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ABSTRACT. An integral equation formulation in
conjunction with a parallelised Galerkin technique Is
employed to solve large-scale electromagnetic (EM)
problems. The proposed technigue is applicable to
EM structures consisting of similar conducting or
dielectric parts, defined as "elements". Coupled inte-
gral equations are derived in the frequency domain,
written in terms of the conductivily currents or the
electric fields developed on the conducting or dielec-
tric "elements” surfaces, respectively. The system of
integral equations is numerically solved via the par-
allel computed Galerkin technique, with convenient
entire domain basis functions. Even for electrically
large structures, the use of entire domain basis func-
tions leads to relatively small order linear systems
and the main computational cost refers to the matrix
Jill rather than the matrix solution. The parallelisation
introduced to the computation of the matrix elements
overcomes the limitation of using Method of Moments
at lower and resonant frequencies. The inherent par-
allelism of the introduced technique allows for the
results to be obtained with minimal additional to the
sequential code programming effort. Two indicative
electromagnetic compatibility applications are pre-
sented, concerning the coupling of incident waves
with multiple conducting rectangular plates and the
coupling phenomena occurring in a multi-element
waveguide array looking into a layered lossy cylin-
der. Numerical results are presented, while the appli-
cability/suitability of diverse High Performance Com-
puting platforms is judged, based on both perform-
ance obtained and ease of code portation.

Keywords: Method of Moments, Code Parallelisation,
Electrically Large Structures.

1. INTRODUCTION

The analysis and design of complex realistic electro-
magnetic (EM) structures is limnited by the relatively
restricted computational power of the conventional
sequential computers -even those of "main frame" or
"vector processing" type- as well as by the vector na-
ture of the EM radiation and the extended power ra-
diaticn in the environment. The infroduction of mas-
sively parallel computer architectures has opened new
research horizons in this area (Davidson 1990). In-
deed, the major advantage of applying High Perform-

ance Computing (HPC) to EM problems (Calalo et al.
1989, Davidson 1993, Fijany et al. 1995, Cwik et al.
1997, Lu et al. 1997) is the reduction of execution
times of a given size of problem from days/hours to
minutes/seconds, enabling the investigation of prob-
lems, that were so computationally expense, that they
were practically "unsolvable". Pioneering research
work in such areas becomes an arduous tedious en-
deavour. To fully exploit the computing power of-
fered by available parallel platforms, the existing al-
gorithms based on diverse numerical techniques must
be re-examined with emphasis on their efficiency for
parallel implementation.

Focusing on Method of Moments (MoM) algorithms
(Harrington 1983), their use in solving larpe-scale EM
problems is mainly restricted by the extensive com-
putational cost in calculating the kernel elements and
solving the resulting matrix equation. Aiming at re-
ducing the storage requirements and speeding-up the
solution algorithms on either von Nenmann or parallel
computers, a variety of basis functions, diseretisation
schemes and solvers have been employed (Davidson
1993, Aksun and Mittra 1993, Alanen 1991, Coen et
al. 1994, Bornholdt and Medgyesi-Mitschang 1988).
Subdomain, entire domain and mixed domain or hy-
brid Galerkin expansions have been used in the lit-
erature (Aksun and Mittra 1993, Alanen 1991, Coen
et al. 1994, Bomholdt and Medgyesi-Mitschang
1988). Subdomain basis functions have been favored,
due to their geometric flexibility and ability to handle
localised surface features, apertures or feed-point dis-
tributions. Although the arising multiple integrals of
the kernel matrix are relatively easily evaluated, the
kernel matrix becomes of very large order for prob-
lems even slightly outside the resonance region, since
at least ten basis functions are approximately required
per wavelength. Therefore, when employing subdo-
main Galerkin technique, the main computational cost
refers to the matrix solution and the choice of the
proper discretisation scheme and solver is of major
importance. Alternatively, smooth entire domain basis
functions can be employed and, when successfully
selected for a specific geometry, can iead to relatively
small matrix dimensions even for electrically large
structures. In this case, the main computational cost
refers to the matrix fill and the efficient computation
of its elements is very crucial.
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In this context, a drastic reduction of the computation
time is achieved in (Park and Ballanis 1997), by in-
troducing an analytical technique to evaluate the as-
ymptotic part of the kernel elements. Furthermore,
taking advantage of the fact that any EM scattering
solution can be analysed into high and low frequency
components, a multilevel formulation of MoM has
been presented in (Kalbasi and Demarest 1993), while
in (Kaklamani and Marsh 1995), a paraliel computed
MoM technique is used to analyse fundamental elec-
trically large planar conducting structures, both al-
lowing substantial computational savings and there-
fore use of MoM to higher frequencies.

