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Predicting MoM Error Currents by Inverse
Application of Residual E-Fields

André P.C. Fourie, Derek C. Nitch, and Alan R. Clark

Abstract— This paper presents a methodology to predict
& posteriori the error associated with a Method-of-Maments
solution. The discussion is limited to a one dimensional
pulse basis function wire-based implementation, but is eas-
ily extended. A Formulation for Error Prediction based on
the relationship between the error in the boundary condi-
tions and the error in the solution is presented, and vali-
dated by an over-segmented problem. The formulation is
then used in a normally-segmented solution to predict the
error by means of a linear interpolation of the calculated cur-
rent which results in a smmoother boundary condition error.
The results show that this normally-segmented methodology
predicts the error current within 5% of the “accurate” error
current obtained by a 20:1 oversegmentation of the problem.
Further work needs to be performed to extend this to the
multidimensional case, although no technical difficulties are

expected with this.
I. INTRODUCTION

In a method of moments (MoM) solution to an electro-
magnetic problem, the structure currents are calculated to
ensure that the boundary conditions are satisfied in some
sense, usually at specific match points (point matching) or
over specific domains in an average, or weighted average,
manner. :

The boundary condition to be satisfied—when using
MoM for perfectly conducting wires—is that the total tan-
gential E-field should be zero at all points on the wire. A
current which ensures zero tangential E-fields in a contin-
uous sense on all wires would be accurate in accordance
with the uniqueness theorem.

Many researchers have recognized that the accuracy of
a method must be related to how well the boundary con-
ditions are met by a specific solution (Hsajo & Kleinman
1996, Meyer & Davidson 1996). The exact relationship
between the error in the boundary conditions and the er-
ror in the observable quantities has not been defined and
has also not been used to gain an estimate of solution (or
method) accuracy. This study investigates the possibility
of getting such a relationship and then formulates approx-
imations which allow its incorporation in MoM (and other
methods) with the lowest computational overhead.

II. FORMULATION FOR ERROR PREDICTION (FEP)

" The obvious relationship between the error in the bound-
ary conditions and the error in the solution is quite
clear in the following formulation for perfectly conducting
wires (Thiele 1973):

Suppose we have obtained a current solution, I(s), where

I(s) = Ia(s) + L(s) (1)
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and I,(s) is the accurate solution and I.(s) is the error
associated with the solution I(s).

If we have the continuous {(and assumed accurate for the
moment) relationship between the current and the excita-

tion then
Lopla(s) = V(s) (2)

where L,y is the linear operator (Pocklington’s equation is
an example for wire problems) which defines the excitation
tangential to the wire, V'(s). Pocklington’s equation is usu-
ally solved using the Method-of-Moments. In the case of a
point matching solution, this results in a tangential E-field
error of zero only at the match points. At any other point
on the structure there will be a tangential E-field error.

If pulse weighting functions were used in the MoM solu-
tion, then it is likely that there will be a tangential E-field
error at any point on the structure—the tangential E-field
error will be zero only in the average sense.

The tangential E-field errors found on the structure are
defined to be the residuals. The tangential E-field from the
inaccurate current, I(s), is:

(3)

where V,(s) is the tangential E-field residual (or error) on
the wires. Combining equations (1} and (3), and from the
linearity of the operator and superposition it follows that

(4)

LopI(s) = V(s) + Vals)

Loyl (s) = Va(s)

' The inverse of equation (4) will allow the error current I (s)

to be obtained from the E-field residual (error), Ve(s).
(5)

‘We shall call the above mathematical development the For-
mulation for Error Prediction (FEP) for later reference.
Once the error currents have been found, the errors in
secondary parameters such as radiation pattern or input
impedance are easily quantified. This may be done, for ex-
ample, by using the error current to obtain near/far fields
at the same points as the full solution values were com-
puted. This will produce “error fields” which places a
bound on the error in the computed field values. Errors
in other parameters such as input impedance, etc. may be
obtained in a similar manner.

This somewhat trivial proof indicates that the error in
any solution may, in principle, be calculated exactly pro-
vided that:

« The residual E-field over the structure can be calculated
continuously and accurately.

L(s) = Lo, Ve(s)
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« An accurate continuous operator L, and its inverse ex-
ist.

In practice the following obstacles to using this result are
apparent:

o Calculation of the residual E-field over the structure can
be computationally time intensive.

» The operator is normally discretized as an interaction
matrix and bence is neither continuous nor accurate.

