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Abstract - In an effort to mathematically validate the
convergence properties of various surface current-iterative
methods, the magnetic field integral equation is analyzed for
its contraction mapping properties. The analysis is
performed first on the general integral operators and then on
the matrices representing the discrete forms of the integral
operators associated with the different iterative methods.
The contraction mapping properties are determined by
investigating the spectral radius of each linear operator.
Conditions for the verification and validation of these
iterative methods are provided, along with mathematical
checks for the existence of spurious modes and the existence
of internal resonance.

1. Introduction

Throughout the past decade, a variety of surface current-
iterative methods [1-6] have been proposed to solve
electromagnetic scattering and radiation problems involving the
Magnetic Field Integral Equation (MFIE) and related integral
equations. Most of these methods were developed as
alternatives to the traditional Method of Moments (MoM) [7,8]
solution, which involve the inversion of a dense (most often
complex) matrix. While each of the methods showed some
computational advantages, each also introduced a new issue of
concern: that of convergence. For the most part, the
convergence of these iterative methods has been shown by
numerical example, but little mathematical analysis has been
offered for the understanding of why these methods converge {o
the correct solution. Oftentimes convergence is simply claimed
when the delta change in iterations falls below some pre-set
limit. In the following paper, the MFIE is examined to explain
why these surface current-iterative methods have been
successfully iterated to convergence.

In previous work Kaye et al. [1] found that iterative solutions to
the MFIE for the surface current would always yield
convergence for Perfectly Electricalty Conducting (PEC)
bodies which where divided into two paris: a side illuminated
by the incident field, and a shadowed side. Coupled integral

equations were written for each side. The iterative process
started on the illuminated side by iterating from the Physical
Optics (PO) [9] current to an improved value. The process
then went to the shadowed side where the improved current on
the illuminated side was used with an initial estimate (most
often zero) for the shadowed side current to obtain an improved
shadowed side current. The process continued by returning to
the illuminated side to obtain further improvement for the
illuminated side current and then returned to the shadowed side
to obtain further improvement to the shadowed current. The
process was halted when the delta change in the solution fell
below some pre-set limit.

Reuster & Thiete [2] found that the same iterative procedure
could be used for PEC cavities where the aperture of the cavity
was treated as the illuminated side and the cavity walls were
treated as the shadowed side. The iterative process began by
taking the aperture field to be that produced by an external
plane wave illimination. The aperture field was then used ©
find the total magnetic field, via iteration, along the cavity
walls. The field along the cavity walls was then used to update
the total field at the aperture via iteration. The improved
knowledge of the aperture field was then used to obtain a
further update of the field along the cavity walls, which in turn
was used to update the aperture field. Again, the process was
halted when the delta change in the solution fell below some
pre-set limit.

Obelleiro-Basteiro et al. [3] demonstrated a method similar to
the iterative method proposed in [2] where the PO
approximation was used to simplify the iterative procedure.

Numerical results are presented which demonstrate the
convergence and accuracy of the method, but no mathematical
analysis is provided as to why the method converges. Collins
& Skinner [4] demonstrated an iterative method for calculating
the scattering from perturbed circular dielectric cylinders by
using equivalent currents along the perimeter of the cylinder.

Their paper alludes to the mathematical properties of the
method's convergence, but no mathematical analysis is
presented. Reuster, et al. [5] showed by numerical example
that convergence could be obtained by directly iterating the
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entire currents on a PEC body if the PO approximation was

used as an initial condition; however, little mathematical
analysis was provided. Finally, Hodges & Rahmat-Samii [6]
present an advanced iterative method for large PEC bodies
consisting of both wires and closed surfaces. Their iterative
method involves the Electric Ficld Integral Equation (EFIE) as
well as the MFIE and the PO approximation. Again, no
mathematical analysis is provided as to why the method
converges, and convergence is determined when the deita
change in the solution falls below some pre-set limit.

