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Introduction 
 
Simulation of real-world EMC effects has recently become popular.  These 
simulations can be performed in either the frequency-domain (typically, Method of 
Moments (MoM) and Finite Element Method (FEM)) or in the time-domain 
(typically, Finite-Difference Time-Domain (FDTD), Transmission Line Matrix 
method (TLM), or Partial Element Equivalent Circuit (PEEC) method).  Simulation 
in each domain has its advantages and disadvantages.  However, time domain 
simulation is a commonly used EMC tool, mostly due the ease of use of FDTD 
simulators and the ability to model transient and wideband effects. 
 
Time domain simulation tools are extremely powerful. However, if a structure is 
resonant with a high Q-factor, the simulations can require long computational 
times.  Classic examples of this effect are encountered in highly resonant 
structures, such as shielded enclosures and in the decoupling of power/ground 
planes in printed circuit boards. FDTD is especially useful for modeling these.  In 
the shielded enclosure case, slots and apertures are easily included in the model.  
In the decoupling example, FDTD easily allows dielectric materials to be included.  
The main disadvantage of modeling these types of structures with a conventional 
FDTD analysis (or any other time domain simulation tool) is the long run time 
required.    
 
Joint Time Frequency Analysis (JTFA) is a powerful tool that is used to post 
process waveforms obtained from time-domain numerical simulations.  JTFA is 
applied directly to a numerically generated time-domain record, and useful 
parameters can be extracted using an efficient data processing sequence. The 
main advantage of JTFA lies in the ability to extract useful parameters using 
shorter time records. This allows for numerical codes to be run for a shorter 
length of time, and the final results extrapolated to obtain useful estimates of 
shielding parameters.  This allows more cases to be analyzed and optimal usage of 
resources by minimizing run-times.  
 
This paper describes the implementation and use of JTFA in conjunction with 
FDTD simulations of the shielding of slots and enclosures.  Several detailed 
examples are given that highlight the use and application of JTFA. 
 
Joint Time-Frequency Analysis 
 
Joint Time-Frequency Analysis (JTFA) was developed in the 1940’s [1,2].  It has 
reached a high degree of mathematical sophistication and the number of 
applications continues to grow. Some applications where JTFA has been effectively 
applied are:  processing of speech signals, seismic data processing, image 
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processing, analysis of musical instruments, and architectural acoustics [3-7].  In 
the domain of electromagnetics, it has been applied to the analysis of cavities, 
waveguiding structures, scattering objects, and antennas [8,9].  JTFA also has 
potential for the investigation of a number of problems in Electromagetic 
Compatibility (EMC).   One EMC application where JTFA shows much promise is 
the analysis of time-domain numerical simulations of electromagnetic shielding 
structures, such as metal plates with resonant coupling apertures and metal 
enclosures with embedded apertures. When these shielding structures are 
simulated numerically, long run times are often required to compute parameters 
such as quality factor (Q) and shielding.  JTFA provides a nice way to avoid long 
run times by enabling us, under certain conditions, to extrapolate decay and 
shielding characteristics beyond the maximum computed time step of a time-
domain EM simulation.  This allows the engineer to run many more models while 
varying parameters such as aperture size, etc.   We can also use JTFA to gain 
more insight and information than can be obtained from only a time-domain 
waveform or its frequency-domain counterpart. 
 
