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Abstract— In this paper, a microwave imaging tech-
nique for the reconstruction of the electromagnetic
field distribution inside exposed biological bodies from
amplitude-only data is presented. The scattering prob-
lem, formulated in term of integral equations, is re-
cast into an optimization problem after defining a suit-
able cost function which is proportional to the differ-
ence between reconstructed and measured amplitudes
of the scattered and of the incident electric fields in
the near-field region. The field solution is obtained
by minimizing the cost function by means of an hy-
brid simulated annealing-conjugate gradient based pro-
cedure, which, in principle, ensures the convergence to
the global minimum, preventing the solution from be-
ing trapped in local minima. Moreover, the proposed
approach prevents the problems due to inaccuracies in
near-field phase measurements. The effectiveness of the
microwave imaging approach is assessed by means of
some numerical examples (with synthetic input data)
concerning a realistic cross-section of a biological phan-
tom exposed to a TM electromagnetic illumination. The
presence of noise on synthetic data is also considered
and the dependence of the reconstruction accuracy on
the signal-to-noise ratio investigated. Finally, in order
to give some indications to further improve the predic-
tion capability of the proposed approach, some prelim-
inary guidelines are pointed out.

Keywords— Amplitude-only data, microwave imaging,
electromagnetic field prediction, computational bioelec-
tromagnetics.

I. INTRODUCTION

N the last decade, the large diffusion of mobile com-

munication systems and, consequently, the need to
evaluate possible health risks has drawn great scien-
tific and public attention to the study of the interac-
tion between electromagnetic fields and biological bod-
ies (see [1]-[3] and the references therein for a general
overview).

Since a necessary first step for these research ac-
tivities is represented by the prediction of the elec-
tromagnetic field distribution inside exposed biological
bodies, a number of techniques, mainly based on the
use of direct numerical methods, have been proposed
[4]-[8]. Generally speaking, the problem addressed is
the evaluation of the electromagnetic field induced in
a reference phantom by an exactly known radiating

source. Anatomically accurate biological models have
been defined [9],(10] and various illumination condi-
tions have been investigated by considering detailed
numerical models of the electromagnetic sources [11],
12].

As far as inverse approaches are concerned, Caorsi
and Massa proposed [13] and successively investigated
[14] the effectiveness of an inverse scattering procedure
based on a microwave imaging technique. Starting
from an integral formulation of the scattering prob-
lem, the reconstruction of the electric field distribu-
tion is obtained by minimizing a suitable cost func-
tion. No modeling of the electromagnetic source is
required. The input data for the minimization pro-
cedure are represented by the complex values of the
incident field evaluated inside the investigation domain
and of the scattered electric field measured outside the
biological body during the electromagnetic exposure.
Consequently, the approach seems to be suitable for in
vivo evaluations. However, in real applications, while
the measurement of the amplitude of the electric field
does not represent a critical point, the evaluation of
the phase distribution usually requires sophisticated
equipment. Moreover, various factors make near-field
phase measurements more and more inaccurate as the
frequency increases. In more detail, errors in the probe
position, temperature changes, mechanical movements
of the cables connecting the probe to the receiver, vari-
ations in the relative humidity during the measurement
and the stability and accuracy of the receiver strongly
affect the accuracy of the measured near-field phase
distribution. Moreover, the prohibitive cost of vector
measurement apparatus can also be a substantial ob-
stacle to obtaining phase information. Therefore, the
development of a technique requiring only amplitude
information is very attractive.

In the past, the use of phaseless data has already
been proposed in the framework of near-field to far-
field transformations [15] and antenna diagnostics [16].
Phase retrieval algorithms based on the measurement
of the amplitude [17],{18] or of the squared amplitude
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Fig. 1. Problem Geometry

[19] of the measured field have been investigated. How-
ever, to the best of authors’ knowledge, no application
of phaseless data techniques to electromagnetic field
prediction in biological bodies has been proposed yet.
In the present work, the use of amplitude-only infor-
mation for the prediction of the electromagnetic field
distribution induced inside biological bodies is assessed
in the framework of microwave imaging. The paper
is organized as follows: in Section II, the microwave
imaging approach is outlined, and the cost functional is
defined. The differences with the approach proposed in
[13] are outlined. Then, the minimization procedure is
illustrated in Section III. Finally, some numerical sim-
ulations concerning the prediction of the electric field
distribution inside a realistic cross-section of a biolog-
ical phantom are reported and the robustness of the
proposed hybrid technique to noisy data assessed.