Essentially, all of these surface current-iterative methods are
fixed-point iterative problems [10-12] where the MFIE or a
related integral equation is manipulated (usually by observing
physical characteristics associated with the particular
problem) to develop an iterative scheme which is “hopefully” a
contraction mapping. The establishment of a contraction
mapping is the unique feature that guarantees that the iterative
method will converge in a monotonic mean-square sense. In
the work that follows, two formulations of the magnetic field
integral equation (Maue's formulation and the Total Field
formulation) are analyzed for their potential contraction
mapping characteristics. The effect of the discrete form
operator size on the contraction mapping properties of each
formulation is studied, and a mathematical check is presented
for the existence of spurious modes and the existence of
internal resonance. Finally, a general iterative scheme, which
involves subdividing the integral operator for the
creation/insurance of contraction mappings, is presented. This
general jterative scheme is related to the surface current-
iterative methods [1-6] that were discussed earlier.

2. Contraction Mapping Analysis of the MFIE

For simplicity a 2D Transverse Electric (TE) PEC scattering
problem, as shown in Figure 1, is chosen as a baseline model
for analysis. This particular scattering probiem allows the
normally complex 3-dimensional vector integral equation to be
reduced to a 2-dimensional scalar integral equation which still
maintains all of the properties associated with the general
vector integral equation. Hence, no loss in generality is
experienced in working with the reduced integral equation.
The derivation of both Maue's equation and the Total Field
equation proceeds as follows.

For 2D electromagnetic radiation and scattering problems,
where the magnetic field is parallel to the geometry of interest,
the MFIE may be stated as [1,13]:

- i - - - 1 -
~Hlr)= Jgj'cyf(r YRR B r-r'|)cospdl +-.-2-H'£(r). n
Where C is the simple closed curve (in the x-y plane)
deseribing the PEC body of interest,

lim  ; = - =
- - -JEJ‘CH":(Y JHE Blr-1"|)cosgdl =0
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}/ HI(r) . - .

24z is the principle value of the integral. From (1), both
Maue’s formulation and the Total Field formulation for the
MFIE may be obtained as follows,

Figure 1 - 2D TE PEC Scattering Problem

Maue's Formulation. Maue's formulation is obtained from (1)
by subtracting the integral operator from both sides of (1) and
then scaling (1) by a factor of two.

- - —jB = i
HI(r)——ZHQ(rHTICHZ'(r JHZN B r - 1’| jcosgdl @

Total Field Formulation. The Total Field formulation is
obtained from (1) by subtracting the integral operator from both
sides of (1) and then adding the principle value to both sides of

(1).
B )=~ HU )+ =L [ HT(7 P BT -7 cosed

+2HI(F)
2 (3)
Note that the only significant difference between Maue's
formulation and the Total Field formulation is the location of
the principle value of the integral. It will be shown that the
location of the principle value has a major effect on the
contraction mapping properties of the MFIE.

Integral equations (2) and (3) may be solved using fixed-point
iteration, provided that these integral formulations are
contraction mappings. By definition, contraction mappings may
be iterated directly to a unique solution with a guarantee of
mean  squared-monNCtONIC  COnvergence [10-12]. This
convergence is independent of the initial guess used to initiate
the iterative process. The general test for a contraction
mapping proceeds as follows.
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Let ¥; and ¥ represent two approximations for ¥ in an
equation of the following form, where L is any linear operator
and F is a constant forcing function
v=Ly)+F 4
Then (4) is a contraction mapping and may be solved directly
using fixed-point iteration (with the guarantee of mean squared
monotonic convergence) if and only if

lL(Wz‘W;)ISKle‘W]]

, 0k <1, (5)
Applying the above test to Maue's formulation yields (6).
|HE(r ) -HZ(r) |2
]gfc[yl’(?'h-HZ(FA]h?)(ﬁz?-?l)coswz ©

After simplification, using the triangle inequality theorem, the
contraction-mapping test can be obtained for Maue'’s
formulation (7).

- - 2
WP BI7 T hcosoldi s "

Similarly, the contraction-mapping test can be obtained for the
Total Field formulation (8).

- - .
1K B17 -7 heospldi < .

Note that (7) and (8) are purely functions of the problem's

geometry and the wavelength of interest (8 =27%/4). The
requirements for convergence are independent of the initial
conditions used in the iterative process. Also note that the
convergence condition for Maue's equation is more difficult to
satisfy than the convergence condition for the Total Field
equation. This is a direct result of the removal of the principle
value from the integral operator in Maue's formulation. While
both (7) and {8) may be shown true for a particular geometry,
there does not exist a general proof for arbitrary PEC scattering
bodies. Hence, further investigation into the contraction
mapping properties of both Maue's formulation and the Total
Field formulation is continued on a discretized/numerical level.