To better understand the JTFA, we start with the traditional Fourier transform 
defined as [10]: 
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where f  is the frequency (Hz), h(t) is the time-domain waveform to be analyzed, 
and H(f) is the complex frequency spectrum (magnitude & phase).  In practice, we 
process discrete waveforms generated by time-domain electromagnetic codes. The 
outputs are finite-duration data sequences h(ti ) of length N, where i = 1,2,3,..,N.  
We can efficiently analyze the frequency content by applying a Fast-Fourier 
transform (FFT) to obtain a discrete frequency spectrum H(fi.). The Fourier 
transform analyzes a signal and provides information about its magnitude and 
phase across frequency.  It does not tell us anything about the time at which a 
particular frequency component appears in a signal.  This is one drawback of the 
Fourier transform, it does not have any ability to provide resolution in time—the 
time information is embedded in the phase of the signal and is distributed 
throughout all of the frequencies.  One way to overcome this difficulty is through a 
multiplication of the signal in (1) by a windowing function to yield: 
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where G(f,τ) is the short-time Fourier transform (STFT) [2], w(t) is a specified 
windowing function over the time interval, 0≤ t ≤W, and is zero elsewhere.  The 
parameter τ is the amount by which the window is shifted in time to analyze a 
selected section of the waveform h(t).  The short-time Fourier transform is a 
function of two variables, time (τ) and frequency (f), and hence term “Joint Time-
Frequency Analysis.”  With JTFA we now analyze both the frequency content of a 
waveform and the time interval during which a frequency component is generated. 
The process of performing a JTFA analysis is one of sliding a window over a time-
domain signal and Fourier analyzing it at a succession of window positions.  
Smaller window widths provide better resolution in time, and wider windows less 
resolution in time.  There is a tradeoff, however.  The ability to resolve signals 
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simultaneously in both the time and frequency domains can be precisely stated in 
terms of the so-called uncertainty relation [11]: 
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where t∆ is the time resolution (sec) and f∆ is the frequency resolution Hz. Thus 
our ability to resolve simultaneously in both time and frequency is limited.  If we 
desire high resolution in frequency, we must accept less in the time domain. 
Conversely, if we desire more resolution in time we must accept less in the 
frequency domain. 

 
Windowing 
 
Windowing is simply a process of isolating a desired section of a waveform and 
deleting the rest. There are a number of ways the data within the window can be 
treated.  One approach is to leave the data unaltered using a rectangular window.  
An example of a rectangular window is illustrated in Figure 1 in which a 40ns 
wide window is applied to a waveform.  Alternatively, we can taper the signal using 
a number of possible window types. Some well-known tapered windows are: 
Hanning, Hamming, Blackman, and Kaiser-Bessel, summarized in Table 1.  A 
more extensive summary of available window types and mathematical properties 
is provided in [12].  Again, there are trade-offs when deciding which window 
function to use.   Figure 2a depicts the time- and frequency-domain properties of 
several commonly used windows.  In the case of the rectangular  
window, an abrupt truncation in the time-domain leads to a frequency-domain 
amplitude spectrum that has a narrow main lobe characteristic; first and second 
sidelobe levels at  
-13 dB and -17 dB respectively.  When the Hanning taper of Figure 2b is applied, 
the width of the main lobe is nearly twice that of a rectangular window, however 
the first sidelobe level drops down to -37 dB.  In general, tapering increases the 
width of the main lobe and reduces the level of the sidelobes, which increases the 
dynamic range of the frequency domain result.  An extremely useful window for 
this type of analysis is the Kaiser-Bessel window.  This window function has a 
variable index β which allows for a wide range of taper characteristics.  This 
feature makes the Kaiser-Bessel window ideal for JTFA.  Figures 2c and 2d depict 

Window Type Functional Form (i=0,1,…N-1) 
Rectangular w(i)=1 
Hanning w(i) = 0.5 - 0.5 cos(2πi/N) 
Blackman w(i)=0.42-0.5 cos(2πi/N)-0.08 cos(4πi/N) 
Hamming w(i) = 0.54 - 0.46 cos(2πi/N) 
Kaiser-Bessel w(i)=I0(β[1.0-a2])/ I0(β) where I0 is the zero-order modified Bessel 

function, a=(i-k)/k, k=(N-1)/2 

Table 1.  Some commonly used windows suitable for short-time Fourier analysis. 
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Kaiser Bessel window characteristics for indices of 1.0 and 1.6 respectively.  For 
β=1.0, the main lobe is only somewhat wider than that of the rectangular window, 
and it has lower sidelobe levels—a significant improvement over the rectangular 
window.  Setting β=1.6 obtains characteristics that are slightly better than those 
of the Hanning window. 
 
