
Multilevel Inverse-Based Factorization Preconditioner for Solving Sparse

Linear Systems in Electromagnetics

Yiming Bu 1,2, Bruno Carpentieri 3, Zhaoli Shen 1,2, and Tingzhu Huang 2

1 Institute of Mathematics and Computer Science, University of Groningen, Groningen, 9712 CP, The Netherlands

yangyangbu@126.com, z.shen@rug.nl

2 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731

China tingzhuhuang@126.com

3 School of Science and Technology, Nottingham Trent University, Burton Street, Nottingham NG1 4BU, UK

bruno.carpentieri@ntu.ac.uk

Abstract ─ We introduce an algebraic recursive multilevel

approximate inverse-based preconditioner, based on a

distributed Schur complement formulation. The proposed

preconditioner combines recursive combinatorial

algorithms and multilevel mechanisms to maximize

sparsity during the factorization.

Index Terms ─ Approximate inverse preconditioners,

computational electromagnetics, Krylov subspace

methods, sparse matrices.

I. INTRODUCTION
We consider multilevel approximate inverse-based

factorization preconditioners for solving systems of

linear equations;

Ax = b, (1)

where
n nA is a typically large nonsymmetric sparse

matrix arising from finite difference, finite element or

finite volume discretization of systems of partial

differential equations in electromagnetism applications.

Approximate inverse methods directly approximate

A−1 as the product of sparse matrices, so that the

preconditioning operation reduces to forming one (or

more) sparse matrix-vector product(s). Due to their

inherent parallelism and numerical robustness, this class

of methods are receiving renewed consideration for

iterative solutions of large linear systems on emerging

massively parallel computer systems. In practice,

however, some questions need to be addressed. First of

all the computed preconditioner could be singular. In the

second place, these techniques usually require more

CPU-time to compute the preconditioner than

Incomplete LU factorization (ILU)-type methods. Third,

the computation of the sparsity pattern of the

approximate inverse can be problematic, as the inverse

of a general sparse matrix is typically fairly dense. This

leads to prohibitive computational and storage costs.

In this paper we present experiments with an

algebraic recursive multilevel inverse-based factorization

preconditioner that attempts to remedy these problems.

The solver, proposed in [1], uses recursive combinatorial

algorithms to preprocess the structure of A and to

produce a suitable ordering of the unknowns of the linear

system that can maximize sparsity in the approximate

inverse. An efficient tree-based recursive data structure

is generated to compute and apply the multi-level

approximate inverse fast and efficiently. We assess the

effectiveness of the sparse approximate inverse to reduce

the number of iterations of Krylov methods for solving

matrix problems arising from electromagnetism

applications, also against other popular solvers in use

today.

II. THE MULTILEVEL FRAMEWORK

We divide the solution of the linear system into the

following five distinct phases:

1) a scale phase, where the matrix A is scaled by

rows and columns so that the largest entry of the

scaled matrix has magnitude smaller than one;

2) a preorder phase, where the structure of A is used

to compute a suitable ordering that maximizes

sparsity in the approximate inverse factors;

3) an analysis phase, where the sparsity preserving

ordering is analyzed and an efficient data

structure is generated for the factorization;

4) a factorization phase, where the nonzero entries

of the preconditioner are actually computed;

5) a solve phase, where all the data structures are

accessed for solving the linear system.

A. Scale phase

Prior to solving the system, we scale it by rows and

ACES JOURNAL, Vol. 33, No. 2, February 2018

Submitted On: August 30, 2015
Accepted On: April 11, 2016 1054-4887 © ACES

160

mailto:yangyangbu@126.com
mailto:yangyangbu@126.com
mailto:tingzhuhuang@126.com
mailto:bruno.carpentieri@ntu.ac.uk

columns to reduce its condition number. We replace

system (1) with:

1/2 1/2 1/2

1 1 2, ,D Ay D b y D x (2)

where the n × n diagonal scaling matrices have the form:

 1

1
, if i j

| |

0

max, ,

, if i j

ij

i

aD i j

 2

1
, if i j

| |

0

max, .

