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Abstract 
The validation of numerical models often progresses in-
crementally from previous models or other numerical solu-
tions or is undertaken by comparison with experimentally 
obtained reference measurements.  Notwithstanding the 
accuracy of the reference results, quantification of the er-
ror between the two is important information in deciding 
the quality of the model.  It is frequently the case that this 
estimate of error is done by eye.  However, for purposes of 
traceability and objectivity, interest has started to focus on 
techniques to quantify this error in an algorithmic manner 
in a way that agrees with the general observations of ex-
perienced engineers.  This paper reviews two of the most 
promising techniques, namely Feature Selective Validation 
(FSV) and Integrated Error against Logarithmic Fre-
quency (IELF), putting them in the context of correlation 
and reliability functions. 

INTRODUCTION 
Validation may involve comparing the results from one 
numerical model with another modeling technique, another 
implementation using the same technique or with measure-
ments.  The issues raised here include: 

•  Noise, including numerical noise and implementa-
tion errors, and experimental error compound dif-
ferences in the results being compared.  Experi-
ence may allow those undertaking the validation to 
accommodate these errors.  In many cases, this 
will not be done overtly, which causes problems in 
trying to capture the experience being relied upon.  

•  In many practical situations, for example in EMC, 
the results are complex.  One particularly common 
example is the coupling to cabling where, typically 
this will involve cables in cavities, coaxial sys-
tems, cross-talk systems and/or multiaperture sys-
tems.  These resonant structures interact producing 
complex looking data.  The effect of this is that 
discrepancies in one aspect of the model can mask 
the accuracy of the rest of the model. 

•  Comparisons between models and measurements 
becomes entirely subjective, which increases the 

communications difficulties within a team, particu-
larly if this team is multidisciplinary (and therefore 
does not share similar backgrounds and experi-
ences) or geographically separated (and hence will 
not develop a group tacit knowledge of such mat-
ters) 

These factors are substantive arguments for the develop-
ment of techniques to quantify the errors and recommended 
practice in using this information.  This paper is concerned 
primarily with generating this quantitative data. 
 
Two data sets used in this paper to represent validation data 
are given in Figure 1.  They have been chosen because they 
have moderate complexity resulting from compound reso-
nances.  It is acknowledged that the actual data, to which 
the techniques discussed later may be applied, may have a 
much greater or lower feature density. 
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Figure 1 Two typical data sets used for comparison 

It can be seen that the set of data shown in Figure 1 exhibits 
a very similar amplitude trend (mean level).  However, 
there are shifted resonant-like features and some features 
which appear on one data set but not the other. 
As noted previously, engineers typically assess the quality 
of such comparisons visually, with individual and group 
experience, both tacit and explicit, being essential in order 
to comment on the quality of such comparisons [1].  Those 
used to undertaking these comparisons often 'know' how to 
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interpret a result but can't say why: experience suggests the 
ambiguities and the assumptions.  However, problems with 
human interpretation include fatigue and experiential dif-
ferences between those assessing similar results, which pro-
duces different interpretations.  It is also evident that these 
interpretations are further guided by the way in which ex-
pertise is learned, as much as the expertise at a particular 
instant. Thus, continuous learning may, itself, result in tem-
poral differences, with different assessments of the same 
data being forthcoming at different times. 
 
An important consideration when quantifying the differ-
ences between data sets,  is that any quantitative measure 
should also provide a basis for investigating the quality of 
the comparisons.  The measure should encourage the user to 
ask “why is that?”, ideally decomposing the original com-
parison into something that helps in the post-mortem exer-
cise of identifying if and how the comparison can be im-
proved.  Moreover, to aid communication, natural language 
descriptors should be used where possible. 
 
The next section outlines correlation and Reliability factors, 
neither of which are particularly useful in this context, but 
worth considering as essential background: there may be 
circumstances in which these approaches could be benefi-
cial.  This is followed by an overview of Feature Selective 
Validation (FSV) and Integrated Error against Log Fre-
quency (IELF), two techniques which have demonstrated 
some benefit in this application area. 
 

CORRELATION and RELIABILITY FUNCTIONS 
The Pearson Correlation Coefficient [2], is usually used to 
measure whether there is a linear relationship between two 
variables and the strength of the relationship. Plotting the 
two signals against each other on a scatter diagram is an-
other easy method to determine the strength of the linear 
relationship between the compared signals, and the direc-
tion of the relationship.  One study on correlation is dis-
cussed in reference [3] 
To ensure that the Pearson Correlation Coefficient is accu-
rate, several assumptions must be met. These assumptions 
involve the residuals of the data sets, which must be inde-
pendent, normally distributed and have a constant variance. 
If the assumptions are not valid, log transformations of the 
data can be used, or an equivalent non-parametric test 
called Spearman Rank Correlation [2] can be applied. 
Spearman Rank Correlation measures the correlation of the 
ranks of the two variables.  Both correlation coefficients 
will lie in the range –1 to +1.  In most cases, the Pearson 
correlation coefficient is the default ‘correlation’. 
 
