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Abstruect— A common bottle-neck, limiting the
performance of many electromagnetic numerical
methods, is the solution of sparse linear systems.
Until now, this task has been typically solved by
using iterative sparse solvers, whose require heavy
computational efforts, especially when the problem
is not well-conditioned.

An alternative strategy is based on the use
of banded solvers, which numerical complexity is
quadratical with respect to the matrix bandwidth.
Of course, these methods are efficient provided that

the matrix bandwidth is sufficiently small. In this °

paper, a method (called WBRA) for the bandwidth
reduction of a sparse matrix is presented: it is here
specifically customized to typical electromagnetic
matrices. The approach is superior to all the pre-
vious algorithms, also with respect to commercial
well-known packages, and is suitable also for non-
symmetric problems.

As demonstrated by results, the use of WBRA,
in conjunction with common banded solvers, sub-
stantially improves (up to one order of magnitude)
the solution times in several electromagnetic ap-
proaches, such as Mode-matching, FEM, and MoM
analysis of microwave circuits. In conclusion, it is
proved that the high efficiency and effectiveness of
WBRA turns the strategy of bandwidth reduction
combined with a banded solver into the most prof-
itable way of solving linear systems in electromag-
netic numerical methods.

I. INTRODUCTION

The use of numerical methods is nowadays com-
monly accepted as the most effective and efficient
way to attack and solve electromagnetic (EM)
problems. Many numerical codes are routinely used
in the CAD of EM circuits, in complex scatter-
ing analyses, and in electromagnetic compatibility
evaluations, just to mention some possible indus-
trial and research tasks which are currently mainly
performed via numerical approaches.

The obvious consequence of the continuous
growth of numerical methods in daily work is an
increasing demand for numerical efficiency and per-
formance. As the problems get more complex, the
issue of optimum memory exploitation and CPU-
time reduction is crucial, provided that suitable nu-
merical accuracy be guaranteed.

A common bottle-neck limiting the performance
of many numerical approaches is represented by the
solution of linear systems, usually sparse, which
is very often one of the strongest numerical tasks
for many EM methods. Mode-matching (MM},
Method of Moments (MoM), both in its standard
formulation and when using wavelet expansions,
and Finite Element Methods (FEM) are just some
examples demonstrating this.

In previous papers [17], [3] it was demonstrated
that a very efficient strategy to improve the per-
formance of many EM codes is the enhancement
of the linear system solution timre by an appropri-
ate transformation of the system matrix. The ma-
trix, generally sparse, is transformed into a banded
one, with reduced bandwidth, this paving the way
for a very effective use of high-performing banded
solvers. The performance of the algorithm to re-
duce the bandwidth of a sparse matrix is, in this
perspective, a key-point. In this paper, a new
method is proposed to accomplish this task. It is
suited to every kind of sparse matrix, but specifi-
cally tuned to achieve maximum performance on
typical matrix patterns of EM problems. It is
proved to outperform all the previous approaches,
including commercial packages, on several real EM
cases. The availability of such an efficient band-
width reducer turns its use, in conjunction with
a banded solver, inte the most effective solution
strategy, differently from before, when the band-
width minimization effort was not so profitable,
and the use of a sparse solver without matrix pre-
processing was sometimes the winning approach.

The paper is structured as follows. In section 1
an overview of the problem is proposed. In sec-
tion 2 the new algorithm for bandwidth reduction
is proposed. In section 3 results are given. Finally,
conclusions are drawn.

II. BANDWIDTH REDUCTION USED IN
CONJUNCTION WITH DIRECT SOLVERS VS.
ITERATIVE SPARSE METHOQDS

Let

Ax=B o)
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be a sparse system.

We know from very basic matrix algebra that,
considered a permutation matrix P so that
P-PT =1 (where I is the identity matrix), the
system

PAPTY = PB (2)

has the same numerical stability as (1), as its condi-
tion number is not changed. Moreover, the solution
x of (1) is easily found from the solution x of (2),
as

x=P'x (3)

Therefore, if the permutation matrix is appro-
priately chosen, so that the transformed system
matrix A’ = PAPT is banded, with small band-
width, banded solvers can be used with very high
performance, as their complexity depends quadrat-
ically on the matrix bandwidth [5]. Unfortunately,
the task of finding the transformation P that gives
the minimum possible bandwidth is a very difficult
problem; in [12] it is shown to be an NP-hard prob-
lem.