The present work also deals with the parallel imple-
mentation of Galerkin technique, providing an effec-
tive and accurate near-field solution to a system of
frequency domain coupled integral equations model-
ling a class of canonical large-scale EM problems.
Entire domain basis functions are used and emphasis
is given on the efficient fill of the derived matrix, To
this end, a parallel algorithm is developed, imple-
menting a 12-point Gauss quadrature integration rule
to compute the integrals of the kernel matrix, arising
from the Galerkin technique procedure. In section 2,
the parallelised Galerkin technique is presented and
its applicability to different EM engineering areas is
demonstrated. Two specific problems are solved, con-
cerning the coupling of incident waves with multiple
conducting rectangular plates and the coupling phe-
nomena occurring in a multi-element waveguide array
looking into a layered lossy cylinder. The former ap-
plication also serves as a pilot problem, in order to
demonstrate the inherent parallelism of the method
that can be exploited. To this end, in section 3, differ-
ent HPC platforms are utilised and their advantages
are determined in terms of both performance obtained
and ease of code portation. Finally, section 4 provides
some concluding remarks.

2. PARAILLEL COMPUTED ENTIRE
DOMAIN GALERKIN TECENIQUE

The technique presented in this section can be used to
analyse a class of electrically large canonical struc-
tures consisting of similar dielectric or conducting
parts, defined as "elements”. In order to demonstrate
its applicability, two specific electromagnetic com-
patibility (EMC) problems are treated.

The first problem deals with EM scattering from
electrically large planar conductors. This is a subject
of much research, since plates can be considered as
building structures of more complex configurations
(Alanen 1991, Peters and Volakis 1988, Kaklamani
and Uzunuglu 1994, Ufimtsev 1996). Furthermore,
employing Babinet’s principle, the complementary
problem of EM penetration through apertures "cut" on
infinite planar conducting screens (Butler et al. 1978,
Luebbers and Penney 1994) can also be considered,
enlightening many EMC problems. The specific ex-
amined geometry is given in Fig. 1, where O-number
of perfectly conducting infinitesimal thickness rectan-
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gular plates, placed with identical orientation at arbi-
trary positions on planes parallel to the xy-plane, are

presented.
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Fig. 1: Q-number of perfectly conducting infinitesi-
mal thickness parallel rectangular plates.

The second problem deals with the analysis of cou-
pling phenomena occurring in a concentric multi-
waveguide array used to provide focusing inside a
layered biological tissue model. Focusing of EM en-
ergy inside biological tissues is an important topic in
many biomedical applications (Weiylan and
Shoroung 1992, Arcangeli et al. 1984). For this pur-
pose, until now, mainly the low microwave spectrum
(100-1000 MHz) has been employed and continuous
wave concepts have been applied, with limited suc-
cess (Chen and Ghandhi 1992, Boag et al. 1993),
while recently the use of a concentric muiti-element
waveguide array and pulsed signals of short pulse
width with a high frequency (9.5 GHz) carrier has
also been reported (Nikita and Uzunogiu 1996). How-
ever, in multi-element arrays significant interaction
exists between system elements, resulting in non-
predictable behaviour of this type of systems, as
shown in (Nikita and Uzunuglu 1996) for concentric
waveguide systems operating at low microwave fre-
quencies. In the present paper, the investigation of
coupling phenomena occurring in  concentric
waveguide arrays operating at higher frequencies is
enabled by applying the parallelised Galerkin tech-
nique. The examimed geometry consists of a three-
layer cylindrical biological tissue model, imradiated by
() rectangular aperture waveguide applicators (Fig. 2).
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Fig, 2: Multi-waveguide array radiating inte a
three-layer biological tissue model.