The Pearson Correlation Coefficient is calculated using: 
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x=data set 1 
y=data set 2 
n= total number of points in both data sets 
 
The Spearman Rank Correlation Coefficient is calculated 
using: 
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D=difference in rank of pairs x and y 
The main disadvantage is that despite the general familiar-
ity, a simple correlation does not convey much information 
about the richness of the data and level of discrimination in 
high feature density situations.  It can, therefore, produce 
results, which do not reflect the ‘by-eye’ opinions [4]. 
 
A technique developed to overcome some of the limitations 
of correlation was the introduction of correlelograms [5].  
These involve cross-correlating the two data sets, incremen-
tally shifting one set against the other to determine the peak 
correlation and the necessary shift (a similar approach 
could be used for stretching operations).  A symmetry 
measure of the cross-correlation function is then determined 
by taking the rms of the differences between the cross-
correlelogram at point k and point fmax -k where k is a vari-
able (frequency) between fmin and fmax.  The final value is 
the difference between the auto-correlelogram (where both 
data sets are the reference data) and the cross-
correlelogram.  Figure 2 shows the cross- and auto-
correlation graphs for the data sets presented in Figure 1. 
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Figure 2 Correlelograms 

 
The results are summarised in table 1 

Table 1 Correlation values 

Maximum correlation value 0.804 
rms difference 0.051 
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rms symmetry 0.901 
  
The fairly high correlation value indicates a reasonably 
good comparison, the difference value suggests that the 
results are close, reasonably uniformly across the range, and 
the high symmetry measure suggests that  there is little 
skewing of the results. 
 
One advantage of this approach is that it extends a tech-
nique which is widely accepted.  The additional measures 
can provide a greater insight into the behavior of the system 
and the graphical output can assist in the overall assessment 
of the comparison.  The disadvantage is that the additional 
measures have little, apparent, intuitive relevance, and relat-
ing them back to the physical systems may be difficult.   
 
Reliability factors (R-factors) were originally used to com-
pare transmission electron diffraction, TED, [6] and to 
compare calculated and measured LEED intensity spectra 
for surface structure determination [7]. Reliability factors 
were designed to analyse differences between two sets of 
results e.g. modelled and experimental data. Difference 
measures are used to compare signals and derivatives are 
used to compare features.  Most R-factors compare the gra-
dients, peaks and troughs of the signals being compared, 
albeit in different ways. 
 
One of the R-factors considered for this work is that pro-
posed by van Hove [8], which consists of a number of indi-
vidual elements, generally comparing differences in the 
original data sets or differences in their derivatives, as de-
tailed here: 
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Ix represent the amplitudes of the data points in the two 
data sets. R1 and R2 emphasize the agreement in the loca-
tions, heights and depths of the peaks and troughs but do 
not concern themselves with the detail on the peaks nor the 
nature of curvature. R3, R4 and R5 were proposed by van 
Hove to overcome this. In order to provide a single figure 
of merit, it has been proposed [4] that a total value can be 
obtained from: 

22222 54321 RRRRRRT ++++=  

 
When applied to the data of Figure 1, the van Hove method 
gives the results of Table 2.  The low values of R1 and R2 
indicate a generally good agreement.  The high value of RT, 
derived from R4 and R5 suggest large differences in the 
fine-grain detail. 

Table 2 Van Hove assessment of the data sets in Figure 1 

R1 R2 R3 R4 R5 RT 

0.136 0.052 -0.275 1.079 1.319 1.723 

Modifications have been made to the van Hove method to 
allow the individual R factors to be derived as a function of 
frequency[6]. 
 

FEATURE SELECTIVE VALIDATION (FSV)[4] 
The basis of the FSV technique is the decomposition of the 
results to be compared into only two 'component' measures 
and then the recombination of the results to provide a 
global goodness of fit measure.  The components used are 
the Amplitude Difference Measure (ADM), which com-
pares the amplitudes and 'trends' of the two data sets and the 
Feature Difference Measure (FDM), which compares the 
rapidly changing features (as a function of the independent 
variable).  The ADM and FDM are then combined to form 
a global difference measure (GDM).  All of the ADM, 
FDM and GDM are usable as point-by-point analysis tools 
or as a single, overall, measurement.  
The ADM and FDM are obtained using the following equa-
tions. 
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where Ilow1 and Ilow2 are the amplitude of data sets 1 and 2 at 
data point f .  The subscript low refers to the low frequency 
components of the data sets.  This is obtained by Fourier 
transforming the data and inverse transforming the lowest 
25% of the data, i.e. the range of frequencies 0 ≤ f ≤ fs/8, 
where fs is the sampling frequency. αAD1 is an amplitude 
normalisation factor which is the average absolute energy 
contained in the signals under investigation. 
 
