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ACES Board of Directors Election Results 

2003 
 
 
Candidate statements appeared in the July 2003 ACES Newsletter. 
 
Congratulations go to Randy Haupt, Juan R. Mosig, and Omar Ramahi. 
 
These three newly elected Directors will be installed at the next Annual Meeting of the 
Members which occurs at the annual conference. 
 
Rene Allard, Elections Committee Chair 
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CEM NEWS FROM EUROPE 
 
 
Pat Foster 
 
This year ACES (UK) devoted its one day meeting on September 22nd to Modeling Ships. 25 people 
turned up at Imperial College, London, for the event which was very lively. 
 
The morning was devoted to a short course on the software package ‘SHIP EDF’ which  has been 
developed by the Italian firm, IDS, based in  PISA [1]. This is a major European package dealing 
with CEM modeling in all its forms for ships. 
 
Tim Murphy who is head of Electromagnetics on the BAE Systems Ship team at Filton gave an 
over-view of problems in predicting EM performance on ships. He took as his example a Flight 1A 
Arleigh Burke Class destroyer which has a length of 155m and a beam of 20 mm. The frequency 
range of equipment is from 1 MHz to 18 GHz. He took three very different areas of prediction as 
examples. The first was an HF model which is treated with MoM techniques and is capable of 
identify hot spots around the ship so that operational constraints can be set at an early stage in the 
ship design. The second was a surveillance radar where he showed the volumes within which levels 
of 200v/m were exceeded. Again this enables operational constraints, particularly as regards 
helicopter safety, to be set well in advance. As a third example, he discussed below-decks equipment 
for de-gaussing where Vector Fields’ TOSCA was used. This showed the crew must be protected. 
Tim Murphy pointed out that there was not much evidence around on the effects of long-term 
exposure of humans to such fields. 
 
There was an interesting discussion on the use of electric motors for warships. These are coming into 
use for cruise ships where the release of internal space and the quietness is an attraction but there are 
serious problems in warship use. 
 
The major presentation of the morning was from Stephano Chiti of IDS. The software package 
covers antenna installed performance, EMC and RCS and IR signatures. As you might expect, a 
great deal of the package is devoted to data management such as configuration control (dealing with 
the many different versions of any one ship design), a library of antennas and materials. The work 
flow for a single example was worked through.  Clearly the amount of data required is very large 
and importing the ship geometry is a major exercise. Configuration control is required so that 
traceability is maintained. The IDS website [1] does contain some data on EDF. The methods 
employed are Method of Moments, Physical Optics and GTD. High gain antennas are modeled using 
electric and magnetic dipoles in front of a flat plate.  
 
The output can be in the form of a Risk Assessment. 
 
A major section of the course was devoted to validation and the accuracy required. There is the usual 
problem that, in comparing predictions with measurements, it is assumed that all the errors are in 
EDF. In the case of special measurements made as Funtington, DERA, UK, on a mock-up mast it 
could clearly be seen that the security fence was affecting radiation patterns. A large number of 
measurements were made in this trial on antenna patterns and coupling as well as field strength. 
These all showed the program to be as accurate as required by the customers. There was a discussion  
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on the setting of standards for agreement in that the accuracy required was +/- 4 dB over 0.0 to –20 
dB below peak and some of the audience thought this should be related to dBi not relative decibels.  
 
Future developments involve the incorporation of hybrid methods and some numerical experiments 
have been carried out using a mixed of MoM and PO on a dipole antenna near to two masts. These 
experiments range from a full MoM prediction to a prediction using MoM for the antenna alone and 
PO for the mast interactions which reduce the runtime from 41549 seconds to 839 seconds. The 
radiation patterns were clearly in error in the shadow region for the last method. Other developments 
would be the incorporation of a TLM approach to FSS materials and the modeling of layered 
materials. 
 
This is a very powerful program which is slanted towards the systems aspects and intended to help 
the ship designers decide on details of the ship’s structure and layout. 
 
There was also a demonstration of EDF. The program operates on UNIX or NT and assumes that 
team operation is required by the customer – another reason for requiring careful configuration 
control. Multiple CPUs can be used when dealing with (say) HF antennas on the ship using MoM. 
 
Several papers related to ship modeling were presented in the afternoon. These papers deserve a 
lengthy exposition for each one. All I shall do here is to list the papers so more detail can be 
obtained directly from the author 
 
Waseem Qureshi, (Bae Systems ATC, Great Baddow, UK), ‘EM modeling of the Sampson Radome’ 
M El Hachemi, (Swansea University, UK),  ‘Low-Order Method for Solving Electromagnetic 
Scattering Problems’ 
A J Keddie, Imperial College, London, UK, and M D Pocock (Frazer Nash Consultancy), ‘Static 
Ship Signature Modeling’ 
A Duffy (de Montfort University, Leicester, UK), A Drozd (ANDRO Com Soltns, Rome, USA) and 
B Archambeault (IBM, NC, USA), ‘Towards Validating CEM Modeling’ 
A J Cottee, M Rayner and C Parini, (QMW College, London, UK), ‘Antenna Analysis using 
Discrete Green’s Function FDTD Method’ 
S P Benham, J Lord (BAE Systems ATC, Gt Baddow) and J Burbage (BAE Systems, CDI, Filton, 
UK), ‘Challenges in the CEM Modeling of Ships’ 
 
 
1. Website at www.ids-spa.it 
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The J-Pole Antenna 
 

R.P. Haviland, W4MB 
1035 Green Acres Circle, N. 

Daytona Beach, Florida  32119 
 
 

Editor’s Note: 
 

The following article had technical difficulties with the clarity of some of the plots.  The 
softcopy of this article can be expanded so that these plots become clear.  Interested 
parties may contact the author directly for clearer hardcopy plots if necessary. 
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The J-pole Antenna
R.P. Haviland, W4MB

1035 Green Acres Circle, N.
Daytona Beach, Florida 32119

I. INTRODUCTION

This study began as an Amateur Radio project. It is of in-
terest here because it shows the necessity for considering both
direct and �eld coupling of segments, gives some approaches
to the drive impedance of end-fed antennas, and demonstrates
some inherent limitations of analysis programs.
The J-pole antenna is mechanically simple, and gives good

performance for the effort expended on its fabrication. As
shown by Fig. 1, it can be constructed from a length of wire
with two bends, although the more common VHF designs
employ three pieces of tubing plus two 90� elbows. A J-
pole can be built quickly from a piece of twin-lead or ladder
line. In all cases, the standard feed method is to tap the two
connections of the feed line part way up on the U-section,
adjusting the position for minimum SWR.