II. MATHEMATICAL FORMULATION

Let us consider a cylindrical biological object of ar-
bitrary cross-section, X, characterized by known di-
electric permittivity e,(z,y) and conductivity o(z,y),
which belongs to a test area Dy. This object is illu-
minated by a TM-polarized wave whose electric field
¢; is parallel to the z-axis as depicted in Fig.l. The
medium external to the object is assumed to be the
vacuum characterized by a permittivity ¢ and a per-
meability po. Let ¢ represent the electric field and
¢ the diffracted field (¢, = ¢ — ¢;). According to
the well-known electric field integral equation [21], the
scattered field is given by

6s(@,y) = /2 C@y'z,y)r(@ )y )d'dy (1)

where kg is the wave number in the external medium,
T(z,y) = & (=, y)—l—j%’—,’%}, f is the frequency, and G

is the two-dimensional Green’s function of the external
medium [21].

Moreover, the electric field satisfies the Lippmann-
Schwinger integral equation [28]

8(z,1) - /2 C@y';2,9)r( ),y )dz'dy =

=¢i(z,y) (2)
Generally, in the inverse scattering approach for the
field prediction the aim is to find the electric field dis-
tribution induced in an exposed biological body start-
ing from the knowledge of both the amplitude and
phase of the incident electric field and of the measured
scattered electric field collected in an observation do-
main, D,, external to the test area to which the scat-
terer belongs. Conversely, in the near-field phaseless
approach only amplitude data are available. Then, dif-
ferent from the full-data approach presented in [13], we
look for a field distribution that satisfies the following
system

As (xi y)'—
- ’ /E G(z'y'; z,y)T(w',y’)¢(w’,y’)dx'dy'l =0
(z,y) € D,

Ai(x1 y) -
o(z,7) - /2 Gy, y)r(z',y'>¢(z',y')dz'dy'| ~0

(z.y)€eX (3)

where A,(z,y) and A;(z,y) represent the amplitudes
of the scattered and incident fields, respectively.

In order to numerically solve this problem, system
(3) is discretized according to the Richmond procedure
[22]. To this end, we subdivide the investigation do-
main (ie., the cross section of the biological model)
into N square cells, where ¢ is approximated by a con-
stant value, ¢(Zn,yn)- Furthermore, A, is collected at
M points belonging to the observation domain (in the
near field of the object). Then (3) can be rewritten as
follows

AS(Cm’ fm)“
N
- Z {G(xna Un; $my Em)T(Tns Un)P(Tn,Yn)}| =0
n=1
m=1,..M
Ai(Zn,yn) — I¢(xn’yn)-
N
> {G(@pr Ypi Tns Yn)T(Tp, Yp)$(Zp, ¥p) } | = 0
=1
n=1,.,N (4)



Due to unavoidable measurement errors and noise,
the problem at hand is ill-posed, and it will be solved
by considering the solution as the global minimum of
the following cost function

Q{(Zn,yn)in =1,...,N} =
= Qpata {¢(znyyn); n= 1,...,N} +

+ Qstate {¢(xm yn); n=1,.., N} (5)

where

Qdata{¢(3m yn); n= 1N} =
M

_ 1 )

E:f:l ‘AS(Cm: Em)‘2 . m=1

As(Cm, ém) -

2

(6)

N
Z{G(zn’ Yn; Cmos §’m)‘r(xm yn)¢(xn7 yn)
n=1

QState {¢(xn, yn)7 n= 11 ooy N} =
N

- ! 3

N 2’
En=1 [Ai(n, yn)| n=1

Ai(Tn,Yn) = |0(@nsYn) —

2

N
- Z {G(zpa Yp:Tn, yn)T(xPa yp)¢(xp1 yp)}

=1

(M)

The non-quadratic nature of the functional to be
minimized requires the use of an optimization tech-
nique able to avoid the convergence of the iterative
solution on local minima.