In order to analyse the coupling of time harmonic EM
fields with the structures shown in Figs. 1 and 2, a
system of coupled integral equations is demived in
terms of the unknown distribution on each "element"
{conducting plate or waveguide aperture) surface, by
using a Green’s function approach or a phase space
eigenwaves description approach. The operator form
of the derived coupled system of integral equations is
converted into a matrix equation by a Galerkin tech-
nique. Since structures of canonical shape are consid-
ered, entire domain basis functions are favored (see
detailed formulations and analyses in (Kaklamani and
Marsh 1993) and (Nikita and Uzumogla 1996)). The
order of the resulting kernel matrices depends upon
the number of dielectric or conducting "elements" and
mainly upon the frequency, increasing fast for prob-
lems even slightly outside the resonance region, since
more basis functions are required to accurately de-
scribe the unknown tangential electric or magnetic
field distribution on each "clement” surface. It is im-
portant 0 emphasise that the "clever” choice of the
entire domain basis functions results into relatively
small order matrices and the main computational cost
refers to the evaluation of the kernel matrix elements
rather than the matrix solution. Working in the spec-
tral domain, the arising integrals over the "elements"
surfaces are analytically computed, while the infinite
phase space integrals, associated to the Green’s func-
tion Fourier transformation or to the eigenwave field
description, are numerically evaluated, using 2 12-
point Gauss quadrature procedure (Abramowitz and
Stegun 1970). The exact expressions of the arising
integrals are given in the Appendix for both problems
under investigation. Their computation constitutes the
most time consuming part of the corresponding de-
veloped codes and is easily parallelised, by distribut-
ing the integration over 12 processors, without the
need of inter-processor communication. If the inte-
gration path is divided into M independent Gauss cal-
culations, it can be seen that, with minimal program-
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ming effort, the method has an inherent 12xM-fold
parallelism. It is, therefore, envisaged that the com-
putation times can be further reduced by a factor of
M, if 12xM processors are available. These charac-
teristics allow for the algorithms to be ported to both
shared and distributed memory machines without ex-
tensive programming effort. Nevertheless, since the
contribution to the final value of the computed inte-
grals is non-uniform along the integration path, spe-
cial care has to be taken in distributing the corre-
sponding calculations over the 12x{ processors, in
order to avoid load imbalancing problems. A detailed
examination of varying HPC platforms suitability is
presented in section 3.

Indicative EM results obtained by applying the pro-
posed paralle] computed entire domain Galerkin tech-
nique are given in Figs. 3 and 4. The convergence and
stability of the obtained solutions have been checked
by increasing the number of basis functions used to
describe the currents on the plates and the electric
fields on the apertures. Considering the fact that the
EM field expressions satisfy both the Maxwell's
equations and the relevant boundary conditions, it is
concluded that the derived results are self-consistent
and accurate within the framework of the approximate
solution of the system of coupled integral equations.
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Fig. 3: Conductivity currents distribution induced
on a 2Ax2A conducting plate lying in the xy-plane
and excited by a y-oriented Hertzian dipole placed at
a distance d above its right-back corner.

As far as the problem of EM scattering from electri-
cally large conducting plates is concerned (see Fig. 1),
the convergence rate of the conductivity currents n-
duced precisely on the plates surfaces is the most im-
portant result concerning the accuracy of the proposed
method, since it refers to near field quantities. De-
tailed convergence tests and comparison with pub-
lished data concerning the single-plate problem are
presented in (Kaklamani and Marsh 1995). Focusing
on edge behaviour phenomena, in Fig. 3, it is shown
how moving a y-oriented Hertzian dipole along the z



axis and towards the back-right comer of a 2Ax24
rectangular plate, affects the conductivity currents
distribution induced on the plate surface.