Many efforts have been made until now in or-
der to solve this problem both in an exact way
providing the optimal permutation, and in an ap-
proximated way, so that good permutations that
sensibly reduce the bandwidth can be found with
a much smaller computational effort. A very thor-
ough review of approaches is proposed in {5], which
must be integrated with more recent contributions
4, 17, [21.

Due to this difficulty, instead of looking for an
optimum transformation, alternative approximated
but faster strategies are usually followed in practi-
cal applications, as illustrated in the next section
where the method for bandwidth reduction pro-
posed in [6] referred as WBRA will be reviewed,
putting forward its peculiar features with respect
to other previous approaches.

Of course, the development of an effective band-
width reduction algorithm does not guarantee an
a-priori enhancement of performance whatever the
EM numerical method might be. Its impact must
be benchmarked by comparing it with respect to
the current existing approaches. Among them,
a usual approach is the use of iterative sparse
solvers, which are generally applied directly to the
original matrix, without any previous preprocess-
ing. Iterative solvers are not very efficient, and re-
quire large numbers of iterations especially on non-
well-conditioned problems. Nonetheless, they are
largely used, due to their easy availability and to
their strong stability. In fact, direct sparse solvers,
which could be in principle more performing, are
often prone to the risk of dense LU factors [3],
highly degrading memory and computing-time re-
quirements, and are therefore not considered a vi-
able solution.

Therefore, on the basis of the previous consider-
ations, when presenting results, we generally pro-
pose a comparison between a strategy using a band-
width reduction, and a more standard one, using an
iterative sparse solver.

III. THE WBRA APPROACH FOR BANDWIDTH
REDUCTION

One of the most effective classes of algorithms
specifically devoted to bandwidth reduction is the
one derived from the Cuthill-McKee (CM) method
[8]. The main idea of this class of algorithms is re-
lated to the graph representation of the matrix (see
Fig. 1). Consider a symmetrically structured ma-
trix A of order n, let G = (N, E) be the undirected
adjacency graph related to A, where each node
i € N ={1,...,n} represents the i-th row/column
of the matrix, and there is an edge (4, ) between
two nodes ¢ and § (¢ # j) if and only if the ele-
ment of matrix A a;; # 0. The basic idea of the
computation can be summarized by the following
steps:

1) partitioning phase: select a root node
r, and partition N into subsets called levels
{Lo,L1,...,Lp} with r € Lp, so that there are
edges only between nodes belonging to the same
level or to two adjacent levels; a partition into lev-
els is called level structure. In Fig. 2, the level
structure obtained with root equal to 6 is shown.

2) numbering phase: sort the nodes by increas-
ing level index, and inside each level number them
according to a particular criterion.

As the other algorithms in the CM class, WBRA
follows this general scheme, but in the two phases
exploits the structure of the combinatorial opti-
mization problem underneath.

In the partitioning phase a partition inte lev-
els, whose larger subset has minimum cardinality,
is sought. In fact the bandwidth is directly af-
fected by the size of the largest subset. However, as
this problem is as difficult as finding the minimum
bandwidth, an approximated algorithm is applied.
In Fig. 3 a possible redistribution of nodes be-
tween levels is provided. In this case the width of
the largest level in the new structure is reduced to
2,

Now consider the numbering phase. WBRA
applies the numbering to a set of “promising”
level structures determined during the partition-
ing phase, that is to a set of level structures whose
largest level is small.

Let {Lg,L1,...,Lp} be the partition under con-
sideration during the generic iteration:

Numbering the nodes, we assign the first num-
bers {l.e. the first positions in the permuted ma-
trix) to the nodes in Lg, then the other positions
are assigned following the precedence between lev-
els, that is any element of level L;_; always has a
smaller number with respect to any other element
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oflevel Ly, h = 1,...,p. Thus the numbering phase
is carried out by a sequence of steps, one for each
level.

Determining the optimal numbering of level Ly,
WBRA considers:

« (i} the numbers assigned to the elements of

Ly_1, but in addition it considers also

« (ii} the possible effects of the numbering in

level Lh+1.