In order to understand the impact of windowing in JTFA, consider the following 
complex waveform consisting of a number of sinusoids damped by differing 
amounts: 
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where fi  (i=1,2,3,4) are the frequencies of the sinusoidal waveforms, and di 
(i=1,2,3) are exponential decay rates.  One possible waveform is plotted in Figures 
3a, along with the frequency-domain amplitude spectrum in Figure 3b.  This 
waveform has frequency components at 200, 500, 800, and 1100 MHz, with decay 
rates d1=5x106, d2=15x106, and d3=50x106. The waveform has a very complex 
structure and resembles those encountered in time domain shielding simulations. 
The simple FFT frequency-domain plot clearly separates the four components with 
progressively lower Q-factors as the frequency increases.  Neither the time- nor 
the frequency-domain plots clearly highlight the decay rates.   
 
The power of JTFA can be applied to this waveform.  Figure 4 shows the results of 
a JTFA analysis using three different 100ns duration window types. We now have 
a 3-dimensional graph with spectrum amplitude plotted as a function of time and 
frequency. The frequency components appear as ridges which are parallel to the τ-
, or time, axis. The amount of definition (dynamic range) achieved depends on the 
window used.  A rectangular window is used in Figure 4a, and the “valleys” 
between the ridges are filled in by high sidelobe levels.  Application of a Hanning 
window improves the dynamic range and produces much better definition as is 
seen in Figure 4b.  This is particularly the case with the 1100 MHz component 
which is barely visible in the rectangular window analysis, and becomes well 
defined upon application of a tapered window.  Better results were obtained with a 
Kaiser-Bessel window (index β=3.0) and is shown in Figure 4c. Not only are the 
frequency components visible with deep “valleys” in between, but the varying rates 
of decay are clearly visible.  The decay rates are proportional to the downward 
rates of descent of the ridge peaks.  The capability to display and analyze decay 
rates directly is a powerful feature of JTFA in the analysis of shielding problems. 
 
JTFA of a Resonant Slot in a Metal Sheet – a Canonical Example 
 
We now consider the analysis of a resonant slot embedded in an infinite metal 
sheet using the Finite-Difference Time-Domain (FDTD) technique [13].  The 
geometry is shown in Figure 5a, and consists of  a pulsed current source, a 
perfectly-conducting metal sheet that extends out to the edge of the computational 
domain (simulating a sheet of infinite extent), a 30.0 cm x 0.1cm slot, and an ideal 
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field monitor point, located 6.0 m from the slot center provides information on the 
three electric-field components.   The source is an impressed electric current 
density that is rapidly switched on and off, generating a pulsed electromagnetic 
wave traveling outward in all directions at the speed of light.  The source 
approximates a short radiating dipole (1.0 cm long) having broad directional 
coverage.  A portion of the wavefront penetrates to the other side of the sheet.  A 
monitor point, located at a specified location on the other side of the sheet, 
measures the component fields 6.0 m away from the center of the slot.   One way 
to quantify the amount of slot penetration is to compare the results with the free-
space geometry of Figure 5b, where the metal sheet/slot combination has been 
removed.  The free-space configuration provides a reference for comparison and 
allows the results to be normalized to the free-space case.  Typical reference and 
slot waveforms obtained from a FDTD code are shown in Figures 6a and 6b 
respectively.  The reference FDTD waveform has a short temporal extent of 
approximately 2 ns, and has useable spectrum extending from 100 MHz to 
approximately 3 GHz.    The slot waveform has reduced peak amplitudes, and has 
an extended time domain response.  It has a more complex structure with 
harmonically-related sinusoidal components that decay exponentially.  These 
components are visible as sharp peaks in the amplitude spectrum at 483, 1483, 
and 2445 MHz. 
 
The results can be displayed either as “shielding” or “penetration”. High 
penetration implies low shielding, and conversely, low penetration corresponds to 
high shielding levels.  As we shall see, using penetration instead of shielding 
generates useful graphical displays.  Figure 7 shows the penetration through the 
slot.  The slot exhibits resonant peaks in penetration at a fundamental frequency 
of 483 MHz and at the third and fifth harmonics of 1483 MHz, and 2445 MHz.  A 
maximum penetration of -9.7 dB (9.7 dB of shielding) occurs at the fundamental 
slot resonance of 483 MHz at which the slot length is close to one-half wavelength. 
   