Fig. 1. Typical J-pole antenna, as prepared for Eznec
analysis. Segmentation of the lower part of the U and the

feed is typical.

II. STANDARD J-POLE DESIGN PRACTICE

The "standard" J-pole design calls for a U section one
quarter-wavelength high, with the one extended section being
an additional half-wavelength long. The SWR performance of
such a design can be excellent, as shown in Fig. 2, which is
for a 140 MHz J-pole made from half-inch copper tubing, with
the U section spaced 2.0 inches on centers. This chart is for a

feed tap at 10% of the height of the U section. It assumes that
the feed system is set to the resistance at the feed point, 11:12

 in this case. This gives an SWR of 1.05 at 140 MHz, with
a 2:1 SWR bandwidth of nearly 6 MHz, more than ample to
cover the 2-meter amateur band. Gain is 2.35 dBi, essentially
that of a half-wave dipole. Note, however, that the azimuth
pattern deviates from uniform (circularity) by just over 1 dB,
and maximum gain is tilted upward by 8� in this case.
Inspection of Fig. 2 shows that the point of minimum SWR

is at 140.2 rather than the design frequency 140.0 MHz.
Also, the impedance at the feed point is well below the usual
objective of 50
: This means the tap point needs to be moved
upward. The study reported here had the goal of understanding
the J-pole characteristics well enough to achieve minimum
SWR precisely at the design frequency and a 50 + j0 
 feed
point impedance. As will be seen, these objectives have not
been completely realized. In this work, some of the limitations
of antenna modeling were found to be signi�cant.

Fig. 2. SWR of a classical J-pole, with feed set to match 140
MHz resonance. The SWR bandwidth varies with

mechanical design details, but is usually relatively wide.

Looking again at Fig. 1, it is evident that the antenna is
composed of three coupled circuits. The �rst is the antenna
radiating section, which has a natural frequency and a charac-
teristic impedance, both functions of conductor diameter and
length. This antenna is intentionally end-fed, directly voltage-
coupled to one arm of the U impedance matching section
(the second circuit) which theoretically transforms and in�nite
resistance at the open end to zero at the short. The third circuit,
the feed, is then set to the value of desired feed resistance,
usually 50 
:
The actual situation is far more complex than this simplistic
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view. Fig. 3 shows some of the reason for the complexity. First,
the NEC calculated current on the half-wave radiator does not
follow the nearly free-space cosine curve of an antenna loosely
coupled to the stub, shown in Fig. 3a, but when physically
connected departs from this in magnitude near the junction to
the U section, as shown in Fig. 3b. Also, not shown here, the
phase along the antenna varies by some 120�; mostly close to
the U section while phase variation is small on the upper half.
Second, the currents on the two arms of the U section are not
equal in magnitude. Further (also not shown in Fig. 3), the
phase of the two currents is not the theoretical 180� as found
on the stub alone, but varies along the U from 176� to 143�:
Finally, there is a marked discontinuity in current at the feed
point as the tap position is raised. There is a minor difference
in amplitude and phase at the two ends of the feed.

Fig. 3a

. Fig. 3b
Fig. 3. Current distributions. (a) Antenna coupled to U

section only by em �elds, (b) Coupling by �elds and direct
connection. The position of minimum current in (b) varies as

feed frequency varies.

Fig. 4 shows some explanation of these differences. This is
a plot of the total near �eld at the level of the U-antenna
junction, and a short distance away. Even with an excitation
of only 12 Watts, the E-�eld intensity reaches 6000 V/m. The
antenna, at zero on the y-axis, decreases the �eld intensity to

1000 V/m. The unconnected arm of the stub at 2 inches has a
high intensity, but the maximum intensity is between the stub
arms. Much greater resolution would be needed to de�ne the
precise location, but this has not seemed to be important.
It is evident that, in addition to the marked effect of the

direct connection, there is a coupling between the U stud
and the radiator through the �eld intensities of the stub and
antenna. Also, while the stub arms form a transmission line,
the coupling between them is affected by the presence of the
antenna, and further by the feed connection. Net radiation
from the unbalanced line causes the pattern distortion in the
horizontal plane, and the non-symmetric current on the radiator
causes the vertical plane pattern shift.
These effects appear to be inherent: they are relatively

small, and have previously been ignored. It has not seemed
worthwhile to correct them. However, there is the matter of
locating the proper tap point for the drive feed and, in some
installations, the need to secure unity SWR at the design
frequency. The following is a report on the examination of
attempting to develop a "cut and it's perfect" design approach.
This turned out to be surprisingly dif�cult, and is not fully
realized (see the recommendations at the end).

Fig. 4. E-�eld component of the near �eld close to the
antenna and at the level of the antenna-U junction. The plane
of the U is on the Y-axis. Maximum intensity is between the
U arms, close to the side connected to the antenna. At

approximately twice the U spacing from the arms, the �eld
is nearly symmetical.

III. CHARACTERISTICS OF THE STUB
Fig. 5 shows the major characteristics of the stub, con-

sidered separately. Fig. 5a shows the resonant frequency,
measured by the point of zero reactance at the feed, as a
function of conductor size, for a stub

�

4
at 150 MHz. Over this

range it varies by less than �1%; negligible in most situations.
The effect of mounting and nearby objects is probably greater.
Note the slope changes in the curve. These do repeat in the
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NEC calculations. However, they may be due to limits on the
program. Warnings of segments being improper do occur in
this analysis.