As far as the problem of 2 layered biological tissue
model irradiated by a mmlti-waveguide array is con-
cerned (see Fig. 2), the strength of coupling phenom-
ena can be analysed, by exciting one element, and
computing the TE,; mode coefficients coupled to the

other elements (mutual coupling coefficients, §°) and
the coefficient of the reflected TE,; mode on the same

aperture (self reflection coefficient, §"). The paral-
lelised Galerkin technique has been used to compute
the coupling parameters in a 30-element TE,,
waveguide (2x1 cm® aperture size) array placed sym-
metrically at the periphery of a cylindrical tissue
model, 16 cm in diameter. The computations are car-
ried out at the operation range (1.1 f, - 1.8 f, f; being
the cut-off frequency of the TE,, mode) of the system.
The tissue model consists of two layers, simulating
bone and brain tissues and it is surrounded by a 2 cm
thick lossless dielectric layer. The thicknesses of the
bone and the external dielectric layers are assumed to
be pg,-p;=05cm and p;—p, =2cm, Tespec-
tively (29, = 20 cm) (see Fig. 2). The dielectric con-
stant of the external layer is taken to be £; =2.1. The

numerical values of tissue complex permittivities used
in the calculations are defined at the frequency range
of interest by using the data compiled from the rele-
vant literature (Gabriel et al. 1996). In Table 1, con-
vergence patterns are presented at 9.5 GHz, in terms

of the self reflection coefficient (5" ) and the mutual
coupling coefficients with neighbouring (S, ) and

opposite (S, ) applicators, by increasing the number

Table 1. Convergence of the self reflection coefficient
S” and mutual coupling coefficients (S,,, S,,) for

the configuration of Fig.2 at 9.5 GHz by increasing
the number of aperture modes.

Modes appearing r ¢ e
on the excited s Sne Sop
aperture
TE,, 0.61 0.0091 0.0027
£-14.35° | £-449° | £-126.6°
TE,, TE,, 0.612 [ 00123 | 0.0024
M,, Z-15.2° £41.7° | £-130.3°
TE,, TE,; TE,, 0.6035 | 0.011 0.0025
TE;, TM,, TME_ £-14.02° | £-42° £-128°

of modes appearing on the excited aperture. It can
easily be observed that the subset of modes (TE,,
TE,3, TE;y, TEy,, TM,,, TM,,) appearing on applicator
apertures is considered to be sufficient to assure con-
vergence and accuracy. Numerical results for the

strength of coupling between neighbouring (S, ) and
opposite (S,,) applicators in the examined 30-
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element wavegunide array are presented in Fig. 4, at
the operation range of the system. It is important to
emphasise that in the obtained results, a detailed
three-dimensional EM model is employed, which
takes into account the modification of the field on
each wavepuide aperture resulted from the other radi-
ating elements of the array, as well as from the pres-
ence of the lossy, layered, dielectric body standing at
the near field region.
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Fig. 4: The ratio of the mutual coupling coefficient
between neighbouring (S, ) and opposite (S;,) ap-

plicators to the self reflection coefficient (S7) in a

symmetric configuration of 30 rectangular aperture
(2x1 cm’) waveguide applicators, placed at the pe-
riphery of a cylindrical body model of circular cross
section, 20 cm in digmeter, af the operation range of
the system.

3. IMPLEMENTATION ON VARIOUS HPC
PLATFORMS

Due to the nature of the computation of the phase
space integrals, which are the elements of the system
kernel (see Appendix), the developed algorithm can
be adapted for both shared-memory, distributed-
memory and additionally vector processing HPC plat-
forms. It has aiready been shown in (Kaklamani and
Marsh 1995) that the code possesses a substantial
amount of inherent parailelism, that can be exploited
by a shared-memory architecture. Nevertheless,
varying HPC platforms can exploit the different de-
grees of parallelism inherent in the algorithm.

The first application, shown in Fig.1, concerning the
EM illumination of ¢ number of conducting rectan-
gular plates lying on parallel planes, also serves as a
pilot problem, in order to answer the emerging ques-
tion, which HPC platform to use in solving more
complex EM problems. For reasons of CPU time
savings, the case (=1 and q,=b, (i.e. one square
plate) is chosen for the benchmarking process. Small,
intermediate and large size problems (N=8, N=98 and
N=512 respectively, with N denoting the order of the
derived linear system) are solved on each HPC plat-
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form and the corresponding CPU times are compared.
There are two crucial points that should be noted here.
Firstly, the three orders of systerns that have been
selected (N=8, N=98, N=512} are only indicative, in
order to demonstrate the scalability of the proposed
method. That is, by filling and solving the same order
system, other geometries (e.g. larger number of plates
at a lower frequency) can be solved. Secondly, the
characterisation of the three cases as small, intermedi-
ate and large size problems is not referred to the ab-
solute value of the system order, but to the electrical
size of the problem that can be treated. The system
order is in any case small, due to the employment of
entire domain basis functions. For example, by the
N=512 system, the case of one square plate of 104
side can be accurately solved.