If we perform a JTFA analysis on the slot-penetration, time-domain waveform and 
normalize the results with the amplitude-spectrum of the free-space reference, we 
effectively remove the frequency dependence of the source.  The result is a 
function of frequency and the window parameters (delay, length, and type), and is 
more complex.  JTFA results obtained for different window lengths are shown in 
Figures 8a-c.  In Figure 8a, a 20ns duration Kaiser-Bessel window (β=3.0) is used.  
The three resonances are visible as prominent ridges running parallel to the time 
(τ) axis. The impact of reducing the window length by factors of 2 and 4, (leaving 
the other parameters unchanged) is shown in Figures 8b and 8c respectively.  As 
the window length decreases, the ridges become broader in frequency.  This is a 
result of the uncertainty principle of time and frequency stated earlier in (3). 
 
We can derive additional information from the JTFA analysis that was not 
available in the original frequency domain analysis. The amplitudes of the ridges 
decrease in time (τ), and this is caused by decaying slot resonances. We can 
extract this decay from the JTFA plot of Figure 8b and obtain the results of Figure 
9.  The linear characteristic (on a dB scale) indicates an exponential decay.  The 
dashed lines on the plot are the result of a least-squares fit to a straight line. This 
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procedure directly yields the decay slopes.  The fundamental mode exhibits the 
slowest decay rate, while increasing rates of decay are noted for the third and fifth 
harmonics.  These decay rates can be directly related to the quality factor (Q) 
through the relation [8] 
 
 )5(102 9

decaytfQ −= π  
where f is the frequency (Hz) and tdecay is the decay time (ns) of a selected 
resonance. The decay time is the time it takes for the signal energy to decay to 1/e 
(-4.3 dB) of its original value. Once the slope of the decay is known, the decay time 
is computed from the formula 
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where a is the slope (dB/s) determined by a least-squares fit, and tdecay is the 
decay time (ns).  Table 2 below summarizes the Q-factor results obtained directly 
from the JTFA analysis. 
 
JTFA of a Box with an Embedded Slot Aperture – a Real-World 
Example 
 
While the analysis of a simple (infinite) metal plate with an aperture is instructive, 
a complex, real-world analysis is performed on a structure used to study the 
penetration of electromagnetic signals into aircraft structures, and to develop 
practical and efficient test procedures to assess aircraft shielding [14].  A shielded 
enclosure with the previously studied aperture is analyzed. Once a shielded 
enclosure is added, we would expect to find many more resonant frequencies due 
to the physical dimensions of the enclosure.  Figure 10 shows such a structure.  It 
consists of the same 30 cm x 0.1cm slot embedded in the face of a rectangular 
metal box with dimensions 1.03 m x 0.93 m x 73 m.  The interior of the box 
contains a metal paddle to function as a diffuser and to maximize excitation of 
available cavity modes inside the box, and can well simulate obstructions in the 
box such as a card in a PC or a bulkhead in an aircraft.  Two of the box walls are 
covered with 1cm-thick, lossy dielectric (non-magnetic) walls with the parameters 
εr=1.0, and conductivity, σ, which can be selected to control the rate of decay of 
the generated waveform.  The same pulsed source is located inside the box, and 
an ideal monitor point is located 6.0 m from the geometric center of the slot.  The 
resulting electric field waveform and the associated penetration spectrum, 
computed using the same reference waveform as in Figure 6, are shown in Figure 
11 with slab conductivities set at σ = 250 S/m.  Due to the addition of the box, the 

Table 2.  Q-factors obtained from a JTFA analysis of normalized penetration 
data.  The selected frequencies correspond to slot resonant peaks. 