Fig. 5b shows the effect of varying the stub spacing, for
a stub

�

4
high at 144 MHz. Over this range, the resonant

frequency does vary linearly with spacing. However, if the
total length of conductor is considered, the length of the two
sides plus the length of the bottom connection, the resonant
frequency is nearly a constant with total conductor length, to
within just over �0:5%: The small departure (<0.003�) from
�

2
appears to arise from �eld fringing at the open stub ends. If

stub correction is needed, the height can be set to give 0.4975
� as the total conductor length.

IV. CHARACTERISTICS OF THE ANTENNA

Information on end-fed antennas is almost non-existent. All
I have seen use the approximation that the characteristics are
that of half of a center-fed dipole. This neglects the effects
of coupling between the two halves. Method-of-moments
techniques such as implemented in NEC can approximate
the end resistance by using a large number of segments, and
deriving the drive resistance as the feed segment approaches
the wire end, then extrapolating to total length. This is possibly
adequate for thin wires, but with large diameter wires there
will be an appreciable �eld from the wire (or tubing) end,
which is neglected by all programs I have seen. The effect
can be determined for very large conductors by simulating
these as a grid of wires, closed at the ends by a radial grid.
A conclusion to draw is that end-feed drive resistance is
really not known. Further, the departure from a cosine current
distribution in the J-pole case has an appreciable effect.

Fig. 5a

. Fig. 5b
Fig. 5. Effect of dimension variation of a

�

4
stub. (a)

Conductor diameter has a small effect on resonance, less
than 1% of nominal frequency, (b) Resonant frequency is a
linear function of U arm spacing, but is nearly independent

of spacing for total length of conductor.

Fig. 6 shows calculated values of the J-pole antenna resistance
and reactance. This assumes that the impedance measured for
the J-pole assembly is the effect of two impedances in parallel,
that of the stub and that of the antenna. The stub impedance
was �rst determined with no antenna and the feed at the top
of the stub, then recalculated with the antenna in place. Both
resistance and reactance vary almost as the log of diameter
over the selected range of sizes.

A number of attempts to visualize the mechanisms involved,
and to �nd a reliable method of going from antenna parts
to the complete antenna were made. They led to the further
conclusion that it is necessary to work with the complete
antenna, rather than attempting to handle it by sections.

Fig. 6. Calculated end-feed impedance of a half-wave
antenna used in the J-pole con�guration. See text.
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V. THE J-POLE ASSEMBLY

The drive impedance of a 142 MHz J-pole with stub 19:4"
high and antenna extending to 58:8" is shown in Fig. 7 for
drive positions up to 25% of stub height. Drive resistance
varies from essentially zero to over 100
; with the variation
being nearly linear with tap height. The height for a 50
 feed
is about 12% of stub height.

For tap positions below 10%; the drive reactance change
with drive position is small. However, at greater tap heights,
the reactance is also increasing, again nearly linearly with
height. It appears that this is due to the small inductance
inherent in the tap connection: its effect beomes larger as
the voltage on the stub increases with height (very nearly
a cosine function). This is a complication in matching. It
means that there are conditions where increasing tap height
to increase drive point resistance is also detuning the system,
which requires some further adjustment.

Fig. 7. Drive impedance of a J-pole assembly as the feed
position is varied. If the feed is higher than about 10% of the
U height, both drive resistance and reactance change. Most
designs place the feed in the area of low reactance change.

But there are further complexities. Fig. 8a shows the effect of
antenna length on drive impedance. The drive resistance varies
much more than the reactance. Again, change to adjust one
quantity changes another. Essentially the same situation occurs
as the frequency is changed, as shown by Fig. 8b. Finally, as
shown in Fig. 8c, changing the conductor size (of both stub and
antenna) has a marked effect on drive resistance, but little on
reactance. The major reactance change is for small conductors,
where the �eld fringe effects at the top of the stub are relatively
large.

Fig. 8a

Fig. 8b

. Fig. 8c
Fig. 8. Variational effects on a J-pole assembly. (a) Effect of
varying the antenna length on drive resistance, for four feed
positions, (b) Effect of varying operating frequency, and (c)
Effect of varying diameter of antenna section only. The
effects of changing antenna length and drive frequency are
very nearly the same. Antenna diameter has little effect on

drive point reactance.

VI. RECOMMENDATIONS FOR DESIGN

Given these interactions, it has not been possible to develop
a "cut, assemble and it works perfectly" approach to securing
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exact match at a given design frequency. This leads to the
following recommendations:

� If 1.0 SWR at a given frequency is not a necessity, use
the classical

�

4
stub and

�

2
antenna dimensions. The tap

position can be set using Fig. 9. Note that this will not be
the 50+ j0 drive point, but the one where the magnitude
of Z is 50 Ohms.

� If a better match is a necessity, model the antenna with
a NEC program, changing dimensions by trial until the
design goal is reached. Figures 7 and 8 can be used to
give the direction of change, and the approximate amount.

� If exact match is a goal with an antenna already built,
measure the drive impedance with a meter or bridge
giving both R and X values. Adjust the tap position to
give the goal drive resistance, most often 50 Ohms. Use
the curves or equations in the ARRL Antenna Handbook
to design an open or shorted stub to cancel the reactance.

Probably, the classical design will be entirely adequate.

Fig. 9. Drive point impedance of a classical J-pole as a
function of tap position, for four system conductor

diameters. Interpolate for other diameters. The indicated
position should give a good match.

VII. J-POLE VARIATIONS

There are variations of a J-pole, created by adding another
half-wave antenna above the main radiator, using either a
quarter-wave stub or resonant LC parallel trap as shown in
Fig. 10a to give the necessary phase reversal. Be cautious in
using this design. For example, Fig. 10b shows the pattern for
the antenna of Fig. 10a, using a resonant trap. The gain has
increased to 3.5 dB, but the lobe has been tilted upward, so
the gain in the horizontal plane has actually decreased. This
is partly due to the loss along the wire which happens with
all end-fed antennas, but is largely due to the fact that the
two half-wave sections are only coupled through the radiation
�eld. Using a quarter-wave stub instead reduces the upward
beam tilt. In trials here, the increase in horizontal gain was
only on the order of 1 dB, hardly worthwhile.