The HPC platforms currently evaluated are the Silicon
Graphics Power Challenge and Intel Paragon, both
jocated at the NTUA, Greece and the CRAY C90 and
CRAY T3D, both located at CINECA, Italy. The
shared-memory Silicon Graphics Power Challenge
has 14 TFP Processors (MIPS R8000 CPU & MIPS
R8010 FPU), a 16K data cache, a 16K instruction
cache and 8-way interleaved main memory of 1024
Mbytes, providing a peak performance of 4.2 Gflops,
while the distributed-memory Intel Paragon XP/S has
48 processing nodes with i860 processors, providing a
peak performance of 48 x 75 Mflops = 3.6 Gflops.
The shared-memory CRAY vector processing C-90
has 2 x 1 Gflops vector processing CPU’s providing a
peak performance of 2 Gflops and the massively par-
alle] distributed-memory CRAY T3D has 64 proc-
essing nodes providing a peak performance of 64 x
150 Mflops = 9.6 Gflops. Each of the HPC platforms
15 judged on both performance obtained and ease of
code portation, which is directly related to the extent
of extra needed code.

Before comparing these four computing platforms,
some generalised assumptions need to be mad. Firstly,
the platforms are aimed to be used only as computa-
tional tools. The main concern is related to the ease of
code portation and the ability to solve the largest
problem in a given tolerable period of time, without
getting involved with the pragmatics and detailed
code optimisations. Secondly, if a computational plat-
form with a performance of 1 Gflop takes z hours to
solve a given problem, then the same platform with a
2 Gflops performance would need 7/2 hours to solve
the same problem. Thirdly, since the platforms are of
different sizes and costs, two performance figures are
of interest: the absolute time taken to solve a given
problem ("absolute performance”) and an estimated
relative time taken to solve the same problem (“rela-
tive performance”). This relative time is calculated as
the time taken if the platform had a 1 Gflop peak per-
formance. These assumptions enable trans-
architectural platforms to be composed at an abstract
level, without getting involved with complex bench-
marks etc., as discussed in detail in the following and
surnrnarised in Table 2.
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As far as the shared-memory SGI Power Chailenge
platform is concerned, the 12-point quadrature Gauss
algorithm is parallelised, by subdividing the integra-
tion path and splitting the corresponding calculations
onto 12 processors. This is achieved, by the hand ad-
dition of a single line of code, containing the parallel
directive C$DOACROSS. For brevity and ease of
porting the code, only 12 of the possible 14 TFP
processors are used. The peak performance used is
therefore 12 x 300 Mflops = 3.6 Gflops. The con-
sumed CPU time is 40 seconds for =8, 23 minutes
for N=98 and approximately 25 hours for N=512,
resulting in relative performances of approximately
3.6 x 40 = 144 seconds, 3.6 x 1380 = 4968 seconds
and 3.6 x 9000 = 32400 seconds respectively (see
Table 2). The large size problem CPU time (25 hours)
also includes a large overhead, due to page swapping,
incurred by accessing huge data arzays. Fortunately,
the porting from standard FORTRAN 77 to the SGI
Power FORTRAN has only taken 30 minutes of pro-
gramming and consultation effort. When employing
more rigorous optimisation techniques, such as using
the full potential of software pipelining and the SGI
PFA (Parallel FORTRAN Accelerator), it is probable
that these execution times will be considerably further

- reduced.

Yable 2. Performance comparison of diverse HPC
machines.