Ihigh  is the high pass component of the data sets, obtained 
by Fourier Transforming the data sets and inverse trans-
forming the highest 75%, i.e. fs/8 ≤ f ≤ fs/2.  The single 
primes (’) indicate the first derivative with respect to the x-
axis of a set and the double primes (”) indicate the second 
derivative of the data.  The α denominators are normalisa-
tion factors obtained for the data set components being 
compared. 
 
The Global Difference Measure (GDM) is then obtained as: 
 

The value obtained from this equation gives a single figure 
of merit representing the comparison of the modeled and 
measured data across the data points.  The GDM, like the 
ADM and FDM, is available on a point-by-point basis.  The 
benefit of the point-by-point results is that these can help to 
identify regions where attention needs to be focused during 
validation of the model or in the post-mortem phase. 
 
Natural language descriptors have been assigned to the out-
put from this technique (ideal, excellent, very good, good, 
fair, poor, very poor) with some success [9]. 
 
The comparison of the traces in Figure 1 yields the GDM of 
Figure 3, ADM of Figure 4 and FDM of Figure 5.  The 
global figures are given in Table 3 along with their natural 
language descriptors. 
 

Table 3 Overall results of the FSV comparison of the data in 
Figure 1 

Measure Value Descriptor 
GDM 0.3 Good 
ADM 0.1 Excellent 
FDM 0.3 Good 

 
Figure 3 Global Difference Measure of the data of Figure 1 

 
Figure 4 Amplitude Difference Measure of  data in Figure 1 

 
Figure 5 Frequency Difference Measure of  data in Figure 1 

Further, the probability density function of the individual 
point-by-point analyses can be plotted to provide a confi-
dence measure.  Essentially, this density function provides a 
visual guide as to how well a comparison conforms to the 
descriptor discussed above.  The probability density func-
tion for the Global Difference Measure, shown in Figure 3, 
is given in Figure 6. 
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Figure 6  Probability density histogram ‘confidence levels’ for 
the GDM 

The results confirm the conclusions of a visual inspection of 
the source data; that is,  

1. the amplitude and general trends are in excellent 
agreement and  

2. while there are regions, which are substantially dif-
ferent in terms of the location of features, the over-
all agreement is good.   

 
This section has demonstrated the basis of the FSV method 
and described how it can compare data in a tiered manner, 
ranging from a point-by-point analysis to a single global 
figure providing an overview of the whole comparison.  It 
has the advantages of breaking down the comparison into 
the two main aspects generally considered, namely ampli-
tude/trends and features, and of having a natural language 
description.  Previous tests have shown encouraging agree-
ment with the perceptions of practicing engineers. 
 

INTEGRATED ERROR AGAINST LOG 
FREQUENCY (IELF)  [8] 
 
This technique is based on the concept that the difference 
between the data being compared is the most significant 
aspect of the comparison.  Further, any comparison based 
on a mean value of the difference would also require the 
standard deviation in order to give some additional context 
to this figure.  However, the authors’ of [8] concluded that a 
single figure of merit could be obtained by integrating the 
error over the frequency range of interest.  A logarithmic 
frequency axis was chosen.  Essentially, the calculation 
sums the (error ×data point separation) ÷ overall range.  
Hence, the proposed equation for this is: 
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•  n is the number of frequencies for which there is 
data, 

•  f0 is the first frequency, fn is the last frequency, 
and  

•  errorn is the difference between the two sets of 
data for the nth frequency. 

 
The source data in Figure 1, with the difference on a loga-
rithmic frequency range is shown in Figure 7, w. 
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Figure 7 Original and difference data  

 
The scaling of the IELF is such that 0 would be a perfect 
comparison and subsequently larger values would represent 
increasingly poor results.  Applying the IELF to the data of 
Figure 1 (keeping the amplitude axis linear) gives a result 
of 0.9.  However, this value is best used as a relative com-
parison with other results.  Both values indicate a high level 
of agreement between the original data. 
 
An advantage of this approach is that because it produces a 
single value which has some relevance to the way data is 
compared by EMC engineers, it is particularly good for 
ranking data resulting from many comparisons, and because 
the scaling axis can be readily normalized, it is easy to com-
pare with data ranked by the engineers. 
 

DISCUSSION 
 
The ability to assign a numerical value between results from 
a numerical model and those a measurement or other mod-
els is an important factor in validating numerical models.  
This paper has reviewed some of the most promising candi-
date techniques in order to be able to do this.  It should be 
noted that none of the techniques is limited to validation;  
the applications for them can extend to many other areas of 
engineering requiring the quantitative comparison of com-
plex data. One of the fundamental challenges is that in or-
der to be of practical use, any technique must provide some 
mirror of the way in which engineers look at the data and 
this implies the need to benchmark.  This is a topic of cur-
rent research.  A method proposed to do this uses a question 
and answer approach to quantify comparisons [11]. 
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