Fig. 10a

. Fig. 10b
Fig. 10. A J-pole version with two colinear antenna
elements, in this case separated by a resonant trap. (a)

Current distribution, and (b) Pattern in the vertical plane of a
vertical assembly. The current in the upper antenna will be
greater if the trap is replaced by a quarter-wave stub, and
maximum radiation will be at a lower elevation angle.

There is a way to secure both a better pattern and better gain.
This, in essence, mounts a second J-pole upside down from
the common design, as shown in Fig. 11a. Here, the feed is at
the base of the U of either antenna to give pattern symmetry.
The antenna is really constructed of two pipe sections one
wavelength long, overlapping by a half-wave, and fed at the
line of symmetry.

13



Fig. 1. Fig. 11b

Fig. 11a

. Fig. 11c
Fig. 11. Two J-poles in a back-to-back con�guration, formed
from two 1� conductors overlapping a half-wavelength, fed
at the center of symmetry. (a) Schematic, (b) Current

distribution, and (c) Vertical plane pattern. This is a simple
way to increase gain.

The current on the antenna is shown in Fig. 11b. While the
currents on the two stub sections are not the same, otherwise
the distribution is symmetrical. The result of this shows in the
pattern plot of Fig. 11c. Gain has nearly doubled, essentially
to 4 dB. The maximum gain is at right angles to the line of
the antennas, that is, toward the horizon. Since the feed is to
the bottom of two U sections in parallel, the drive resistance is
very low, on the order of 7
: The point of zero drive reactance
is much lower than indicated by the half-wave section length,
being very close to 0.44 wavelengths. Design parameters for
this variation were not studied further.
Mounting this antenna as an isolated vertical may be a little

more of a problem than for the conventional type. However, it
is easy to mount from the corner of a tower by the use of one
or two plastic tube standoffs plus one or two tee-sections and
element spacers. Feed would be at the center of symmetry,
with a quarter-wave matching transformer (which could be
integrated with the supports) to change the low drive resistance
of 6:8
 to the transmission line impedance. This design merits
more attention.

VIII. CONCLUDING REMARKS
The mechanically simple J-pole antenna proved to be sur-

prisingly complex, partly due to the presence of three coupled
circuits, but also to the fact that common construction requires
approaching the computational limits of NEC.
The author found it quite surprising that the �standard de-

sign� 0:25� and 0:5� J-pole sections (as discussed in Section
II) turn out to be so close to best design, after experience with
the difference in quads and dipoles.
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I. Introduction 
The focus of this tutorial is to detail the implementation of a locally corrected Nyström (LCN) 

based solution of three-dimensional electromagnetic scattering problems.  The LCN method has 
demonstrated exponentially convergent solutions for electromagnetic scattering problems, 
including problems involving PEC scatterers [1, 2], dielectric scatterers using surface [3] and 
volume integral equation methods [4], as well as for thin-wire antennas [5].  The principal 
advantages of employing a methodology that is high-order convergent are:  i) the computer 
resources required to realize accuracy to a desired tolerance can be greatly reduced as compared 
to a classical low-order technique, ii) accurate estimations of the solution error can be efficiently 
obtained, and iii) the LCN method is quite simple to implement.  As the LCN method is 
maturing it is being applied to more practical engineering design problems and is proving to be a 
very powerful solution technique. 

The following sections of this tutorial are aimed at outlining more specific details of 
implementing the LCN method.  While space limits a full description of all aspects of an 
implementation, it is hoped that enough detail is provided to encourage readers to implement and 
test this very powerful solution technique. 

II. Integral Equations 

Consider the interaction of a time-harmonic electromagnetic wave ( j te ω  time-dependence) 
with a material scatterer made of a composite of penetrable materials (with piecewise constant 
material profiles) and non-penetrable conductors.  Let the ith region with material profile ( , )i iε µ  
be defined as volume iV .  A surface separating volumes iV  and jV  is denoted as ,i jS .  Let ,i jS +  

denote the surface just inside iV , and ,i jS −  denote the surface just inside jV .  Equivalent current 
densities are then placed on surfaces separating each material volume.  These are defined as: 
 

, , , ,
, , , ,ˆ ˆ ˆ ˆ, , ,

i j i j i j i j
i j i i j i i j j i j jS S S S

J n H M n E J n H M n E
+ + − −

+ + − −= × = − × = × = − ×
r r r r r r r r

, (1) 

where ˆin  and ˆ jn  are the unit normal directed into iV  and jV , respectively.  At any point on ,i jS  
ˆ ˆj in n= − , and the tangential fields are continuous, thus: 
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 , , , , , ,,i j i j i j i j i j i jJ J J M M M+ − + −= − = = − =
r r r r r r

. (2) 

On the surface of a perfect conductor, only the electric current density is supported.  Thus, 
 

,
, ˆ

i p
i p i S

J n H
+

= ×
r r

. (3) 

The scattered electric and magnetic fields radiated by the equivalent currents in volume iV  are 
computed as: 
 ( ) ( ) ( ),scat

i eq eq i i eq i eqE J M J Mη= −L K
r r r r r

, (4) 

 ( ) ( ) ( )1,scat
i eq eq i eq i i eqH J M J Mη −= +K L
r r r r r

, (5) 

where 

 ( ) ( ) ( )2

1 ,i eq i eq i
i

X jk I X r G r r d
kΩ

⎡ ⎤
′ ′ ′= − + ∇∇ ⋅ Ω⎢ ⎥

⎣ ⎦
∫L

r r r r r , (6) 

 ( ) ( ) ( ),i eq i eqX G r r X r d
Ω

′ ′ ′= ∇ × Ω∫K
r rr r r , (7) 

and Ω  is either a surface or volume, I is the unit dyad, ( ) | |, / 4 | |ijk r r
iG r r e r rπ′− −′ ′= −

r rr r r r , 

i i ik ω ε µ=  and /i i iη µ ε= .   
A surface integral formulation is then derived by enforcing the appropriate constraints on each 

material boundary. A combined field formulation based on Müller’s formulation [6, 7] is applied 
on material surfaces leading to: 
 ( )