[.F]
g8 o
= | & -
Machine S5 | & B § o >
5|37 |C° | &
2 | E &
By
Peak Performance
K 2. X
(Gflops) 36 2775 0 9.0
Absolute | M=% 40 47 255 26
Perform. | =98 1380 | 2940 | 1960 | 2040
(sec) N=512 | 9000 | 16920 | 12240 -
Relative | =8 144 130 510 234
Perform. | N=9% 4968 8158 3920 | 18360
(sec) {N=512 | 32400 | 46953 | 24480 | -

Due to the fact that the algorithm can be divided to M
independent Gauss calculations, as described in sec-
tion 2, a greater number of processors can be used.
Therefore, the parallelisation of the algorithm or the
distributed-memory Intel Paragon XP/S consists in
using 37, out of the possible 48, i860 processing
nodes; 3 groups of 12 slave processing nodes (ie.
M=3 independent Gauss calculations) and a master
controlling processing node, leading to a peak per-
formance of 37 x 75 Mflops = 2.775 Gflops. Com-
munication between processing nodes is accom-
plished via explicit message-passing. Each group of
12 processing nodes concentrates on the parallelisa-
tion of a single 12-point quadrature Gauss algorithm,



analogous to the SGI approach. It was seen, however,
that this resulted in load imbalances, because of the
fact that all the kernel integrands given by eq. (A.1)
vary more rapidly with the increase of k; therefore,
when integrating with respect to the g;-variable more
subdivisions must be considered for large %k values,
leading to further computational cost with the % in-
crease. After an explicit investigation, the optirmum
distribution was derived. To this end, the porting from
standard FORTRAN 77 to the Paragon platforrn has
taken about 2 hours involving about 15 modifications
of the oniginal code. These modifications involve the
introduction of the message-passing constructs irecv
and isend and the explicit subdivision of the total
computation over the 36 slave processing elements.
The consumed CPU time is 47 seconds for N=8, 49
minutes for N=98 and approximately 47 hours for
N=512, resulting in relative performances of 2.775 x
47 = 130 seconds, 2.775 x 2940 =~ 8158 seconds and
2.775 » 16920 = 46953 seconds respectively (see Ta-
ble 2). As it is expected, due to the peak performances
offered, the Paragon performs slower than the SGI
machine. However, what is more disappointing is the
relative performances of the Paragon compared to the
SGI machine. For example, when N=9§, the relative
performance of the Paragon machine is 81158 sec-
onds compared with the SGI machine relative per-
formance of 4968 seconds. In this case, for this ex-
ample, a Paragon machine with 1.6 times the peak
performance of the SGI machine would be required to
solve the given problem in the same time. Clearly
some work has to be done to optimise the data local-
ity, when using the Paragon to solve problems with
very large data arrays. It must be noted that, when
N=08, the message-passing and system overheads
represents about 2% of the total execution time,
whereas, when N=512, this value increases to 25%.
From these initial investigations, it can be seen that,
the algorithrn possesses an inherent coarse-grained
parallelism that can be exploited by both architectaral
models.

The suitability of the CRAY C-90 architecture is also
investigated, to see if the algorithm possesses a sub-
stantial fine-grain paralielism, that could be exploited
by a vector processor. Each of the two CPUs of the
CRAY C-90 is a vector processor with 128 banks, a
clock of 4 ns and a memory speed of 88 ns. The ex-
ploitation of vectorisation and parallelisation is
achieved by the CRAY cf77 compiler with default
settings and with aggressive optimisation switched on.
The addition of two vector processing directives
{CDIRS IVDEP) leads to further reduction of the exe-
cution times. The porting process required about 1
hour. It consisted mainly in examining the code listing
for further vectorisable loops and introducing 2 line
modifications. The consumed CPU time is 255 sec-
onds for M=B, 33 minutes for N=98 and approxi-
mately 34 hours for N=512, resulting in relative per-
formances of 2.0 x 255 = 510 seconds, 2.0 x 1960 =
3920 seconds and 2.0 x 12240 = 24480 seconds re-
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spectively (see Table 2). This indicates that the algo-
rithm contains a significant amount of fine-grain par-
allelism that can be exploited by the vector processor.
The relative performances are impressive, out per-
forming the SGI platform. For example, from the
relative performances for =98, it can be seen that the
CRAY C-90 with 2.0 x 1 Gflop = 2 Gflops peak per-
formance would be equivalent to a SGI with
4968/(3920/2.0) = 2.53 Gflops peak performance (9 x
300 Mflops processors). Considering the ease of
portability and absolute performance of the CRAY C-
90, it remains a realistic alternative shared-memory
platform. However, both CRAY C-90 and SGI plat-
forms have the memory access bottleneck, when con-
sidering larger problem sizes.