III. MINIMIZATION PROCEDURE

Since the functional defined in (5) is non-quadratic
with respect to the unknown array & = {¢(Zn,¥n);
n = 1,...,N}, it can exhibit local minima where deter-
ministic algorithms can be trapped. In order to avoid
the problem of false solutions which heavily effect the
effectiveness of the field prediction procedure, an hy-
brid approach is proposed. Initially, a stochastic proce-
dure based on the Metropolis criterion [14] is applied to
initialize the search and to locate the attraction basin
(i.e., the region around the global minimum). Once in
this region, a Polak-Ribitre conjugate gradient scheme
[20] takes over to reach the optimum rapidly.

A. Simulated Annealing Procedure

In order to attain the attraction basin, we use an
iterative procedure which is a modified version of the
simulated annealing approach [23] (MSA). In the past,
it has been proven that simulated annealing can be
successfully applied to the solution of electromagnetic
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inverse scattering problems [24], [25] as well as for non-
linear direct scattering problems [26] where the prob-
lem of false solutions arises. The great power of the
approach lies first in its flexibility which allows the
cost function to be simple or complicated and per-
mits efficient treatment of a large number of unknowns.
Moreover, it allows all the available a-priori knowledge
about the physical model of the unknowns to be taken
into account. Even though the solution must be ran-
domly chosen at each iteration, the range of possible
values can be suitably restricted (when selecting the
solution at each iteration) to only those values that
are physically appropriate. This fact restricts the ran-
dom search from the whole space of unknowns to a
limited subspace, simplifying the search for the attrac-
tion basin. ¢

In more detail, MSA starts from an initial esti-
mate of the field distribution @ = {¢©® (z,,yn);
n = 1,..,N} and fix a control parameter, Tp (i:e.,
the "temperature of the system”), which is slowly de-
creased during the iterative process.

Starting from the initial state, the algorithm tries
to locate the attraction besin by generating a sequence
of values to be assigned to the unknown array, &),
according to the raster rule [14]. For each nth sub-
domain, the value of the estimated field at the kth
iteration is changed as follows

¢§k) (x'm yn) =
_ { (0 +1)¢® (zn,y,)  withprobability Py

Y5 6®) (z4,y;)  withprobability (1 — Py)
' (8)
where L is the dimension of the neighborhood set
of the current subdomain, and % is a value randomly
chosen in the range between -1 and 1.
Changes are driven by the Metropolis criterion. If
the new array Qt = {¢(k) (xhyl)) (RS ¢(k) (xn—hy‘n—l)a
5 (21, yn), 88 (Znt1s Ynsr)s - - - 6® (@, yw) } causes
the system be in a lower-energy state, the new
value is unconditionally accepted, otherwise the
new distribution is accepted with probability p =

t)_ ()
exp {—MT?M , or rejected with probability

(1 —p). Once the scanning of the N investigation sub-
domains is completed, the estimated electric field con-
figuration is kept for the next iteration (¢(+1) + ")
and the temperature is updated according to a loga-
rithmic scheduling

To

In(1+k) ©)

Tpi1 =

which ensures the convergence of the iterative ap-
proach [27].
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The iterative procedure is repeated until the thresh-
old for the stopping criterion is reached (Q {@(Fort)} <
Yen), or when the iterative loop is completed (k =
K pnaz), or until a given criterion for switching the MSA
to the gradient-based algorithm is attained.

B. Switch Criterion
The criterion for stopping the MSA and switching

to the CG algorithm is satisfied when the following
conditions hold:

1. stationary condition

Kwindowﬂ(k) ZK'”"”"‘“" Q(i)

opt ~ Lui=1 opt

Q)

opt

< Vst k= szitch
(10)

where Qf,';,)t = mini=o,..x {{2D}}, Kuindow is a
fixed number of iterations, -y is an assigned thresh-
old, and

2. slope condition

ivﬂgif;witch)

2 Yth (11)
where V(1 is the gradient vector, whose qth component
is defined as

V), = { oQ

_____} N {_39—}
BRe {6 (Za,9)] I\ 8m {¢ (xqayq)(}lz)

The evaluation of V{2 is detailed in Appendix A.

C. Conjugate Gradient Procedure

Since the main drawback of the MSA is the low con-
vergence rate to the global optimum when the attrac-
tion basin is attained, in order to increase the con-
vergence speed of the algorithm an iterative procedure
based on Polak-Ribiére method [20] is applied.

Let us now summarize the steps of the applied de-
terministic technique.

1. Set the initial guess of the deterministic procedure
equal to the best solution obtained at the switch iter-
ation

q,(hac) — @S’I:tnws‘zch) kGC =1 (13)

where kgc indicates the iteration number during the
deterministic procedure.