, ,, ,
,ˆ

i j i j i j
i j i ji j i j

inc inc scat scat
r i r j i i j r r r i r jS SS S

t E t E t n M t E t Eε ε ε ε ε ε
+ +− −

⋅ + ⋅ = ⋅ × + − − ⋅
r r r r rr r r r r

, (8) 

 ( )
, ,, ,

,ˆ
i j i j i j

i j i ji j i j

inc inc scat scat
r r i i j r r r rS SS S

t H t H t n J t H t Hµ µ µ µ µ µ
+ +− −

⋅ + ⋅ = − ⋅ × + − ⋅ − ⋅
r r r r rr r r r r

, (9) 

where, ,inc inc
i iE H
r r

 are radiated by impressed sources in region i, ,scat scat
i iE H
r r

 are radiated by 
equivalent currents in volume iV , and t

r
 is a test vector tangential to ,i jS . The advantage of this 

formulation over the classical PMCHWT (Poggio, Miller, Chang, Harrington, Wu and Tai) 
formulation [8] is that it behaves as a second-kind integral equation moderate to low contrast 
materials, and the hyper-singularity of the L -operator in (6) is reduced by one order. 

On a PEC surface, the combined field integral equation (CFIE) is applied [9]:  

( ) ( )
, , , ,

,ˆ ˆ1 1
i p i p i p i p

inc inc scat scat
i i i i p iS S S S

i i

t E t n H t E t J n Hα αα α
η η

⎛ ⎞ ⎛ ⎞⋅ + − ⋅ × = − ⋅ + − ⋅ − ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r r r rr r r r
. (10) 

where α  is a real constant, generally defined between 0 and 1. 

III. Nyström Discretization 
In [2], it was shown that the LCN method is equivalent to a moment method formulation with 

smooth basis and testing functions that employs a fixed-point numerical quadrature 
approximation for the outer integral.  Through a simple transformation, this can identically be 
expressed as a quadrature-point matched method of moment formulation [10].  Then, mapping 
the currents to the quadrature points, the method of moment formulation can then be rendered in 
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an identical form as the LCN method [2].  Since most practitioners in computational 
electromagnetics (CEM) are trained in the method of moments, this paradigm will be followed in 
this tutorial. 

It is assumed that the three-dimensional surfaces are discretized using high-order quadrilateral 
patches (Section IV).  A set of basis functions is then introduced for each patch.  For smooth 
surfaces, one can expand the vector surface current density in terms via Legendre polynomials 
[1, 2, 10] leading to a set of functions that is polynomial complete to order p: 

 
( ) ( ) ( )
( ) ( ) ( )

, 1 2 1 2

, 1 2 1 2

, / ,

, / ,

j k
i i j k

j k
i i j k

J u u a P u P u g

M u u a P u P u g

=

=

r r

r r  (11) 

for ( )1, 2; , 0.. 1i j k p= = − , where, following the notation of Stratton  [11], 1 2( , )u u  are the local 

curvilinear coordinates of the quadrilateral patch, iar  are the local unitary vectors and g  is the 
Jacobian evaluated at 1 2( , )u u , and ( )jP u  are jth-order Legendre polynomials.  Note that for 

simplicity, we have assumed identical basis orders along the 1u  and 2u  directions.  In general, 
these do not have to be equal.  Some observations are made for this choice of basis: 1) the basis 
functions are local to each quadrilateral patch and do not enforce current continuity across patch 
boundaries, 2) the i-th basis is directed along iar  and is tangential to the patch boundaries 0ju =  
and 1ju =  ( j i≠ ), and 3) there are 22 p×  basis functions per patch for each current type.   

For geometries that lead to currents with known edge singularities (say a knife edge), basis 
functions with Jacobi polynomials can also be employed [2, 12].  Else, for general edge 
singularities, a mixed-order basis proposed by Çalişkan and Peterson can be employed [13, 14].  
For the sake of this tutorial, we will limit the discussion to the polynomial complete basis in (11). 

The currents in the integral operators in (8)-(10) are expanded via the basis functions in (11) 
and weighted by constant coefficients.  This leads to 22 p×  unknowns per patch for each current 
type.  Consequently, 22 p×  constraints must be enforced.  To this end, an appropriate quadrature 
rule is introduced over each quadrilateral patch.  For a quadrilateral patch, a convenient choice is 
the product of two p-point one-dimensional Gauss-Legendre quadrature rules [15].  This leads to 

2p  abscissa points on the patch.  Then, the integral operator is “tested” by performing the inner-
dot product of the operator with a test vector at each of the quadrature abscissa points.  A 
convenient choice for the test vector is simply the unitary vectors iar .  On a material surface, the 
same testing procedure is used for the electric field integral equation (EFIE) and the magnetic 
field integral equation (MFIE) in (8) and (9), respectively.  Thus, for each field type, there are a 
total of 22 p×  constraints per patch.  This leads to a square linear system of equations. 

IV. High-Order Patch-Based Discretization 
As found in [1, 2], the LCN method is most efficient when employing higher-order basis on 

large smooth curvilinear patches – that is, the error will converge to a desired accuracy with 
fewer unknowns.  The reason for this is simple: higher-order basis converge more rapidly than 
lower order basis.  Thus, with the LCN method it is desirable to model geometries with large 
curvilinear cells that represent the surface to sufficient accuracy.  A balance of CPU time and 
memory is often realized with a discrete patch representation that has an average cell radius of  
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Fig. 1. Curvilinear quadrilateral cell discretization of a spherical surface with 24, 5th-order cells). 

 
~ 1 λ .  Thus, it becomes imperative to employ isoparametric curvilinear patches that accurately 
model a surface of arbitrary curvature.  If one can not support such patches, then one is forced to 
use a refined discretization – thus losing the advantage of the high-order method.  For classical 
low-order techniques, this has not been an issue since the slow convergence requires one to 
resolve the surface with a minimum of 10 to 20 edges per linear wavelength to get reasonable 
accuracy.  Often, such fine sampling is also enough to represent a curved surface to sufficient 
accuracy using a piecewise linear approximation.   