3. Contraction Mapping Analysis of the Discretized MFIE

The inability to work with (7) and (8) results in the need to
approximate the integral operators in (2) and (3) with systems
of linear equations. Applying a pulse-basis point-patching
MoM expansion [7] to (2) and (3) results in the following
approximate expansions for Maue's formulation and the Total
Field formulation. Similar analysis can be performed for more
advanced MoM expansions [8].
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Expressing (9) and (10) in matrix from yields (11) and (12},

respectively.
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Note that the principle value of the integral appears as the
diagonal elements of the matrix equation associated with the
Total Field formulation (12) while the principle value of the
integral is incorporated into the forcing function of the matrix
equation associated with Maue's formulation (11). This is a
direct result of the removal of the principle value from the
integral operator in Maue's formulation.

1t is now possible to analyze (11} and (12) for their contraction
mapping properties in a fashion similar to the analysis
performed in Section 2.0. For matrix equations in the form of
(11) and (12), the matrix equation represents a contraction
mapping if and only if the spectral radius of the matrix operator

P is less than one [10,11]. The spectral radius of a matrix is
defined as the magnitude of the largest eigenvalue of the
matrix. In general, eigenvalues are the most difficult of all
matrix characteristics to compute, and for this reason an
advanced matrix analysis package was utilized to perform the
following study. The matrix analysis package is LAPACK, and
was developed for Linear Operator analysis. This software
package is in the public domain, and may be obtained via the
Internet.

While the magnitudes of the eigenvalues associated with a
given MoM expansion are typically functions of the number of
elements used in the expansion, it may be shown that the



REUSTER, THIELE, ELOE: ITERATION OF SURFACE CURRENTS AND THE MAGNETIC LE. 79

eigenfunctions of a given MoM expansion converge in a
fashion similar to the convergence of the MoM solution.
Figures 2a and 2b show the magnitude of the complex
eigenvalues for a 0.5 A radius PEC circular cylinder using 20,
30, and 40 basis functions.
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Figure 2 — Eigenvalue Convergence
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For both Maue’s formulation and the Total field formulation,
convergence occurs at approximately 30 basis functions (which
is approximately 8 basis functions per wavelength). This is
consistent with MoM expansions for a smooth surface [7]. It
should be noted that no new eigenvalues occur above 30 basis
functions, which equates to no new information being gained
by increasing the number of basis functions being used. Also,
note that the eigenvalues for the Total field equation tend
toward 0.5 (for large eigenvalue numbers) and the eigenvalues
for Maue’s formulation tend toward 0.0 (for large eigenvalue

numbers). These two limiting eigenvalues directly correspond
to the diagonal values of their respective integral expansion
(11} and (12).

Figures 3a-3d show plots of the complex eigenvalue versus the
eigenvalue number for 2-dimensional circular cylinders with
radii of 0.60985 A4 and 0.38275 A, respectively. These radii
were chosen because they correspond to the TEQL and TMO1
cutoff frequencies for circular waveguides [13]). Circular
cylinders with these radii are historically difficult to solve
numerically because of internal resonance problems. It should
be noted that in both cases Maue's equation has eigenvalues
with magnitudes greater than one, and the Total Field equation
has eigenvalues with magnitudes less than or equal to one. This
implies, for these particular cases, direct iteration of Maue's
equation will not yield convergence and direct iteration of the
Total Field equation may yield convergence (the largest
eigenvalue has to be strictly less than one to guarantee
convergence). In addition, for radii that correspond to the
cutoff frequencies of the TEOn and TMOn circular waveguide
modes, both the Total Field equation and Maue’s equation wil
have eigenvaiues of value one. It is these eigenvalues (of value
one) which are respomsible for the historically documented
resonance problems. It also should be noted that Total Field
equation has a zero eigenvalue for the 0.60985 A case (figure
3b). This zero eigenvalue can cause a spurious mode to appear
in the solution. While eigenvalues of value zero are not
generally problems for direct iterative solutions, eigenvalues of
values one or greater are problems, and lead to divergent
solutions. It is this problem of eigenvalues of value one or
greater that the previous surface current-iterative methads [1-6]
are indirectly solving. Section 4 presents a general method for
directly dealing with the problem of eigenvalues of value one or
greater. Furthermore, it may be shown that the eigenvalues for
Maue’s equation and those for the Tetal Field equation are
simply related.
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Figure 3 — Complex Eigenvalue Analysis
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Write Maue's equation from (2) in operator form as