An altemative to the Intel Paragon distributed-
memory platform is the CRAY T3D, a superscalar
architecture with 64 processing nodes. Each node is
based on the DEC o 21064 chip providing a peak
performance of 150 Mflops, with a clock of 6.67ms.
The limiting factor, however, is the 8 Kbytes data
cache and the 8 Kbytes instruction cache. Although
possessing facilities for PVM and message-passing,
the work sharing on shared data paradigm was used.
To this end, porting from standard FORTRAN 77 to
the MPP FORTRAN has required about 30 minutes
programming effort, involving defimifion of a global
(shared) array to collect the results and explicit subdi-
vision of the computation, similar to the Paragon ap-
proach. For brevity, 60 processing nodes are used,
providing a peak performance of 60 x 150 Mflops =
9.0 Gflops, divided in 5 groups of 12 processing
nodes. Each group of processing nodes is responsible
for a Gauss calculation, similar to that implemented
on the Paragon. Due to load balancing, one group of
processors performs two Gauss calculations. The re-
sulting performance is only 26 seconds for N=8 and
34 minutes for N=98, while the estimated perform-
ance for N=512 is 10 hours (see Table 2). The CRAY
T3D could be used for benchmarking purposes only
for up to 8 hours. Therefore, there are no available
results for the absolute performance in solving the
N=512 problem and the estimated performance of 10
hours is considered to be adequate for the current re-
search. It must be noted that, these results are
achieved without any optimisation and there exists a
load imbalance. Taking these factors into considera-
tion, the performances are impressive.

It can be concluded that, for both ease of portation
and resulting performance the shared-memory Silicon
Graphics (and to a lesser extent the CRAY C-90} and
the distributed-memory CRAY T3D appear to be
more suitable in solving problems in the domain of
electrically large EM structures. However, the poten-
tial of the shared-memory platforms for solving even
larger problem sizes is limited by the memory access,
whereas the distributed-memory medel is modularly
extendible and, in the authors’ opinion, more suitable
in solving even larger problem sizes. It must also be
noted that the work sharing paradigm adopted by the
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CRAY T3D provides an appealing alternative to mes-
sage-passing approaches, making programming large
distributed-memory machines, to solve large problem
sizes, a realistic possibility.

4. CONCLUSIONS

HPC has been employed in order to extent MoM for
the treatment of a certain class of large-scale EM
problems. Namely, a parallel computed Galerkan
technique in comjunction with a frequency-domain
coupled integral equation forrnulation has been
adopted, applicable to electrically large structures
congisted of similar conducting or dielectric parts.

The resulting algorithm parallelisation overcame the
limitation of using MoM at lower and resonant fre-
quencies, while the inherent parallelism of the intro-
duced technique allowed for the results to be obtained
with minimal additional to the sequential code pro-
gramming effort. Namely, the phase space integrals,
appearing in the system kernel have been computed
numerically employing a 12-point quadrature Gauss
algorithm, which has been parallelised, by subdivid-
ing the integration path and splitting the correspond-
ing calculations over various HPC platforms. For both
ease of portation and resulting performance the
shared-memory Silicon Graphics and the distributed-
memory CRAY T3D appear to be more suitable,
though the potential of the shared-memory platforms
for solving even larger problem sizes is limited by the
memory access, whereas the distributed-memory
model is modularly extendible and, therefore, more
suitable in solving even larger problem sizes.