, if i j

ij

j

aD i j

For simplicity, we still refer to the scaled system (2) as

Ax = b.

B. Preorder phase

We describe this step using standard notation of

graph theory. First, we compute the undirected graph

Ω(Ã) associated with the matrix;

, if A is symmetric,

if A is unsymmetric.,T

A
Ã

A A

Then, Ω(Ã) is partitioned into p non-overlapping

subgraphs Ωi of roughly equal size by using the

multilevel graph partitioning algorithms available in the

Metis package [2]. For each partition Ωi we distinguish

two disjoint sets of nodes: interior nodes that are

connected only to nodes in the same partition, and

interface nodes that straddle between two different

partitions; the set of interior nodes of Ωi form a so called

separable or independent cluster. After renumbering the

vertices of Ω one cluster after another, followed by the

interface nodes as last, and permuting A according to this

new ordering, a block bordered linear system is obtained,

with coefficient matrix of the form:

1 1

1

.T

p p

p

B F

B F
Ã P

B
A

FE C

E

P

E C

 (3)

In (3), each diagonal block Bi corresponds to the interior

nodes of Ωi; the blocks Ei and Fi correspond to the

interface nodes of Ωi; the block C is associated to the

mutual interactions between the interface nodes. In our

multilevel scheme we apply the same block downward

arrow structure to the diagonal blocks of Ã recursively,

until a maximum number of levels is achieved or until

the blocks at the last level are sufficiently small and easy

to factorize. As an example, in Fig. 1 (a) we show the

structure of the general sparse matrix rdb2048 from Tim

Davis matrix collection [3] after three reordering levels.

(a) The structure of

rdb2048 after permutation

(b) The structure of the inverse

factor (In red are displayed the

entries actually stored)

Fig. 1. Structure of the multilevel inverse-based

factorization for the matrix rdb2048.

C. Analysis phase

The data format for storing the block bordered form

(3) of Ã is defined, allocated and initialized using a tree

structure. The root is the whole graph Ω and the leaves

at each level are the independent clusters of each

subgraph. In other terms, each node of the tree

corresponds to one partition Ωi or equivalently to one

block Bi of Ã. The information stored at each node are

the entries of the off-diagonal blocks E and F of
iB s

father, and those of the block C of Bi after its

permutation, except at the last level of the tree where we

store the entire block B. These blocks are stored in sparse

format.

D. Factorization phase

In this phase, we compute the approximate inverse

factors
1L and

1U
of Ã, which have the following form:

1

1 1

1

1

1

,
p p

S

U W

U W

U

L

1

1

1

1

1

1

,
p

p S

L

L

G G L

U

where Bi = LiUi, and

1 1 1 1 1 1, ,i i i i S i S i i iW U L F GU UL E L (4)

and LS, US are the triangular factors of the Schur

complement matrix:

1

1

.
p

i i i

i

S C E B F

During the factorization, fill-in may occur in
1L and

1U but only within the nonzero blocks. Additional

sparsity is gained by applying the arrow structure (3) to

the diagonal blocks recursively. This can be seen in Fig.

BU, CARPENTIERI, SHEN, HUANG: MULTILEVEL INVERSE-BASED FACTORIZATION PRECONDITIONER FOR SPARSE LINEAR SYSTEMS 161

1 (b). For computing the factorization we only need to

invert explicitly the last level blocks and the small Schur

complements at each reordering level. The blocks Wi, Gi
do not need to be assembled. They may be applied using

Eq. (4). For the rdb2048 problem in Fig. 1 (b), we

display in red the entries that we actually stored for

computing the exact multilevel inverse factorization;

these are only 34% of the nonzeros of A.