Most commercial mesh generation programs are limited by the order of curvilinear cells that 
can be generated.  Most CAD packages provide at least bi-linear quadrilaterals (first order).  
Some will render bi-quadratic and very few will render up to bi-cubic elements.  This is still too 
limiting, since arbitrary order is desirable for a high-order method.  To have this ability, we have 
developed a mesh tool that will generate quadrilateral elements of arbitrary order from an initial 
coarse linear discretization.  As an example, Fig. 1 illustrates a sphere that is approximated by 24 
fifth-order quadrilateral patches that was generated by our mesh tool. 

A quadrilateral patch of order n is represented by ( 1) ( 1)n n+ × +  nodes that lie on the surface.  
In the unitary space, these nodes are uniformly spaced, as illustrated in Fig. 2.  Each node has a 
physical coordinate ,j krr  ( , 0,j k n= ).  The position at any arbitrary coordinate 1 2( , )u u  can be 
obtained via interpolation: 

 ( ) ( )1 2 1 2
,

0 0

( , )
n n

n n
j k j k

k j

r u u u u r
= =

= Φ Φ∑∑r r  (12) 

where the interpolation polynomials are expressed as: 
 ( ) ( , ) ( ,1 )n

i i n iu R n u R n u−Φ = −  (13) 

where ( , )iR n u  is a Sylvester interpolation polynomial [16]: 

 
( )

1

0

1 , 1
( , ) !

1, 0

i

ki

nu k i n
R n u i

i

−

=

⎧
− ≤ <⎪= ⎨

⎪ =⎩

∏  (14) 

It is noted that this interpolation procedure exactly represents a bi-linear quadrilateral when 
1n = , bi-quadratic quadrilateral when 2n = , and a bi-cubic quadrilateral when 3n = .  It also 

represents interpolations to arbitrary order.  
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Fig. 2. Mapping of a fourth-order quadrilateral cell from the unitary space to the physical patch. 

 
The unitary vectors for the patch are then computed as: 

 ( ) ( )
1 2

1 2
,

0 0

( , ) n n
n n

i j k j ki i
k j

r u ua u u r
u u = =

∂ ∂
= = Φ Φ

∂ ∂ ∑∑
r

r r  (15) 

Analytical expressions for the derivatives of the interpolation polynomials are easily derived, and 
the derivatives of the Sylvester interpolation polynomials can be expressed via a recursive 
relationship that is efficiently computed. 

This scheme is general enough to interpolate surfaces up to arbitrary order.  However, it still 
must be realized that the interpolation scheme is only 0C  continuous.  And, for very high-orders 
(~n > 10) the interpolation operator can be ill conditioned.  As a result, Gibb’s phenomena can 
occur leading to small high spatial-frequency oscillation of the interpolated surface.  These issues 
can be resolved by working with interpolation functions that enforce higher degrees of continuity 
across patch boundaries (e.g., splines or NURBS) and possibly using non-uniform point 
sampling that minimizes the determinant of the Vandermonde matrix (e.g., Lobatto or 
Chebyshev point sampling).  Nevertheless, the interpolation scheme proposed in (12) works 
quite well to reasonably high order. 

In a general implementation of a method of moment code, one would like to use an object-
oriented approach such that kernel evaluations are essentially independent of the patch type or 
order.  That is, one would like to use the same code for bi-linear quads, high-order quads, or 
specific curvilinear patches that exactly conform to a canonical surface (e.g., spherical, conical, 
cylindrical, or ellipsoidal surfaces).  This is easily done by defining a class (or a function) that 
simply returns the position vector and the unitary vectors given the local curvilinear coordinates 

1 2( , )u u  for the source or field patch.  In this way, the kernel of the code has no direct 
dependencies on the source or field patch types. 

V. Numerical Integration Issues 
The operators defined in (4)-(10) require the computation of a convolutional integral 

performed over an arbitrary “source” patch and computed to a field point.  This convolution is 
estimated using numerical integration.  How this integration is computed will depend upon the 
separation of the field quadrature point and the source patch and the level of accuracy desired.  If 
the field point lies on the source patch, then the kernel is singular and must be treated specially.  
If the field point is close to the source patch, then the integration must be performed using some 

19



type of adaptive numerical quadrature.  In general, if d digits of accuracy is expected from the 
final solution, then d-digits of accuracy should be demanded from the adaptive quadrature 
routine.  This defines the “near” region.  Adaptive quadrature is not needed once the field point 
is sufficiently far away that the fixed-point quadrature rule of the Nyström discretization 
provides at least d-digits of accuracy.  This defines the “far” region.  In the near region, adaptive 
quadrature is used to compute the convolutional integral to d-digits of accuracy.  Then, a local 
correction is performed that effectively maps the current coefficient vector to the currents at the 
quadrature points (c.f., Sections II and III, pp. 2402-2404 of [2]).  In the far region this leads to 
the single point-to-point reaction that is equivalent to estimating the numerical integration of the 
convolutional integral with a fixed-point quadrature rule. 

The most difficult integration to perform in the near region is the singular integrations.  The L 
operator has a hypersingularity and must be properly manipulated so that it is numerically 
tractable.  The K operator has an integrable 1/R singularity.  However, care still must be taken to 
compute this in an efficient manner.   

Initially, consider the treatment of the L operator.  Specifically, from (6) 

 ( ) ( )2( ) ( , ) ( , ) ( )m i n i m n i m i m i m n
S S

t J jk t J r G r r ds k t G r r J r ds−

′ ′

⎡ ⎤
′ ′ ′ ′ ′ ′⋅ = − ⋅ + ⋅∇ ∇ ⋅⎢ ⎥

⎣ ⎦
∫ ∫L

r r rr r rr r r r r r  (16) 

where, ( )nJ r′
r r  is the vector basis function in (11), mr

r  is an abscissa point of the quadrature rule 
on the field patch, and the test vector mt

r
 is evaluated at mr

r .  The integrand of the first integral in 

(16) has a 1/R singularity.  However, due to the double ∇  operator, the integrand of the second 
integral is hypersingular in the limit 0R → .  In fact, it exhibits a singularity of ( )31/ RO .  