2. Compute the direction vector
d(kGC) — _VQ {@(Kluit:h)

opt ke =1 (14)
3. Find the optimal step »(*¢¢) ensuring the maximum
decrease of §) along the updating direction, which min-

imizes the function Q {®koc) + y(kac)glkec)}

K

§ wsce

L /f
e
Fig. 2. Model of the biological scatterer
4. Compute the new solution
dkect+1) — glkec) 4 ylkeo) glkec) (15)

5. f the convergence threshold is reached (ie.,
Q {®kec+1)} < ) then stop the iterative process,
and regard the current solution as the estimated elec-
tric field distribution inside the biological body. Oth-
erwise compute the new direction vector as follows

dtkec+l) — _yQ {q;(kac+1)} + ﬂ(kac+1)d(’=ac)

(16a)
[va {#kec+D}]T
(V0 {atkee)}]T [V {@thee)}]

ﬂ(kGC+1) = max {

[VQ. {q,(kcc+1)} S v/¢ {q,(kcc)}] ,0}
(16b)

and return to step 3.

IV. NUMERICAL RESULTS

In order to test the effectiveness of the proposed
approach, we performed some numerical simulations,
with data synthetically obtained, concerning the re-
construction of the electric field distribution inside the
cross-section of a known biological phantom placed in
vacuum. Figure 2 shows the configuration considered.
The dielectric parameters are reported in Table I [29].

The cross-section of the biological scatterer, located

at the center of a square test area | = 0.581A¢-sided

(where ) is the free-space wavelength), is subdivided
into 598 square cells. Thirty-two measurement points
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TABLE I
ELECTRICAL PROPERTIES OF THE TISSUES IN THE CROSS-SECTION
OF THE BIOLOGICAL PHANTOM

€r o(S/m) ]
Blood 61.36 1.5379
Bone 12.454 | 1.4331 - 1071
Brain 52.725 | 9.4227 - 107}
Cornea 55.235 1.3943
Eye-sclera 55.271 1.1668

Muscle 55.032 | 9.4294 - 1071
Nasal-septum | 42.635 | 7.8239 - 107!

Nerve 32.531 | 5.7369 - 107}

Skin 41.405 | 8.6674 - 107!

Umor 68.902 1.6362

Cost Function
10000 T T T T T Y
Q
1000 + QkDﬁ —
100 Q5% e 8

Convergence Threshold, 1 ——

0 50 100 150 200 250 300 350
Iteration Number, k

Fig. 3. Conjugate gradient procedure. Behaviour of the fitness
function versus the number of iteration

(b)
are placed on a circle p = 0.451) in radius, belonging

to the observation domain. In order to avoid the pos-
sibility that errors in the forward and inverse solutions
tend to cancel, the data for the inversion procedure (i.e,
the values of the scattered electric field at the measure-
ment points) are computed by means of the Richmond
procedure with a different discretization of the scat-
terer under test (Agpirect = %ﬂ, Aq = 0.018)p).

The electromagnetic source is an infinite electric line
of current placed near the biological scatterer in the
horizontal axis at a distance a = 0.288)¢ from the
center of the reference coordinate system.

For this source, the radiated field is given by

bile) =~ BP(r) (D)
’ 8wfeq °
, (c)
where Hé ) is the Hankel function of the second kind Fig. 4. Conjugate gradient procedure. Images of the electric
and Oth order, and r is the distance between the source field amplitude: (a) intial guess (k = 0), (b) result at the

and a point (z,y). The value of I is chosen so that a convergence iteration (k = kopt) and (c) actual distribution.
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radiated power per unit length of P = 0.25mW/meter
is generated.

As a first result, we will show that when a determin-
istic procedure is applied to minimize the functional
(5), the computed solution could be trapped in a lo-
cal minimum if the initial distribution is not properly
chosen. To this end, let us consider the conjugate-
gradient method as the minimization algorithm, and
let us assume the initial electric field distribution equal
to that of the incident field (Fig. 4(a)). Figure 3
shows that, even if, at the stopping iteration, the cost
function value is less than the convergence threshold
(ven = 10™%), the amplitude of the electric fields inside
the biological scatterer is not reconstructed with suf-
ficient accuracy, as can be seen comparing the actual
distribution (Fig. 4(c¢)) with the predicted one (Fig.
4(b)). This is due to the presence of undesired local
minima where the algorithm is trapped. Since we are
dealing with synthetic data, it is possible to state that
the conjugate-gradient procedure (and, more generally,
deterministic procedures) could lead to false solutions
corresponding to local minima of the functional.