These two criteria give rise to a well charac-
terized combinatorial optimization problem whose
particular structure allows us to determine the
numbering of & level in almost linear time. The
numbering obtained by applying the algorithm to
the level structure of Fig. 3 is shown in Fig 4. A
detailed discussion of the combinatorial structure
of the problem, and of the numbering algorithm
can be found in {6].

The rearranged matrix according to the permu-
tation found by the algorithm is shown in Fig. 5.

A. The unsymmeiric case

The method proposed until now, based on a ma-
trix representation through an adjacency graph,
is devoted to matrices with symmetrical patterns.
On the contrary, as described in the result sec-
tion, a method working also on matrices with
an unsymmetric zero-non zerc structure is needed
quite often. One of the key-points of WBRA is
its amenability to cope with this problem, with-
out degradating the performance of the algorithm.
This is achieved by symmetrizing the matrix struc-
ture in a cumbersome way.

Generally, the matrix pattern could be sym-
metrized in two possible fashions:

¢} consider a matrix A where

aj; = max{ay;, a;i};
i) symmetrize the matrix, that is consider A* =
LAAT,

The latter approach is avoided as it may intro-
duce some ill conditioning. In the former case, any
symmetric bandwidth reduction algorithm can be
applied to A”*, then matrix A is permuted accord-
ing to the obtained reordering. The drawback of
this approach is evident when A is highly unsym-
metric: many zero elements are dealt as they would
be non zero. This is why devising ad hoc aigo-
rithms that can take advantage of the unsymmetry
becomes important.

By contrast to the symmetric case, in the band-
width minimization of unsymmetric matrices, we
are not obliged to apply the same permutation to
rows and columns. Thanks to this observation, we
propose an algorithm divided into two phases. In
the former phase a permutation is applied to rows
only. Then the matrix is symmetrized according
to method i). In the latter phase the bandwidth
is reduced by applying the same permutation to
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rows and columnps. Finally the matrix is “desym-
metrized” by removing the nonzero elements intro-
duced by the symmetrization step.

We adopted two methods for the first phase. The
former method applies the row permutation that
maximizes the number of non zero elements on the
diagonal. This problem is known as the transversal
mazimization [5]. An alternative method (symme-
try mazimization) tries to maximize the number of
symmetric elements, that is tries to permute the
matrix rows so that in the final matrix the num-
ber of elements a;; 7 0 having the corresponding
a;; 7 0 are as many as possible.

After the first phase (either transversal maxi-
mization or symmetry maximization}, the WBRA
is applied. The final performance {as demonstrated
by results) is quite attractive. The algorithm is
publically available through Internet at the web site
http://dvorak.istel.ing.unipg.it.

IV. RESULTS

Four main areas of applications are proposed:
the MM analysis of rectangular waveguide circuits,
the FEM analysis of planar circuits with metalic
boxes, the MoM analysis of planar circuits with
a Mixed-Potential Integral Equation (MPIE) ap-
proach, and a MoM using wavelet expansions. In
the case of MM and MoM, the use of a band-
width reduction in couple with a banded solver is
compared with a standard iterative biconjugate-
gradient sparse solver with preconditioning. For
FEM, the performance of a standard package is
compared with an implementation taking advan-
tage from bandwidth reduction.

A. MM Analysis of MW Circuits

The MM analysis of MW circuits is an efficient
and rigorous method, often used in CAD packages.
Among its several attractive issues, the amenabil-
ity to MW circuit optimization, via the Adjoint
Network Method is one of the most interesting, as
well as a paramount impulse to improve its perfor-
mance.

As already discussed and demonstrated in [17],
the solution of a sequence of linear systems, with
different right-hand-sides and same matrix, is the
numerical core of the approach. The pattern of the
sparse system matrix A depends on the numbering
adopted for the physical and electrical ports, as
well as on the number of modes selected in every
section of the circuit.