HI=L™H)-2H] (13)
and the Total Field equation from (4) as
HI=L(H)-H] (14)
where the operators LT and L™ are related by
FEN |
T J+-gm
L 2 2 L (15)

and [ 1] is the identity matrix.

Let A™,v™ be an eigenvalue and eigenvector pair for L™, then
v™ is an eigenvector for LT corresponding to an eigenvalue

T_
A _}éﬂ'i"lm].Tosaethis,assume

LM(y™)= A"y (16)
It follows that
1
LT(V"')=E[1+L'"JV"’
1 i
= [y Iy ) ==[1+ A" ]y =Ty
2 2 . an

By inspection of the curves in Figures 2 and 3, it may be seen
that the above relationship is true for large eigenvalue numbers.
By noting the complex nature of the eigenvalues in Figure 3 it
may also be seen that the above relationship is true for the smail
eigenvalue numbers.

4, Methods of Insuring a Contraction Mapping

As can be seen from Figures 2 and 3, not all of the 2D TE PEC
scattering problems contain a spectral radius that is less than
one. In general, the spectral radius of the matrix associated
with the Total Field formulation is less the spectral radius of the
matrix associated with Maue's formulation.  However,
geometrical cases still exist where the spectral radius of the
matrix associated with the Total Field formulation is greater
than or equal to one (figure 3b and 3d). For these situations,
the resulting system of linear equations can net be solved using
a direct implementation of the fixed-point iterative method, and
attempts to do so will result in a rapid divergence in the
solution vector. For this case, where the spectral radius of the
matrix associated with the particular magnetic field formulation
is greater than one, a modified version of the fixed-point
iterative method must be applied if a contraction mapping like-
iterative solution is to be obtained.

In their work [1,14-16] Thiele et al. showed that it was possible
to apply the method of fixed-point iteration to a 2D TE PEC
scattering problem by subdividing the scattering body into two
pieces which they defined as the illuminated side and the
shadow side. While their work was restricted to a single
subdivision of Maue's formulation, their method is shown here
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to be completely general and may be applied to any of the
magnetic field formulations for any number of arbitrary
subdivisions provided the largest eigenvalue of each
subdivision is less than unity.

We can express the hybrid iterative method (HIM) [1] as (18)
where the sub-matrix [ L1/ is associated with the illuminated
side, the sub-matrix { Lz27/ is associated with the shadowed
side, and the sub-matrices { Liz/and [ Lz:] are associated
with the coupling between the illuminated and shadowed sides.
The iterative method used in [1] to soive (18) is represent in
(19).

_ L) [es] _ _
HI(7) =“ ”% { ’2]} H |- 281,)
I Lal Lz (1)
(L] [o] 2HN)
T/= = T 0| N rm
27(7,,) { 0] [1]} HI(5) 0l
Trmen o]
T/— 12 |= T/~ ol | -
Hzlrn) |:[L21] [7] ] Hxlrn) 2HYvn)
[z} [o]] [o]
T~ 32 = T= 2|
Hzlrn) [[o] [L22] | Hilrn) 2HY W)
(1] [L:2]7 2HY7)
Hi(7,) |= HiG) |-
’ {[0] 11| [o]
27, )" = |HY(G,)"
L 4 i (19