Frequency (MHz) tdecay (ns) Q-Factor 
483 2.90 8.80 
1483 1.82 16.95 
2445 1.56 23.97 
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resulting waveform is much more complex, and has a much longer temporal 
extent than encountered with the slot alone.  The penetration spectrum now 
exhibits a highly complex noise-like spectrum that exhibits large and rapid 
variations as a function of frequency.  Peaks in the penetration spectrum are seen 
in the vicinity of the slot resonances.  This complex structure is due to the modal 
structure in the box that changes rapidly with frequency, and thereby randomizes 
the field structure.  This is in stark contrast to the isolated slot, for which the 
variations are better behaved.   
 
If a JTFA is now performed on the box waveform, we obtain the results of Figure 
12a.  Additional complexity occurs in the multitude of ridges that are caused by 
the box cavity modes.  While the penetration decays with increasing τ, the decay is 
not distinctly exponential—the behavior is quite erratic.  The slot resonances are 
somewhat visible as broad ridges in the vicinity of the three resonant frequencies.  
The decay characteristics of several frequency components near the slot resonance 
peaks are shown in Figure 12b.  The decay of the third and fifth overtones is quite 
erratic, and is clearly not exponential.  A complex modulation is imposed, which is 
caused by interference from additional box modes that are close to the selected 
frequencies.  A similar modulation effect is encountered in the evaluation of the 
sound properties of rooms in architectural acoustics [7]. We are now dealing with 
a two-fold complexity in both frequency and time.   
 
In order to obtain meaningful data from this simulation, statistical averaging of 
the data was performed to smooth out the rapid variations.  An efficient way to 
accomplish this is to frequency average the penetration data over a specified 
bandwidth [14].  This is implemented by averaging signal energy to obtain a 
specified bandwidth to obtain the mean penetration 
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where the index n is the center frequency of the averaging window, N is the 
number of discrete FFT frequencies above and below the center frequency of the 
window, and P(fi) is the penetration at a selected frequency.  Equation (7) is 
equivalent to a rectangular sliding window of width 2N+1 that performs a 
smoothing operation by averaging out random variations in the data.  The impact 
of this can be seen in Figures 13a-c where the averaging bandwidth are 10,50, 
and 200 MHz respectively.  Larger frequency bandwidths produce a higher degree 
of smoothing. As bandwidth increases, the rapid and random variations caused by 
the box modes are suppressed, highlighting the systematic effects of the slot.    
 
We can use this averaging process in conjunction JTFA results in which we now 
apply (7) at each window position. The averaged JFTA results are shown in Figure 
14 for averaging bandwidths of 50, 100, and 200 MHz.  As the averaging 
bandwidth is progressively increased, the randomizing effects of the box cavity 
modes are suppressed, and the slot resonances become distinctly visible.  
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Extracting the decay rate at the three resonant peaks, results in Figure 15a-c.  As 
the averaging bandwidth increases, the decay approaches a single-exponential 
characteristic (a straight line in dB), and the modulation effect is mitigated.  We 
can now, as earlier, perform a least-squares fit at the three frequencies to obtain 
the decay characteristics.  The results of the fitting process are plotted as dashed 
lines in the plots.  Rapid convergence in decay times occurs with increasing 
bandwidth, with maximum change of less than 4% in slope noted as bandwidth 
increases from 100 to 200 MHz.  Using equation (5) and (6), we can use the curve 
fits to estimate Q-factors at the three frequencies, summarized in Table 3.  The 
addition of the box increases the resulting Q-factors by two orders of magnitude. 
Also, the box/slot interaction shifts the peak resonant frequencies somewhat from 
those of an isolated slot. 
 
A Proposed Method for Estimating Total Penetration  
 
An FDTD simulation was performed on the box structure of Figure 16 with the 
same dimensions, ideal monitor point, and the same excitation source as analyzed 
in the last section.  The lossy slabs are no longer present, and each of the six faces 
has five randomly placed 4 cm x 4 cm square apertures, which do not exhibit any 
resonant behavior in the 200-3000 MHz frequency range for which the analysis is 
conducted.  Moreover, since the box walls are perfect electric conductors, coupling 
through the apertures provides the only loss mechanism.  The electric field 
waveform is shown in Figure 17.  Ten days on a 1.8 GHz Pentium processor were 
required to run this simulation for 950ns, and no apparent decay is visible! 
Clearly, the sub-resonant apertures do not provide much loading!  In order to 
accurately estimate shielding, a much longer run time would be required to 
achieve a suitable amount of decay in the waveform—this is not a viable option. 

