraction of a transit time. We see quite consistent

Instability criterion

behaviour between the cases. The solution is seen to be 0.01 i *

least stable with short timesteps in all cases. .

However, even for the shortest timesteps we have x x

used, it is noteworthy that the analysis is stable for 0.005 | . ’

~3 to 50 pulse widths, or ~8 to 20 transit times for the ) : *

present bodies; longer than most analyses would be in o

practice pursued. As the timestep is increased the - %

behaviour is characterised by stability being the 0 e ———< I3k
norm, with occasional, isolated timestep values ¢ 0.02 0.04 0.06 0.08 0.1

giving rise to instability. Note that in this context we
are describing stability for say ~20 pulse widths
(many tens of transits here) as 'instability".

Timestep (transits)

Figure 6. Instability criterion versus timestep, for
various almond meshes. Timestep measured in
transit times.
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One noteworthy characteristic is that these large-
timestep instabilities seem to occur in clusters; at a
given (group of) timestep(s), independent of the mesh.
An example is for timesteps in the range 0.46 to 0.52
for the cube (figure 4). All of these representations are
simultaneously ‘'unstable' (albeit after ~70 to 300
transits of the cube), although the linear spatial
discretisation differs by an order of magnitude. Note
that the periods of the nearest internal resonances of
the cube, at ~0.38 and ~0.58, are outside this range of
unstable timesteps. Similar behaviour is observed at
a timestep of 0.06 for the almond.

4.2.3 Practical stability criterion

Our principal objective here is to identify practical
modelling rules which will provide stability, within
the constraints of proper spatial and temporal
representation of the field, and the overarching need
to minimise computational cost.

0.5
& 38(26) per
8 8($8) per
a % s{218) per
0.4t X (386} per
& o s{602) per
-+ s{1178) per
: =1
=
— o
0.3 le o
o -
= *
E =i
= 0.2 | e,
= K
0.1
§ ox ® e x °
B 18 XE o, K0 ®
0 A i o L —
2

0 05 1 1.5 25 8
Timestep {nodal spacings)

Figure 7. Instability criterion versus timestep, for
various cube meshes. Timestep in nodal
separations.

Figures 7, 8 and 9 show results with the timesteps
normalised by maximum (element edge) nodal
spacings. (Note that only timesteps up to 3 are shown;

the full data from figures 4-6 would extend to ~8 to 10
by this measure.) The association of instability with
increasing tendency towards explicitness is clear,
although as mentioned above, even the worst cases
are stable for many transit times or pulse durations.
Note that none of these cases are literally explicit;
this requires a very artificial and inaccurate
combination of tiny timestep and very coarse
quadrature (as does any explicit approach).
However, the grave stability difficulties to be
expected from an explicit treatment are clear.

Spatial variation of field will (at least in the
direction of propagation) be on a length scale of at
most the wavelength, and it could be more rapid if
the geometry is complex. The temporal 'length scale'
is naturally always the period, making the maximum
rational timestep equal to the largest nodal
separation for a rationally meshed body. A larger
value implies loss in accuracy, or equivalently wasted

effort occasioned by excessively fine spatial
discretisation.
0.15
*  $(98) per
0 s{258) per
.
¢ 5{674) par
g oy,
8
g
2
= L o
a -
"-.ﬂ; o -
So.05F ?
-
Y]
2%
oo % o e
kL ]
e .
of [ a &
. A - e *
0 o 0 e =
N Y. S e

o 0.5 1 1.5 2 2.5 3
Timestep (nodal spacings}

Figure 8. Instability criterion versus timestep, for
various sphere meshes. Timestep in nodal
separations.

Examination of figures 7 to 9 shows that selection of
such a timestep for all practical purposes guarantees
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stability. The ~20 pulse widths till the field begins
to rise on even the cube is here many tens of transit
times; more than an order of magnitude more than is
generally necessary. Whilst hardly a 'real’ scatterer,
the almond is less artificially uniform and symmetric
than the cube or sphere. The behaviour it exhibits is
in our experience typical of more complex bodies (and
note the y axis scale of figure 9 differs from figures 7
and 8). Such 'instabilities’ as do exist come to light
after O(100) or more pulse widths. To put this in
perspective, 100 pulse widths corresponds roughly to 4
transits of a 10 wavelength long body. Even these
instabilities occur at isolated timestep values,
surrounded by stable ones. Should it ever become
necessary, a small change in timestep avoids any
unfortunate initial selection. No figure is shown here,
but as an example typical of many, one of the larger
almonds we have analysed comprised 4154 nodes!?,
with pulsed illumination to permit analysis asa 8 1/2
wavelength body. No instability was observed for
the 3 transits of the rum, by when field magnitudes
were ~1/100 of the magnitude of the incident pulse.
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Figure 9. Instability criterion versus timestep, for
various almond meshes. Timestep measured in
nodal separations.
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We close with an example of a more realistic
geometry, of the penetration of a pulse into a cavity.
The geometry and mesh is shown inset in figure 10.
The unit magnitude plane gauss pulse, of half width
~1/2 of the cavity length, is incident normally an the
partly open end. The mesh comprises 1517 nodes, and
the timestep is roughly equal to the maximum nodal
separation, and 1/10 of the pulse half width. The
figure shows the surface current density, in the
polarisation direction, at two locations on-axis;
inside and outside the rear face. On the outside the
incident wave is apparent, followed by a very low
amplitude roughly harmonic oscillation as energy
escapes from the cavity. On the inside the initial
pulse is naturally more muted, but the subsequent
periodic 'ringing’, with a steadily diminishing
amplitude, is clear. For present purposes the stability
is of most interest; the response is clearly stable for
the ~30 transit times for which the analysis was
continued.
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Figure 10 Surface current due to a Gaussian pulse
incident on the cavity. On axis, inside and outside
rear face. Pulse width ~1/2 cavity length,
duration of analysis ~30 transits. Inset: cavity
geometry, and 1 517 node mesh of the cavity.
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5. DISCUSSION AND CONCLUSIONS

Regardless of stability, implicit approaches are more
or less essential for large practical scattering
analyses. The alternative  explicit approach
constrains the timestep to follow the smallest nodal
separation. For most real problems there are parts of
the geometry which require-a fine mesh, and the net
effect is a significant multiple in computational cost.

The instability reported for time domain integral
equation treatments has been shown here to be
essentially a feature of this explicitness. With
itmplicit methods there is no need to employ the
averaging schemes, with associated loss of accuracy
and cost increase, which have been extensively
reported and applied to stabilise explicit treatments.
When the larger timesteps which implicitness
allows are used stability ceases to be a practical
problem. The rational choice of timestep is about the
same as a nodal separation. It has been demonstrated
that implicit formulations, adopting such a timestep,
are for practical purposes immune from instability.

As the references cited show, with the stability issue
eliminated, the IETD is able to tackle sizeable
scattering problems, providing a useful complement to
integral equation frequency domain and FDTD
approaches.
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