Consequently, this term must be manipulated to reduce the order of singularity.  Thus, we will 
focus on manipulating this term.  Initially, the following identity can be derived: 

 
( )( ) ( )( )( )

( )( )( )

||

||

( , ) ( ) ( ) ( , )

( ) ( , ) ,

m i m n m n i m
S

n m i m
S

t G r r J r ds t J r G r r ds
S

J r t G r r ds

′ ′ ′ ′ ′ ′ ′⋅∇ ∇ ⋅ = − ⋅∇ ⋅∇

′ ′ ′ ′= − ⋅∇ ⋅∇

∫ ∫

∫

r rr rr r r r r r

r rr r r  (17) 

where we have made use of the reciprocal nature of the Green function such that ( , )i mG r r′∇ =
r r  

( , )i mG r r′ ′−∇
r r  and the complimentary nature of the operators ( )( )||( )n mJ r t′ ′⋅∇ ⋅∇

r rr .  Also, ||′∇  is the 

projection of the gradient operator onto the surface tangent.  Next, utilizing a vector identity, the 
right-hand-side of (17) is rewritten as 
 ( ) ( )|| ||( ) ( , ) ( ) ( , )n m i m n m i m

S S

J r t G r r ds J r t G r r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= − ∇ ⋅ ⋅∇ + ∇ ⋅ ⋅∇⎣ ⎦∫ ∫
r rr rr r r r r r . (18) 

The first term on the right-hand-side of (18) can be rewritten using the divergence theorem for 
open surfaces [1] as: 
 ( ) ( )( )|| ˆ( ) ( , ) ( ) ( , )n m i m n m i m

S C

J r t G r r ds e J r t G r r dl⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′− ∇ ⋅ ⋅∇ = − ⋅ ⋅∇⎣ ⎦∫ ∫
r rr rr r r r r r  (19) 
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where C is the closed contour bounding the open surface S, and ê′  is the outward normal to the 
contour that is also tangential to the surface (i.e., ˆ ˆne dl dl a′ ′ ′= ×

r
, where ˆna  is the outward normal 

to S).  Next, the second-term on the right-hand-side of (18) is rewritten as: 
 ( )( )|| ||( ) ( , ) ( , ) ( )n m i m i m m n

S S

J r t G r r ds G r r t J r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′∇ ⋅ ⋅∇ = ∇ ⋅ ∇ ⋅⎣ ⎦∫ ∫
r rr rr r r r r r  (20) 

This term still has a singularity which is ( )21/ RO .  To reduce this by one order, the right-hand-

side of (20) is rewritten as: 
 ( ) ( )||( , ) ( ) ( , )i m m n mn i m mn

S S

G r r t J r K r ds G r r K r ds⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′= ∇ ⋅ ∇ ⋅ − + ∇ ⋅⎣ ⎦∫ ∫
r r rrr r r r r r r  (21) 

where, ( ),m nK r′
r r is defined by 

 ( ) ( )
,

m
mn n m

r
K r

g
χ

′Ψ
′ =

′

r rr r ,  (22) 

where ,n mχ   is the constant: 

 ( ), || ( )
m

n m n
r r

g J rχ
′=

′ ′= ∇ ⋅
r r

r r , (23) 

and the vector ( )m r′Ψ
r r  is defined by: 

 ( ) ( ) ( ) ( ) ( )1 2
1 2

m m
m m mr r r r

r t a a r t a a r
′ ′= =

′ ′ ′Ψ = ⋅ + ⋅r r r r

r r rr r r r r r r  (24) 

such that at the singular point ( ) || ( )
m

mn m m n r r
K r t J r

′=
′ ′= ∇ ⋅ r r

r rrr r . Consequently, the singularity in the 

first term on the right-hand side of (21) is simply ( )1/ RO  and is numerically tractable.  The 

second term in (21) can be simplified to:  

 
( ) ( )( ) ( )

( )

|| ||( , ) ( , ) ( , )

ˆ ( , )

i m mn mn i m i m mn
S S

R
mn m

C

G r r K r ds K r G r r G r r K r ds

e K r G r r dl

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′∇ ⋅ = − ∇ ⋅ − ∇ ⋅⎣ ⎦

′ ′ ′ ′= − ⋅

∫ ∫

∫

r r rr r r r r r r r r

r r r r  (25) 

However, from (22)-(24), it is immediately seen that ( )|| , 0m nK r′ ′∇ ⋅ =
r r .  Then, applying the open 

surface divergence theorem on the remaining term:  
In summary, from (17)-(25): 

 
( ) ( )

( )( ) ( )

||( , ) ( ) ( , ) ( )

ˆ ˆ( ) ( , ) ( , ) .

m i m i m m mn
S S

m i m mn i m
C C

t G r r J r ds G r r t J r K r ds

e J r t G r r dl e K r G r r dl

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′⋅∇ ∇ ⋅ = + ∇ ⋅ ∇ ⋅ −⎣ ⎦

′ ′ ′ ′ ′ ′ ′ ′− ⋅ ⋅∇ − ⋅

∫ ∫

∫ ∫

r r rr rr r r r r r r

r rrr r r r r r  (26) 

It is assumed that the Nyström discretization points are interior to S and do not lie on the contour 
C.  Consequently, the surface integration in (26) and the leading term in (16) have an integrable  
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Fig. 3 (a) Decomposing the unitary square into triangles with common vertex at the singular point.  (b) 

Mapping the “Duffy-triangle” into a parameter space. 
 
( )1/ RO  singularity.  Similarly, the surface integral arising from the K-operator is also ( )1/ RO .  

These surface integrals can be computed efficiently and to controllable accuracy using a Duffy 
transformation [17] and adaptive numerical quadrature.  The contour integrals are non-singular 
and can be computed directly using one-dimensional adaptive quadrature routines. 
 