Table 3.  Energy decay times and associated Q-factors obtained from a JTFA 
analysis of the box/slot combination of figure.  The selected frequencies correspond 
to slot resonances.  The conductance of the dielectric slabs is σ=250 S/m 

Frequency (MHz) tdecay (ns) Q-Factor 
502 100 315 
1485 115 1,069 
2431 149 2,271 
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A JTFA analysis using a 200ns Kaiser-Bessel window (β=2.0) on the box waveform  
and 200 MHz of frequency averaging is shown in Figure 18.  Results are shown for 
several frequencies for which higher rates of decay occur as the frequency is 
increased. This is a direct consequence of the frequency dependence of the 
aperture radiated power.  Once again, JTFA reveals physical effects that are not 
visible in the time domain alone.  The least-squares fits are shown as dashed 
lines, and the decay rates are approximately exponential.  The resulting Q-factors 
are summarized in Table 4 below, with considerably higher values than those 
encountered in the loaded box cases. 
 
The high Q-factors and associated slow decay rates pose a challenge in estimating 
the penetration. A promising approach that is currently being investigated is first 
to invoke the assumption of single exponential decay and then extrapolate beyond 
the computed time range.   The process is illustrated in Figure 19.  We start with 
the least-squares fit obtained from a combination of joint time-frequency analysis 
and frequency averaging.  The penetration line is sampled at an interval of W, 
corresponding to the window width used in the JTFA.  The samples give us 
information about signal energies at sequential and non-overlapping window 
positions.  We can now sum these components to obtain the total penetration.  
Although there are an infinite number of samples, the assumption of exponential 
decay results in a simple geometric progression that is readily summed in closed 
form [15].   Some results obtained, using this method for the configuration of 
Figure 16 are summarized on Table 5.  The penetration increases rapidly above 
1000 MHz due to the increasing electrical size of the rectangular apertures.  The 
influences of window function and duration on the structure penetration are 
currently being investigated.  In addition, our research is focusing on the 
development of guidelines for optimal window parameter selection. The application 
of this technique to shielding structures is work in progress, and more research is 
currently being conducted to bring it to maturity. 
 

Table 4.  Energy decay times and associated Q-factors at selected frequencies 
obtained from a JTFA analysis of the box/slot combination of figure 15.  Note how 
the Q-factors decrease rapidly with increasing frequency. 

Frequency (MHz) tdecay (ns) Q-Factor 
1000 3,159 19,850 
2000 1,098 13,802 
2500 341 5,353 
3000 210 3,966 
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Conclusions 