III. Using THE FEP TO OBTAIN ACCURATE ERROR
CURRENTS.

The graphs which follow illustrate an investigation using
the FEP for a specific problem. A dipole antenna of length
¢ = 0.5) and with radius, a = 0.005X was excited with an
incident E-field of 1 V/m.

A simple MoM program was written which uses pulse
basis functions and point matching. The convergence of the
method is shown in Figure 1. The method clearly converges
0 a stable answer when around 100 to 200 segments are
used for the dipole. The Formulation for Error Prediction
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Fig. 1. The feed current magnitude for a variation in number of

segments of a dipole with £ = 0.5\ and a = 0.005A using pulse
basis functions and point matching.

(FEP) is illustrated by considering the current from the
200 segment problem to be the “accurate” current. Two
“inaccurate” currents were obtained by solving the same
problem with only 10 and 20 segments.

The residual E-fields from these two inaccurate solu-
tions were then obtained at 200 points across the dipole
(i.e. at many more points than the match points). Figure
2 shows the residual E-field magnitude for a 10 segment
solution and a 20 segment solution, which clearly demon-
strates that the boundary conditions are exactly met at the
match points, but also shows a significant error (50V /m for
a 1V/m excitation) at other points. The residual E-fields
in Figure 2 can be applied as an ercitation vector on the
same geometry divided into 200 segments to yield the error
current in accordance with the FEP as stated in equations
(4) and (5). Figure 3 shows this graphically. It is clear

73

i

(-3
<
T

5

Residual E-tan Magnituds [V/im}
8

-
th

Fig. 2. The magnitude of the residual E-fields obtained for a 10 and
20 segrnent dipole with £ = 0.5) and & = 0.005) using pulse basis
functions and point matching.

from these figures that sum of the inaccurate current (ob-
tained from the 10 segment solution) and the error current
(obtained by applying the residual E-fields via FEP) is
practically equal to the “accurate” current obtained from
the 200 segment case. The 200 segment inverse interaction
matrix hence represents an accurate and pseudo-continuous
inverse operator, L,p, and the 200 point discretization of
the residual E-field a pseudo-continuous representation on
the error, E,(s). Figure 3 illustrates the principle behind
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Fig. 3. The current magnitude to prove the FEP for a 10 segment
dipole with £ = 0.5) and e = 0.005) using pulse basis functions
and point matching,

error prediction by inverse application of the residual E-
fields as excitations to produce an error current. The com-
putational effort does not render it suitable as a general
tool for error prediction-—oversegmenting a problem by a
factor of 20 in order to obtain an error estimate is clearly
unproductive! The technique may however, be useful as
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Fig. 4. The error current associated with NEC2 solutians for a 2, 10
segment dipole , as compared to the 10 segment MoM solution
using pulses with £ = 0.5) and a = 0.005A.

a research tool; different basis and/or weighting functions,
for instance, may be compared in terms of absolute error
currents. Such an exercise was performed to compare the
NEC?2 (Burke & Poggio 1981) basis functions with pulse
basis functions. The same dipole antenna was simulated
using NEC2 with 2 and 10 segments and the error currents
obtained using the same procedure, by applying the tan-
gential E-field errors as an excitation to an oversegmented
wire of the same dimensions. The error currents associated
with these two cases are shown in Figure 4, together with
the 10 segment MoM problem, presented earlier. Com-
paring these currents indicates that NEC2 basis functions
achieve roughly the same accuracy for 2 segments as pulse
basis functions do for 10 segments. This may be expected
since NEC2 uses a superpositioned sine, cosine and a con-
stant term as its basis function, which is quite suitable for
approximating the currents on a dipole.

IV. UsinG FEP without OVERSEGMENTATION

The previous section showed that the FEP may be used
to obtain accurate error currents with major computa-
tional overheads associated with overdiscretizing the prob-
lem. We now attempt to use the same FEP without the
requirement to increase the problem discretization. The
main problem with the FEP is that although it is possible
to calculate the residual accurately, only N excitations may
be used to excite the error currents. It is hence necessary
to reduce the residual over each segment to a single value.
The first approximation to the accurate FEP was to obtain
the residual E-fields at 100 points on the dipole and use the
average value of ten samples applied as F.(s) on the origi-
nal 10 segment problem®. Results from using this method