The Duffy Transform 

At this point it deems instructive to review the integration of a singular integral via the Duffy 
transformation.  Consider the integration over a quadrilateral cell: 

 ( )
2 1

1 1
1 2 1 2 1 2

0 0

( , ) ( ) ( , ( , )) ( ( , ))m m m
S u u

I r t K r r J r ds t K r r u u J r u u gdu du
= =

′ ′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅∫ ∫ ∫
r rr rr r r r r r r  (27) 

where K  represents a dyadic kernel that has a 1/R singularity at mr
r  and it is assumed that mr S∈

r .  
Initially, the quadrilateral cell is triangulated with a set of triangles that share a common point at 

mr
r , which is defined by local unitary coordinates 1 2( , )m mu u .  This is depicted in the unitary space 
in Fig. 3 (a).  The integration over the quadrilateral is then expressed as a superposition of the 
integration over each “Duffy triangle.”  Each Duffy triangle is then mapped into a parametric 
space as illustrated in Fig. 3 (b) such that the singular point is mapped to the edge 0u = .  Thus,  

 ( )
1 1

1 2 1 2 1 2

1 0 0

2 ( , ( , )) ( ( , )) ( , )
N

m mI r t A K r r u u J r u u g u u d d
ζ ξ

ξ ξ ζ
∆

= = =

′ ′= ⋅ ⋅∑ ∫ ∫l
l

rrr r r r  (28) 

where N∆  is the number of Duffy triangles, and Al  is the area of the l -th triangle (computed in 
the unitary space).  From Fig. 3 (b): 
 ( ) ( )1 22 m mA u u u u= − × −l

r r r r . (29) 
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Fig. 4 Relative mean error in the RCS of a sphere of radius 6ok a =  computed via the LCN method 

with ninth-order basis versus the interpolation order n of the 24 curvilinear cells.  Also compared 
in the graph is the relative error of the area of the patched sphere. 

 
There is also a simple linear mapping from the parametric coordinates to the unitary coordinates: 
 ( ) ( ) ( )1 2

1 2, 1 1mu u u u u uξ ξ ζ ξζ= = − + − +
r r r r . (30) 

When evaluating (28), one first computes 1 2( , )u u  from the parametric coordinates and then 
computes 1 2( , )r u u′r , the unitary vectors and g .  Though, it is worth noting that since the 

current basis functions in (11) normalized by g , this term cancels in an actual implementation. 

VI. Some Numerical Results 
We have implemented the LCN solution for a number of integral operators and have reported 

the results in [2, 4, 10, 12, 14].  Additional studies have been reported in [1, 5, 18].  Here we 
present a few examples mainly to study the convergence characteristics of the LCN method.  
Initially, we will study the electromagnetic scattering by a PEC sphere of radius a defined by 

6ok a = .  The sphere was discretized with 24 quadrilateral curvilinear cells as defined in Section 
IV.  Initially, the basis function order was set to p = 9.  Similarly, a 9 9× -point Gauss-Legendre 
quadrature rule was used for the Nyström discretization of each patch.  Thus, there are a total of 
3,888 unknowns.  Then, the order of the cells was increased from n = 1 to n = 12.  The bistatic 
RCS was then computed for the sphere and the mean relative error was calculated relative to a 
Mie-series solution as: 

 
( ) ( )

( )1

, ,1Mean Error
,

a
LCN MieN

i i i i

Mie
ia i iN

σ θ φ σ θ φ

σ θ φ=

−
= ∑  (31) 

where aN  is the number of angles (360 uniformly spaced angles were computed).  A graph of 
the mean relative error versus the cell order n computed for the MFIE is illustrated in Fig. 4.  The 
error in the area of the sphere as approximated via the 9 9× -point Gauss-Legendre quadrature 
rule is also graphed in Fig. 4 as a comparison.  Initially, it is observed that error in the RCS and 
the area follow the same general trend.  It also appears that the minimum error is reached when  
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Fig. 5 Relative mean error in the RCS of a sphere of radius 6ok a =  computed via the LCN method 
versus the basis order p. 

 
1n p= + .  It is also observed that even cell orders (which have an odd number of points) 

converge at a different rate than odd cell orders for an odd-order quadrature rule. 
Next, the error in the RCS was computed for the sphere as a function of the basis order.  In 

each case, the cell order is set so that n = p+1.  The RCS was predicted via the MFIE ( 0α =  in 
(10)), the EFIE ( 1α = ) and the CFIE ( 0.1α = ), and the mean error was predicted via (31).  A 
graph of the mean relative error versus order p is illustrated in Fig. 5 for p = 3, 5, 7, and 9.  The 
MFIE is converging optimally with the error decreasing nearly two orders of magnitude as p is 
increased by 2 orders.  The EFIE is converging at a slower rate, and the CFIE is somewhat in-
between.  It is also noted that the number of degrees of freedom for each case is equal to 

224 2 p× , since there are 24 cells, 2p  basis and quadrature points, and 2 vector projects per 
quadrature point.  Finally, Fig. 6 illustrates the bistatic RCS for p = 5 as compared to the Mie-
series solution.  There is no observable difference for the MFIE and CFIE solutions, and only a 
very slight discernable difference for the EFIE solution.  These simulations required only 1200 
unknowns.  We should also point out that the average patch edge length is ~ 0.75 oλ .  Thus, with 
p = 5, this corresponds to a discretization of < 7 unknowns per linear wavelength.   

Finally, we illustrate the scattering by the EMCC metallic ogive [19].  The curvilinear cell 
discretization of the ogive is illustrated in Fig. 7 (288 cells n = 7).  The ogive is 10 inches long 
along the major axis and has a 1 inch radius at the center.  The monostatic RCS of the ogive at 9 
GHz computed in the 0o elevation plane ( 90oθ = ) is illustrated in Fig. 8.  This was computed via 
the MFIE with p = 4.  These results compare extremely well to the measured data and predictions 
by Cicero in Fig. 9, pg. 86 of [19].  At this frequency, the ogive is approximate 7.6 oλ  long and 
has a radius of 0.76 oλ  at the center.  These results were obtained using only 9,216 unknowns.  
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Fig. 7 The EMCC metallic ogive [19] approximated by 72 curvilinear cells (n = 7). 
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