In this paper, we compare the performance of
WBRA with other methods to reduce the band-
width of the system matrix, and show the corre-
sponding performance of the MM analysis. More
specifically, we compare WBRA with a proprietary
routine performing the Modified- Reversed-Cuthill-
McKee (MRCM) approach {one of the most effi-
cient implementation of the CM method [8]), with
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a commercial routine for bandwidth reduction pro-
posed by MATLAB, and with a previous novel
technique proposed by the authors in [3], called
Tabu Search (TS). In Tab. I results are given on
three matrices coming from the MM analysis of a
complex 4x4 Butler matrix (Fig. 6), with different
spatial resolutions. In Tab. I the reader can note:
the system size &V, the bandwidth of the original
matrix A (IB), the final bandwidth achieved by the
different algorithms and, in brackets, the time nec-
essary to evaluate the permutation matrix. Times
are given in seconds, on an IBM RS36000 250 T.

B. FEM Analysis of Bozed Microstrip Lines

The analysizs of microstrip lines surrounded by
a metallic box is a common problem for the MW
and EMC community. This problem has been at-
tacked by using a public domain FEM package
called EMAP {10]. In EMAP, a key-point in the
analysis of the circuit is the repeated solution of
a linear system. In FEM, the system is generally
reduced to a banded structure. Therefore, EMAP
uses a banded solver, and is quite amenable to be
interfaced with the above mentioned modules for
bandwidth reduction.

Several tests have been performed on circuits
such as the one in Fig. 7, for different substrates
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Tab. I: The effectiveness of different bandwidth
reduction methods and (times in brackets) their
efficiency.

As inferred from the table, TS is too slow to
be used on serial platforms, and is therefore omit-
ted. The WBRA is superior to both MATLAB and
MRCM, as it is more effective and its time perfor-
mance is better as the size of the problem increases.
In Tab. II, for the same cases of Tab. I, the solu-
tion times are shown using: 1) a standard iterative
sparse solver (BCG) with the original A matrix 2)
a banded solver on the original A mairix (BNT) 3)
a banded solver on the transformed PAP* matrix
(P evaluated with MATLAB (BTM)) 4) a banded
solver on the transformed PAPT matrix (P evalu-
ated with WBRA (BTW)).

K [ IB | MRCM | MATLAB TS WBRA and dimensions of both the box and microstrip.
116 | 75 | 6(0.039) | 6(0.062) | 6(91.1) | 6(0.051) || Some of the results are shown in two tables, with
245 [ 115 | 83(0.24) | 55(0.36) | 25(242) | 27 (0.299) | the same scheme as for the MM section: in Tab.
503 | 452 [ 78 (1.572) | 61 (1.97) | 64 (1000) | 51 (1.234) || [f] data, report the efficiency of the different band-

width reduction methods, whilst Tab. IV shows
the effects of different bandwidth reductions (Mat-
lab (BTM}, and WBRA (BTW)) on the system so-
lution time using the standard banded solver used
in EMAP (BNT).

N | IB | MRCM | MATLAS | WBRA |
201 | 107 | 106 (0.32) | 106 (0.48) | 62 (0.29)
615 | 156 | 165 (3.75) | 163 (8.9) | 88 {1.56)
1180 | 297 | 245 (24.8) | 237 (142) | 184 (5.9)

BNT BTM | BTW |
116 | 9.5 27.1 046 | 0.46
245 | 101.1 198 36.3 | 8.2
503 | 521 | longer than 1000 | 442 | 296

Tab. II: Different simulation times for a MM code
on a 4x4 Butler's matrix. A standard iterative
solution (BCG) is compared with a banded
solution (BNT), a banded solution with
bandwidth minimization by MATLAB (BTM),
and a banded solution with bandwidth
minimization by WBRA (BTW).

As shown in Tab. I, the WBRA method cutper-
forms the other approaches. Its use (as evidenced
by Tab. II if you compare BTW with respect to
BCG), allows a speed-up in the system solution of
up to one order of magnitude with respect to the
use of a standard iterative sparse solver, and {as
evidenced by comparing BITW and BTM) of up to
4 times with respect to the use of previous band-
width reduction methods.

Tab. III: A comparison of performance for
different bandwidth reduction methods for a FEM
linear system.

N BNT | BTM | BTW
201 | 341 | 338 8.8
615 243 289 59.6
1180 | 2048 | 1621 973
Tab. IV: Solution times for the FEM problem
using a standard EMAP banded solver (BNT},
with respect to 1) standard EMAP solver and

Matlab bandwidth reduction (BTM) and 2)
standard EMAP solver and WBRA bandwidth
reduction (BTW).