This four step iterative method was found to always converge
without internal resonance problems, although a formal proof
was never given [1]. If we examine the eigenvalues of the
resulting sub-matrices, it is apparent why the method converged
and why it had no internal resonance problems. Figures 4a-d
show the eigenvalues for the HIM  matrices
{Li] fLiz] ,[L2a1]and [ L2z of a circular cylinder with
radius 0.5 wavelengths. The eigenvalues for each of the four

matrices are all less than one; hence, each of the four sub-
iterations is itself a contraction mapping. Since the four sub-
iterations are nested in a linear fashion, then by the triangle
inequality theorem the total iterative procedure is itself a
contraction mapping. Thus, the system of linear equations may
be iterated directly to a unique solution with a guarantee of
mean squared-monotonic convergence [10-12]. It is extremely
important to note that while the four sub-matrices in [1] were
originally defined in terms of the system's excitation
(illuminated and shadowed sides), the contraction mapping
characteristics of the system are independent of the system's
excitation. All that is important is that the matrix is partitioned
such that the largest eigenvalue of each sub-matrix is less than
one. If this case is true, then by the definition of a contraction
mapping, the systemn of linear equations may be iterated directly
to a unique solution with a guarantee of mean squared-

monotonic convergence.
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Figure 4 — Eigenvalue Analysis the Hybrid Iterative Method

While the guaranty of convergence is independent of excitation
function and the initial guess used to start the iteration
“procedure, the rate of convergence is not. In fact the rate of
convergence is heavily dependent upon the initial guess used to
start the iteration procedure. To illustrate this point, the current
distribution on a 0.5 A radius circular cylinder is solved for an
incident plane wave using two different initial guesses. For thig
particular example, the Total Field formulation was utilized
directly since all of its eigenvalues are less than one. The first
initial guess used was the traditional PO approximation used in
[1-6], and the second initial guess used was the negated
reflection of the PO approximation. The PO approximation is
considered to be a very good initial guess, while the negated
reflection of the PO approximation is considered to be a very
poor initial guess. In both cases, the exact solution was
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obtained directly using MoM. Figures 5a and 5b show the
converging currents for each case.
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Figure 5 — Effects of Initial Guess on Convergence Rate

Figure 5a shows these currents for an initial guess that is the
usual physical optics estimate of the current; twice the incident
field on the illuminated side and zero on the shadow side. Note
the vast improvement in the solution after one iteration, and the
nearly converged result after five iterations. Figure Sb shows
the currents for an initial guess of zero on the illuminated side
and minus twice the incident field on the shadowed side; the
"opposite” of the physical optics estimate. Note while the
contraction mapping nature of the iteration procedure
overcomes the poor initial guess, the rate of convergence is
significantly slower, approximately five times slower than for
the previous guess.
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5. Summary and Conclusions

Maue’s formulation and the Total Field formulation of the
MFIE have been analyzed as to their suitability for iterative
solutions. It was shown that both formulations could be
directly iterated to a unique solution with a guarantee of mean
squared-monotonic convergence provided the eigenvalues of
their corresponding matrix expansions were less than one. This
convergence is independent of the initial guess used to initiate
the iterative process. The guarantee of monotonic mean square
convergence is a direct result of the contraction mapping
properties of Maue's formulation and Total Field formulation.
The conditions under which these formulations have
contraction mapping properties were developed in Section 2 for
the integral forms and in Section 3 for the discrete forms.

Section 3 showed how the eigenvalues of the matrix
representation could be used to determine the convergence
characteristics of a matrix used in the iterative solution process.
For the cases presented, the eigenvalue plots showed a
preference for the Total Field formulation over Maue’s
formulation since the latter tended to have larger eigenvalues
than the former. Eigenvalues of value greater than unity
indicate that the solution will not have contraction mapping
properties. Eigenvalues of value equal to one correspond to
internally resonant cases. Eigenvalues of value equal to zero
can allow the existence of spurious modes. In Secticn 4, it was
noted that the previously published Hybrid Iterative Method [1]
converged becanse the division of the geometry into two parts
produced (for the cases examined) sub-matrices whose
eigenvalues were less than unity, thereby creating a series of
contraction mappings. The authors believe that the
convergence obtained in the other direct surface current-
iterative methods [2-6] discussed occurred because of a similar
phenomenon.

Lastly, the material in this paper shows how to use either
formulation of the MFIE successfully to obtain an iterative
solution. Also, iterative solutions to the MEIE have the
potential to substantially reduce the required computational
time for large PEC bodies provided that the iterative process is
initiated with a “good” initial guess, such as the PO
approximation. Finally, additional computational speed can be
obtained for extremely large PEC bodies by the direct
parallelization of the iterative methods discussed in Sections 3
and 4.
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