 
Joint time-frequency analysis is a potentially powerful tool for the analysis of EMC 
shielding problems using time-domain numerical codes. It permits us to use 
shorter run times, and extract useful parameters such as a Q-factor, and under  
certain conditions, shielding.  The application of this technique to other types of 
shielding structures is work in progress, and other potential applications of this 
method are currently being investigated. 
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Figure 1. The most basic form of time windowing (rectangular window).  The selected section of 
the top waveform remains unmodified, while the remaining section is deleted. 
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Figure 2. The time and frequency characteristics of four different time windows: a. 
rectangular window, b. Hanning window, c. Kaiser-Bessel window with index β=1.0, d. 
Kaiser-Bessel window with β=1.6. Note the tradeoffs in the time- and frequency-domains.  
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Figure 3 a. Waveform obtained from (3) with f1=200 MHz, f2=500 MHz, f3=800 MHz, f4=1,100 MHz, 
d1=5.0x106, d2=5.0x106, and d3=1.5 x106, b. Associated amplitude spectrum (the narrow spike at 200 
MHz is a result of no decay).   
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Figure 4.  Joint time-frequency analysis of the waveform of (4) using a 100 ns window: a. 
rectangular window, b. Hanning window, c. Kaiser-Bessel window with β=3.0.   Note that the 
frequency component at 200 MHz does not decay, while increasing decay rates along the time 
(tau) axis are noted at the higher frequencies. 
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Figure 5 a. FDTD model of resonant slot (30.0 cm x 0.1 cm) embedded in a perfectly conducting 
plane of infinite extent, b. FDTD model of free-space reference.  d1=6.0 m and d2=0.5 m. 
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Figure 6 a. FDTD generated reference waveform and associated amplitude spectrum, b. 
Waveform and corresponding amplitude spectrum obtained with a 30 cm x 0.1 cm resonant 
slot embedded in an infinite ground plane.  Note the resonant peaks the neighborhood of 
500, 1500, and 2500 MHz. 
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Figure 7.  Normalized penetration for a 30 cm x 0.1 cm slot embedded in a perfectly 
conducting ground plane. 
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Figure 8.  JTFA analysis of the slot waveforms,  a. 20 ns duration Kaiser-Bessel 
window with β=3.0,  b.  10 ns duration Kaiser-Bessel window with β=3.0, c. 5 ns 
duration Kaiser-Bessel window with β=3.0. 
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Figure 9.  Slot decay characteristics obtained at the resonant peaks using a 10 ns duration 
Kaiser-Bessel window with β=3.0. 
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Figure 10.  A 1.03 m x 0.93 m x 73 m metal box with a 0.3 m x 0.001 m resonant slot embedded in 
the face.  Two interior box walls are loaded with lossy dielectric slabs with a variable conductance 
σ and εr=1.0.  The monitor point is positioned d1=6.0 m from the center of the slot.  
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Figure 11.  Time domain box electric field waveform and associated penetration spectrum 
obtained at a monitor point 6.0 m from the center of a 30 cm x 0.1 cm slot embedded in a 
highly conducting metal box.  The lossy slabs each have a conductance σ = 250 S/m.  Note 
the peaks in the penetration in the neighborhood of the slot resonances. 
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 Figure 12 a. Joint time-frequency analysis of the box/slot combination with σ = 250 
S/m. A 200ns wide Kaiser-Bessel window (β=2.0) is used.  Note the complex 
structure of the penetration spectrum due to the box cavity modes, b. selected 
spectral decay components—note the erratic decay caused by interference between 
closely spaced box cavity modes. 
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Figure 13.  Impact of frequency averaging on the of box/slot structure penetration amplitude 
spectrum using a 200ns wide Kaiser-Bessel window (β=2.0), a. 50 MHz averaging bandwidth, b. 
100 MHz averaging bandwidth, c.  200 MHz averaging bandwidth. Note how the slot resonances 
become more visible as the averaging bandwidth is increased. 
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Figure 14.  Impact of frequency averaging on the JTFA of box/slot structure penetration, a. 50 
MHz, b. 100 MHz,  c. 200 MHz.  200ns wide Kaiser-Bessel window (β=2.0) is used.  Note 
how the slot resonances become more visible as the averaging bandwidth is increased. 
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Figure 15.  Smoothing effect of frequency averaging on selected frequency components,  a. 
50 MHz averaging bandwidth,  b.  100 MHz averaging bandwidth,  c. 200 MHz averaging 
bandwidth.  Note how increased bandwidths reduces interferences effects between adjacent 
modes and accentuates the exponential decay with only minor variations in the slope of the 
extracted decay. 
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Figure 16.  A 1.03 m x 0.93 m x 73 m metal box with five 4 cm x 4 cm apertures embedded 
in each face.  The monitor point is positioned d1=6.0 m from the center of the front face.  
The interior of the box is unloaded, and the only loss is due to radiation from the apertures. 
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Figure 17.  Time domain box waveform obtained at the monitor point.  Note that there is no 
appreciable decay due to small aperture radiation efficiency. 
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Figure 18.  JTFA analysis of the box loaded with thirty 4 cm x 4 cm slots.  Note the 
increased decay rates at the higher frequencies due to increased radiation efficiency.   
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Figure 19.  Computing total penetration from a least-squares fit.  Samples are taken at an 
equal interval W, corresponding to the window width selected for the original JTFA 
analysis.  The samples are then summed to obtain total penetration. 
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