It can be noted from Tabs. III and IV that the
superior performance of WBRA, both for effective-
ness, and for computing times, allows a speed-up
in the system solution time of up to 4 times with
respect to standard EMAP code.

C. MoM Analysis of Microstrip Circuils

Recent enhancements in the analysis of planar
circuits with an MPIE approach using a closed-
form spatial-domain Green’s function [11] allow a
very efficient implementation of CAD tools. The
MPIE can be discretized by using the MoM, thus
generating a linear system whose solution allows
the evaluation of the scattering parameters of the
circuit. The system is generally dense, but very
recently it has been demonstrated that it can be
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reduced to a sparse one, without affecting the ac-
curacy of the simulation [1]. Therefore, also in this
case the core of the numerical effort is a sparse lin-
ear system, and a bandwidth reduction is worth to
be performed.

In Tabs. V and VI results are shown for two
circuits reported in Fig. 8. As usual, Tab. V
gives results concerning the effectiveness and effi-
ciency of the WBRA with respect to other meth-
ods for bandwidth reduction. Tab. VI compares
the solution time using a standard iterative sparse
solver (BCG) with respect to using a banded solver,
invoked straightly (BNT)} or after performing a
bandwidth reduction (using MATLAB (BTM) or
WBRA (BTW)).

N [ IB | MRCM | MATLAB | WBRA
220 | 208 | 120 (0.34) | 119 (0.51) | 72 (0.3} |
401 | 310 | 141 (1.23) | 136 (1.5) [ 82 (0.98)
Tab. V: A comparison of performance for different
bandwidth reduction methods for & MPIE/MoM

linear system.

N | BCG | BTM [ BTW
220 71 14.8 6.4
401 ] 214 | 49.6 | 188

Tab. VI: Selution times for the MPIE/MoM
problem using standard sparse iterative solver

(BCG), with respect to 1) banded solver and

Matlab bandwidth reduction (BTM) and 2}
banded solver and WBRA bandwidth reduction
(BTW).

From Tabs. V and VI it can be noted that the
use of WBRA enhances the efficiency of the system
solution by up to 12 times with respect to a stan-
dard sparse iterative solver, and up to 3 times with
respect to using a commercial bandwidth reducer
before invoking a banded solver.

D. MoM using Wavelet expansions

In the past few years, the use of wavelet expan-
sions in the solution of electromagnetic problems
has become more and more frequent. Wavelet ex-
pansions have been introduced, for instance, in con-
junction with the Method of Moments (MoM} dis-
cretization of integral equations [9], [20], in order
to solve scattering problems with large-scale scat-
terers (thus containing a variety of length scales
with respect to wavelength) [15]-[18], or to analize
slot-apertures [19], microstrip floating line struc-
tures [21], as well as to study 2D and 3D dielectric
structures [13), [14]. A common key-issue for all
the above mentioned applications is the derivation
of very sparse and well-conditioned linear systems,
representing the numerical core of MoM approaches
[1], [13], [14]. The moment matrix sparsity allows
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the use of very efficient iterative sparse solvers, and
the good condition number guarantees a low num-
ber of iterations to converge, with a consequent
dramatic improvement of performance.

Up to now, once the moment matrix has been
sparsified using wavelet expansions, it has been as-
sumed that iterative solvers are the best way to
attack the linear system solution. We demonstrate
here that, by means of appropriate matrix trans-
formations, the use of a banded direct solver in
conjunction with WBRA outperforms the iterative
approach, especially when non-symmetric moment
matrices are attained after split testing procedures
in presence of compact-support functions [15], (16},
[13], [14]. It must be put forward that the capabil-
ity of dealing with non-symmetrical cases, without
lost of effciency, is one of the most attpactive fea-
tures of WBRA. In fact, for previous bandwidth
reduction approaches, the only way to face non-
symmetric problems was represented by the matrix
pattern symmetrization, with an obvious dramatic
reduction of performance.