Figure 5 shows the plot of Q along a direction in the
solution space joining the actual solution ®ctyq1 to the
solution at different iterations of the iterative process
(%) whose parametric equation is given by

=0+ t)‘p(k) — t®qctual (18)

The plot clearly points out that the solution attained
when the iterative procedure is stopped, ®(kort) i not
the global minimum of the functional.

In order to overcome this problem and to enhance
the reconstruction quality, the hybrid optimization ap-
proach is used.

Figure 6 gives some ndications about the behavior
of the functional to be minimized along the direction
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Fig. 6. Hybrid procedure. Behaviour of the functionals (a) Q(t),
(5) Quata(t), and (c) Sstate(t) along the direction defined
by the parametric equation f(2) = (1 + t)¢®) — tdsctual



given by equation (18). In particular, Figs. 6(a), 6(b)
and 6(c) show the plots of the cost function, of the data,
term and of the state term in correspondence with the
solutions estimated at different iterations, respectively.
Clearly, the plots relating to the iterations & = 1000
and k = 2000 show the presence of local minima in
the cost function which are avoided by the hybrid pro-
cedure as confirmed from the plots of the successive
iterations. The value of the cost function reached at
the iteration k,p: is very close to that of the global
minimum.

Consequently, a notable improvement in the field
reconstruction is obtained when the hybrid approach
is applied. Figure 7 gives the color-level images of
the reconstructed field distribution at different itera-
tions. The plots show that starting from the iteration
k = 5000 (Fig. 7(c)), the field distribution becomes
more and more similar to the reference solution (Fig.
4(c)) and also the amplitude values are more and more
close to the actual ones. The above considerations are
confirmed by the statistics of the error figure £(z,y),
defined as

___ ¢ (2, ¥)| = |Pactuat (z,¥)l|

E(x’y) - ma,:z:(,,,y) {|¢actual (:z:,y)l}

(z,y) €L
(19)

where @gctuar (z,y) are the actual field values at
points inside the biological scatterer, which are given
in Table II. The statistics for the full-data reconstruc-
tion procedure are also reported. Finally, we can also
observe that the location and the order of magnitude
of the absorption peak (of fundamental importance in
order to give some indications about the power levels
induced inside the biological body for safety evalua-
tions) are correctly evaluated at the convergence iter-
ation (the location error is less than the size of the
discretization cell, and the difference between the re-
constructed and reference amplitudes is less than 10%.
For completeness, Figure 8 shows the plot of the cost
function as a function of the number of iterations for
one optimization run, corresponding to the prediction
results reported in Figure 7. In this case, the param-
eters assumed for the proposed hybrid algorithm are

the following: Tp = Zamlbelmm)l g, = 10000,

Kyindow = 0.1K 0z and g = 1073, Also the values
of the data (2pqase) and of the state (s¢qte) terms are
reported. During the inversion procedure, these quan-
tities give an idea of the fit with the input data. The
state term and the data term check whether the trial
solution satisfies the equation describing the scattering
phenomena inside and outside the biological scatterer,
respectively. The graphs related to these terms show
damped oscillatory behaviors, which are specific for the
algorithm used to reach the convergence, whereas the

CAORSI, BERMANI, MASSA: MICROWAVE IMAGING FOR EM FIELD IN BIOLOGICAL PHANTOMS 85

TABLE I1
HYBRID PROCEDURE. STATISTICS OF THE ERROR FIGURE £ FOR
DIFFERENT NUMBER OF ITERATIONS

| | k | min{f} | max{{} | av{¢} | var{¢} ]

0 [ 8941071 | 1524 1.131 0.016
1000 | 7.19-1073 | 4.973 1.355 1.136
Phase- | 3000 | 1.45-1073 | 1.182 | 0.280 0.064
less | 5000 | 1.19-1073 | 1.091 0.257 0.054
Data | 6000 | 2.84-10™% | 1.036 | 0.261 0.053
6030 | 1.0-107* 0.602 | 0.144 0.017
k* | 167107 | 0.248 | 0.095 0.009
Full
Data | k* | 1481077 | 0.0009 | 0.0001 | 2.7-10~8

plot of Q is always decreasing because it reports the
minimum value reached until the current iteration.