INote that using an “average value” is meaningful for a point
matching MoM (using Dirac delta weighting functions), however, if
pulse weighting functions are used, the error residual computed would
be zero. In the case of the pulse weighting function, one sample per
segment may result in a more appropriate segment error. It stands
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were not satisfactory, since the large oscillations in residual
E-field evident in Figure 2 require a finer discretization in
order to obtain a reasonable estimate—which defeats the
objective. It should be noted that the estimate was not in-
accurate as a result of insufficient field point samples when
averaging, since increasing the samples to 200 and 400 did
not improve matters.
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Fig. 5. The current obtained for a 10 segment dipole with £ = 0.5A
and ¢ = 0.005) using pulse basis functions and point matching
and a linear interpolation to the original pulse current.
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Fig. 6. The tangential E-field magnitude from a 10 segment dipole
with £ = 0.5A and @ = 0.005) using pulse basis functions and
point matching as well as the tangential E-field from a linear
approximation to the original pulse current

We recognized that the large oscillations in the resid-
ual E-fields were mainly due to the pulse basis functions
which are discontinuous at segment boundaries. Rather
than solving the problem with different basis functions to

to reason that the method used to obtain the segment residual must
employ a function other than that of the actual testing functions used
in the MoM solution.
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Fig. 7. Error current from applying the averaged E-tangential fields
obtained from the pulse currents and the linearly interpolated
currents as an excitation to the 10 segment problem. The accu-
rate error current obtained earlier is also shown for comparison.

ensure smooth residual E-field behaviour, we performed
curve fitting to the actual pulse current solution before cal-
culating the residual E-fields via FEP. Figure 5 shows the
original pulse currents obtained from the MoM together
with a linear approximation to these currents, which clearly
offer a smoother current solution. Figure 6 compares the
residual E-field due to the original pulse currents as well
as to the linearly interpolated currents (using only 10 seg-
ments). The residuals from the interpolated currents are
clearly much less oscillatory than those resulting from the
actual pulse solution.

The average (over a segment) of the residual E-fields as-
sociated with the linearly interpolated current shown in
Figure 6 was applied to the original 10 segment problem
to obtain error currents without increasing problem dis-
cretization. Figure 7 shows the effectiveness of this.ap-
proach. Using the average residual E-fields obtained from
the linearly interpolated currents provides 2 good estimate
of the accuracy of the solution.

It should be noted that, in general, the linear interpola-
tion of the pulse basis function solution will not necessarily
yield a more accurate current representation. {It was also
not the purpose.) The interpolated current was merely
used to produce better behaved (less osciliatory) residuals.
These residuals can be averaged over one segment to yield
a residual E-field vector of the same order as the problem
digcretization (10 values in our example). The FEP can,
hence, be used with the same size matrix, and if matrix fac-
torization is used, without much additional computational
effort.

V. CONCLUSION

The FEP is definitely suitable for research purposes when
applying it “accurately” by increasing the problem dis-
cretization. An error prediction scheme for estimating
the errors associated with run-of-the-mill simulations us-

75

ing MoM, however, would not be useful if problem order is
increased. This is mainly due to memory limitations (since
matrix storage space is proportional to N?) and to com-
putational limitations (since execution time is proportional
to N?). The latter part of this limited study shows that
a reasonable estimate may be obtained without using finer
problem discretization provided that the behaviour of the
E-field residuals are smooth over a segment. This is true
even if a discontinuous current due to simple basis func-
tions is artificially smoothed by interpolation to achieve
better behaviour of residual E-fields.

It seems to us that the relationship between residual E-
field smoothness and required problem discretization must
obey normal sampling criteria for the FEP to provide rea-
sonable error estimates. Problem discretization should al-
low the residual E-field curve shape to be retained by the
error excitation vector for good estimates. Residual E-
field variations along a wire with a period of the order of
the segment length (0.05) for 10 segments) are the result
of non-physical behaviour of currents at segment bound-
aries; it should hence, in principle, always be possible to
“smooth” current behaviour to obtain slower variations in
residuals (changes in the order of a wavelength should be
more realistic). '

The interpolation approach also illustrates a very inter-
esting aspect of the behaviour of the residual E-fields: the
large, fast, oscillations are purely associated with local,
non-physical current behaviour. Smoothing the current
resuits in much lower variations in the residual E-fields,
which render them more suitable for error prediction. The
interpolated currents are not, however, inherently more
accurate—at least in terms of errors in overall magnitude—
but they do seem to be a more natural representation of
current shape, which one would expect. In the cases in-
vestigated here, current interpolation was done in order
to obtain error estimates with lower computational over-
heads. The opposite is clearly also possible: currents may
be obtained using some crude basis functions and can then
be smoothed a posteriori (or altered) while using the FEP
method to measure whether a more accurate answer was
obtained.

Naturally, errors in the secondary parameters such as
input impedance or radiation pattern, etc. can be derived
from the error currents using the existing relationships be-
tween currents and these parameters—allowing for “error
bars” to be placed on these parameters.
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