Two specific EMC applications were solved, con-
cerning the coupling of incident waves with multiple
conducting rectangular plates and the coupling phe-
nomena occurring in a multi-element waveguide array
looking into a layered lossy cylinder, while numerical
results were computed for indicative cases. Due to the
algorithm parallelisation, the computation times be-
came tolerable, allowing the problems’ size, hence the
accuracy, to be increased. The convergence rate of
near-field quantities excited on electrically large
structures is the most important result concerning the
accuracy of the proposed method, while following the
same approach, more complex configurations can be
constucted and analysed.

5. APPENDIX

In solving the Q number of conducting rectangular
plates structure shown in Fig. 1, the analytical expres-
sions of the system kernel sub-matrices are defined as

a.wo '-' e
_mmrm = II

e-J[qn sgn(=k, (20 -x)=k, (] -3 D)

- flgq sen{zf -2, )(z, -2 +5¢)]

)

X

dg

AE) =4k, )=(k
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xU, (-B)-4®0)-U, &), @Al
where (¢=1,2,...,0; ¢=1,2,....0),
+00 +® +@ 2
Hd&s Idkx Idky = Idkk quvk ,
Q, - ~w 0 ¢
k= ki+k,y=kicosg,X+sing,y), (A.2)

ko = @\Jeou, is the free space propagation constant,
@ is the angular frequency, s,and g are the free

space dielectric permittivity and magnetic permeabil-

. . 0 0a oA 0
ity respectively, 7, =x,X+y,y+z,Z denotes the

position vector of the g-th plate centre of gravity with
respect to a giobal system of coordinates (x,y,z),

s, —>0",

20 = 9o (B) = kS —£*

with Re{g,)>0 & Im(g,}<0, (A.3)

as required by the exp{jwt) time dependence and the
satisfaction of the radiation condition at infinity,

—ki)ﬁ—kxky(ij}'*'j}i)"'

(kg —£3)99 (A4)
and
N T VA ks q
g?m k = 2 X

"‘*”’)k,, H(b,7?)

k.,b k.a
(m+1)J g (- yz SIAC > £y
+ }"rjz, (A.5)
s(n+m 2
2j5¢ )ky Ha,z")

with J,{x) denoting the Bessel function of the first

kind of v-th order and S,=a,xb, (§=1,2,...,0) denoting
the finite zero-thickness ¢-th conducting plate surface.

The kemel elements encountered in the problem of
Fig. 2 are of the following type:

Ifixdyj‘fh @’h‘pt(x »- Kgq(x,y/x V)e (x',y’)

t

where S, is the aperture of the {—th waveguide,
and %, , are the transverse eleciric and magnetic
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fields of the waveguide normal modes, respectively,
being of TE or TM type and

K Eq(x ylx,y)= jdk Z(ef"'(”e ), (‘TE)

- M=
e jk(y—y')ﬁ(m, k)"5eq §(x, yix, y')) s (A.6)
In €4q. (A-6)9 ('g = 1$2’"'$ Q; q= 1’2""’ Q) * 6£q is the
Kronecker's delta,

1 L (’” k; Ps)(:(m k; Ps))_
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el @y
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+[ ﬂ,, hn,t gu,r *
n

with y,, A, being the propagation constants of the
TE and TM modal fields, respectively and
k3 =kyyfe; . The matrices involved in (A.7) are
given by the following equations:
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- — 2) _

L (mak p3) T3m(k )+ (1)((a3p3)..gm(k BSm ’
- — () —() —
Lmkip)=B5) + 22 @050,

(@sp)™
m 3P
where
_ZPp)p _ mk
=(q) @ (g, k
BY(kp)=| 2 ) a}
i
0 k
i=3/g=12 (A.8)
o Z0ep)a
a;
= 0
i=3/g=12 (A.9)

with Z0(a,p)=J,(@.p) md zP(a,p)=1,(a ),
k; =k0\/£—i’ a; =(ki2 —kz)m,

-1
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TG\ TR
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The matrices involved in (A.10) are

+Z o (@2p) o]

—(l)
Zm (k ) —2m Zs) (azp) =Im=Im °

ZO(@, p)=r= |
.T_D(.Z_p)_p_m&m X
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h@mﬁﬁ

The matrices D(Q) Tf;),i—12 and g =1,2, appear-
ing in (A.11), are obtained from eq. (A.8) and eq.
(A.9), respectively, for /=1,2.
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