Finally, as the noise is a significant problem in prac-
tical applications, the effectiveness of the prediction
process, when an additive noise is present, has been
preliminarily analyzed. In more detail, for the same
configuration, we considered the influence of a Gaus-
sian noise simulated by adding to the data a complex
value in which the real and imaginary parts are Gaus-
sian variables, characterized by zero mean value and
by a variance that can be obtained in a straightfor-
ward way once the value of the signal-to-noise ratio
(SNR) has been fixed. Table III gives the statistics of
the error figure for different values of SNR. Referring
to the mean values, it can be noted that the prediction
error increases as SNR decreases. Nevertheless, the re-
construction quality can be considered acceptable (per-
centage errors smaller than 30%) for SNR > 20dB. As
expected, notable errors are encountered for the lowest
values of the signal-to-noise ratio. However, it must be
pointed out that a more sophisticated noise model is
necessary in order to accurately simulate realistic sit-
uations.

TABLE III
HYBRID PROCEDURE. STATISTICS OF THE ERROR FIGURE § FOR
DIFFERENT VALUES OF THE SIGNAL-TO-NOISE RATIO

SNR(dB) | min{€} | max{€} | av{£} | var{£} |
50 799-10°% | 1.032 [ 0.177 | 0.041
40 1.93-107% | 1.027 | 0233 | 0.053
30 1.60-107° | 1.042 | 0.241 | 0.054
20 1841074 | 0929 | 0258 | 0.055
10 207-107% | 2164 | 0.386 | 0.082
5 3.42:1073 1.875 0.506 0.118
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(e) ®

Fig. 7. Hybrid procedure. Images of the electric field amplitude. Estimated amplitude at the iterations (@) k = 1000, (b) k& = 3000,
(¢) k = 5000, (d) k = 6000, (e) k = 6030, and (f) k = kopt -
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Fig. 8. Hybrid procedure. Behaviour of the fitness function
versus the number of iterations

V. CONCLUSIONS

The problem of the prediction of the electric field
distribution inside biological phantoms starting from
amplitude-only data has been addressed for two-
dimensional geometries. An approach based on a hy-
brid stochastic/deterministic iterative procedure has
been presented, described and discussed throughout
this paper. The algorithm has been applied to reach
the minimum of a suitably defined cost function with-
out the solution being trapped in local minima which
typically arise in nonlinear inverse problems.

Numerical results have been reported for a cross-
section of a realistic biological scatterer inside a region
under test illuminated by a TM incident electric field.
It has been possible to reconstruct the induced field
distribution even on the basis of measurement data af-
fected by Gaussian noise. Results prove the possibility
of attaining qualitative indications about the ampli-
tude distribution as well as the location of the ampli-
tude peak. The results are preliminary but promising.
What is more, the capabilities of the present approach
could be increased by adding linear constraints on the
field distribution in order to obtain a reduction of inde-
pendent unknowns, limiting the search space and sim-
plifying the solution of the problem.

VI. APPENDIX A

In this appendix the expression for the vector VQ
given by

VQ = VQpata + VQstate (A1)

is derived. The computation of the partial derivatives
of Qpata and of Qsiaze With respect to the variables
Re{¢(zq,¥,)} and Im {#(z,4,99)} ¢ = 1,...,N is re-
quired (where Re{} and Im {} indicate the real and
imaginary parts, respectively).

First of all, let us give some preliminary definitions

SEH = Au (o) = [ Gmo )| (A2)
7% = (617 @n,yn)| — AilEnovn)  (A)

where ¢§rec) (Cm,fm) = kg 217:1 {G(zn, Yn; Cm, {m)
T(Tn, Yn)$(Zn, Yn)} and ¢$rec)($m:ym) = ¢(Zn,Yn)—
—k§ Eﬁr:1 {G(@p: Yps T, Yn)T(Zp, ¥p)D(Tp, Up) }-

As far as the data-term is concerned, it is useful to

evaluate the partial derivatives of 32%¢. By means

of simple mathematical manipulations, the following
expression are obtained
agygata 1
ORe{$(zq,yq)} |¢§"'~'>(gm,§m)l