We refer, for the proposed results, to a MoM dis-
cretization of a Mixed-Potential Integral-Equation
formulation for the analysis of planar microstrip
circuits, as described in [1]. The MoM matrices are
transformed in accordance with the use of Battle-
Lemarie multiresolution expansions, as described in
[15], [16], [13], [14], thus attaining non-symmetric
matrices when splitting and truncations are per-
formed to comply with boundary conditions. A
double-layer microstrip waveguide has been stud-
ied, with different basis expansions, and different
threshold values »; have been applied onto the mo-
ment matrices, so that values having magnitude
less than v per cent of the largest entry are con-
sidered as zeros. Of course, different approxima-
tions are attained on varying v, and errors have
been estimated by comparing approximate results
with the correct result attained without any thresh-
olding. Table VII and VIII present results from
two different cases of analysis of a double-layer mi-
crostrip (see Fig. 9), using different numbers of
Battle-Lemarie wavelet functions. Different matrix
sizes, respectively N=250 and N=478, have been
attained. For different thresholds, the matrix spar-
sity S, the approximation error, and the results are
reported, from two different strategies: i) a banded
solver with WBRA (BTW), ii) an iterative sparse
BCG solver {BCG) (the number of iterations to
converge is also reported}.

Sol. time (s.)

v | S | Error | BIW [ BCG (n.iterations)

2% | 9% | 5.4% | 0.08 0.09 (8)
1% | 96% | 24% | 0.12 0.23 (A7)
05% | 91% | 0.7% | 0.21 0.48 (31)

Tab. VII : Results for a matrix of dimension
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N=250. Computing times for a banded solver and
WBRA. strategy versus BCG strategy are shown,
for different threshold values, and the
corresponding mairix sparsity S and solution error
due to thresholding effects. For BCG the number
of iterations needed to converge is shown in the
brackets.

Sol. time (s.)

[ w ] S]Eror | BTW | BCG (n.iterations)
2% 1 98% | 4.8% | 0.30 0.1 (11)
1% | 94% | 2.1% | 0.64 1.4 (14)

0.5% | 88% | 0.6% | 0.80 6.0 (28)

Tab. VIII : Results for a matrix of dimension
N=478. Computing times for a banded solver and
WBRA strategy versus BCG strategy are shown,

for different threshold values, and the
corresponding matrix sparsity S and solution error
“due to thresholding effects. For BCG the number
of iterations needed to converge is shown in the
brackets.

As apparent from Tab. VII and VIIL, an ap-
propriate value for thresholding is 0.5%, so that
the approximation error is smaller than 1%. In
this case, for N=250, a speed-up of nearly 2.3 is
achieved, when using the BTW strategy with re-
spect to BCG, whilst for N=478 a speed-up of
nearly 7.5 is observed.

V. CONCLUSIONS

In this paper a new method, called WBRA, to
perform the bandwidth reduction of a sparse ma-
trix has been presented. It generally works for
every kind of sparse matrix, but it is specifically
tuned to achieve maximum performance on typ-
ical matrix patterns encountered in electromag-
netic numerical problems, as well as to manage also
with non-symmetric zero-non-zero-pattern matri-
ces (this being crucial when attacking some wavelet
problems).

The efficiency and effectiveness of the method
is superior to all the other commercial and pub-
lic domain packages available on the market, as
demonstrated on matrices generated by the mode-
matching, FEM, MoM/MPIE, and MoM/wavelet
analysis of rectangular waveguide and planar cir-
cuits.

The huge advantages of the WBRA’s use in
the analysis of MW circuits is also proved for the
above mentioned problems. It is demonstrated that
enhancements of one order of magnitude can be
achieved, with respect to the use of classical itera-
tive sparse solvers, by using WBRA in conjunction
with banded solvers. This is attained thanks to the
high efficiency of WBRA, which reduces the band-
width reduction times, improves the effectiveness of
bandwidth reduction, and substantially decreases
the numerical complexity of the banded solution.
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Fig. 1. The input matrix (bandwidth=3) and the relative
adiacency graph. :
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Fig. 2. The adiacency graph partiticned into levels.
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Fig. 3. The level structure after the enhancement phase.
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Fig. 4 The level structure after the renumbering phase.
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Fig. 5. The renumbered matrix (bandwidth=2).
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Fig. 6. The 4x4 Butler matrix simulated with the MM
approach.

Fig. 7. The boxed microstrip waveguide simulated with the
FEM approach.
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Fig. 8. The circuit simulated, with different values for wl,
w2, w3, w4 and w5, with the MoM approach.

Fig. 9. The circuit simulated, with different wavelet basis
functions, with the MoM approach.
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