ORe { " (G &m) }
ORe {#(24,34)}

{Re {869 (G 6m)}

Im {47 (Gms &m) }
+ Im {d’g )(Cm’fm)} ORe {¢(zq4,¥,)}
(A.4)
aﬁata _ 1 .
OIm {¢(zq,¥¢)} - ¢§”°) (e Em)l
0Re { ") (Gm, &n)}
{Re{qss (o)} 3 )
8Im {d)g"c) (Cm» fm)}
+ Im {¢$ )(Crmgm)} 0Im {¢d(zq,y4)}
(A.5)

where

8RE‘[¢£“=) (CﬂnEM)} —
BRel;{%zq,vq)} -
= —"—%‘g {er(z4,y4) — 1} J1 (koAq) Yo (kopmq) —

— rhofae{2039) J; (koAq) Jo (Koprma)

(A.6)

8Re{4{"*) ((m ,Em)} _
8Im{d(zq,45)} - .
= ‘%MJI (koAq) Yo (kopmq) +
+ 7889 (e (z4,y,) — 1} J1 (KoAq) Jo (opma)
(A7)
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BIm{¢{ ) ((m &m)} _
3Re{¢(zqtyq)} -
= — ko9 (o (2,,y4) — 1} i (KoAq) Jo (Kopma) +

+%ﬁ‘h (koAgq) Yo (Kopmq)

(A.8)

O1m {45 (Gmo6m)}  ORe {87° (Gmr )}
OIm {¢ (zq,¥q)} "~ ORe{¢(zq,94)}
(A.9)

where Ag = 4/ ‘:r—", and A, is the area of the qth
discretization cell.

Accordingly, the partial derivatives of Qpgte With
respect to Re {¢ (z,,y,)} and Im {¢ (x4, y,)} given by

asDatc

M Dat
_ 22:m=1 {Sma aam! #(zq,¥3)}

aQData —
8Re {9 (z4,4)} M A (G &m)?
(A.10)
8QData _ 25 e {ggata 37?8{%%%)—}}
oIm {6 (T, ¥)} M A G &)

(A.11)

are evaluated as
ﬂkoAqu koAq

oQ — .
BRe{Beg)} — S, 1As (G )P

Sl | pately 1 e (o G}

{{er(@ar¥0) = 1} Yo (hopma) + 525222 Jo (kopma) } +
+{{er(@0:38) = 1} Jo (kopme) ~ ZELYs (Kopma) } -

Im {d’gnc) (Cmsém) } }
(A.12)

WkoAqJ], (koAg) .

8Q —
Blmhﬁizq,:h)} - E,A.;‘=1|A-((vm5m)|2
i | petad 1| {m {67 (G )} -

357 (G sEm)
{ngg:llq) JO (kOqu) _ 2151-(3:1:1’1:)"11 YO (kopmq)} _

2rfeo wkoAg
— {{er e 0) = 1} Jo (kopma) = “H252Ys (koprma) |-

Re {¢{"*) (Cmy6m) } }
(A.13)

Analogously, it is possible to evaluate the partial

derivatives of Qgiate, Which are given by
8Qssate rkoA
£ {1 el (Re {4 en ) -
{ 52ina + {6r(@a,¥0) = 1} Ang + 2o, | -
- {a'é':—quoi)‘Anq — {er(zq,y0) - 1}an} )

Im {d’gm) (Zn, yn)} }
(A.14)

8Qs1ate — ﬂ‘koAg .
5’"‘{4’%“4%5} Pa=Ai(@aspa)l

S {1 ek {re o}

ag:rf’g:) Ang - {er(zq,yq) — 1} an} +

+ ;%Ai‘sﬂq + {er(2q,¥g) — 1} Ang + ﬂz%%,ﬂ

Mg }-
Im {¢STCC) (Tns yn)} }

(A.15)
where
_{ Ni(kdd) + s n=4
Am’l - { Ji (koAq) Yo(kopqi) n+#gq (A.lﬁ)
— 1 n=gq
an - { JO (kOPqn) n 9’: q (A17)

and 8,y = 1 if n = g, dng = 0 otherwise.
Finally, the array VQ = {(VQ)4;¢=1,..,N} can
be computed as

6QState aQDatﬂ
), =
(V@) {BRe {¢(z4,9,)} ORe{d (zq,yq)}}
+ J { aQState + 69Da.ta }
OIm{¢(zq,y,)} OIm{d(z4,90)}
(A.18)
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