E. Solve phase

In the solve phase, the multilevel factorization is

applied at every iteration step of a Krylov method for

solving the linear system. Notice that the inverse

factorization of Ã may be written as:
11

1

11

0
() ,

0

T

SS

LU W
PAP

LU G

(5)

where
1 1 1 1 1 1, ,S SU L F G L EW U U L and LS,

US are the inverse factors of the Schur complement

matrix 1 .S C EB F
From Eq. (5), we obtain the following expression for

the exact inverse:
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS

S EB S

(6)

We can derive preconditioners from Eq. (6) by computing

approximate solvers 1B for B and 1S for S. Hence,

the preconditioner M has the form:
1 1 1 1 1 1

1 1 1
.

B B FS EB B FS
M

S EB S

III. NUMERICAL EXPERIMENTS
We show some preliminary results with the proposed

Algebraic Multilevel Explicit Solver (AMES) for solving

a set of matrix problems arising from electromagnetics

applications [3]. We summarize the list of problems in

Table 1. In our experiments, we choose ILUPACK [7] as

the local solver in AMES to invert the diagonal blocks at

the last level, and the Schur complements at each level.

Notice that in this case the entries of the inverse factors

are not computed explicitly, and the application of the

preconditioner is carried out through a backward and

forward substitution procedure. We solve the right

preconditioned system ,AMy b x My instead of (1),

using restarted GMRES [4] preconditioned by AMES.

We compare AMES against two other popular algebraic

preconditioners for linear systems, that are the Algebraic

Recursive Multilevel Method (ARMS) by Saad and

Suchomel [5] and the Sparse Approximate Inverse pre-

conditioner (SPAI) by Grote and Huckle [6], at roughly

equal memory costs.1 We use the zero vector as initial

1 We choose a combination of parameters for AMES, and tune the dropping

threshold for ARMS and SPAI to obtain similar memory cost.

guess in our code, and we terminate the solution process

when the norm of residual is below 10
−12 or the iterations

count exceeds 5000. For the performance comparison,

we report on the memory ratio

,

nnz

nnz

M

A

 number of

iterations (Its), and time costs for performing the

preordering phase (tp), the factorization phase (tf) and the

solving phase (ts). The experiments are run in double

precision floating point arithmetic in Fortran95, on a PC

equipped with an Intel(R) Core(TM) i5-3470 running at

3.20 GHz and with 8 GB of RAM and 6144 KB of cache

memory.

Table 1: Set and characteristics of test matrix problems

Matrix Problem Size nnz(A) Field

dw2048 2,048 10,114
Square dielectric

waveguide

dw8192 8,192 41,746
Square dielectric

waveguide

utm3060 3,060 42,211 Uedge test matrix

utm5940 5,940 83,842 Uedge test matrix

2cubes_sphere 101,492 874,378
FEM

electromagnetics

A. Varying number of reduction levels in AMES

We consider the dw2048, dw8192 and 2cubes_sphere

problems for these experiments. Increasing the number

of levels may help reduce the number of iterations at

similar memory cost. In our experiments, varying the

number of levels nlev from 1 to 3 for a given problem, we

tuned the dropping threshold to keep roughly the same

memory cost in each run, and then we studied the effect

on convergence. The results of our experiments, reported

in Table 2, show that using more levels enabled us to

reduce the number of iterations at similar memory

ratio. However, the computing time for the preordering

phase (tp) and the solution cost per iteration tend to

increase with the nlev. We conclude that a small number

of reduction levels is recommended to use in AMES.

Table 2: Performance of AMES with varying numbers of

reduction levels

Matrix nlev
()

()

nnz M

nnz A
Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

1 2.37 24 0.023 0.025 0.008 0.056

2 2.33 22 0.029 0.021 0.011 0.061

3 2.38 17 0.030 0.021 0.027 0.078

dw8192

1 3.22 87 0.067 0.109 0.312 0.488

2 3.27 82 0.083 0.128 0.417 0.628

3 3.28 78 0.092 0.141 0.744 0.977

2cubes_
sphere

1 0.31 12 1.271 3.691 0.310 5.272

2 0.31 12 1.503 2.552 0.598 4.653

3 0.31 11 2.333 1.829 1.200 5.362

ACES JOURNAL, Vol. 33, No. 2, February 2018162

B. Varying the number of reduction levels for the

Schur complement

The Schur complement matrix S relative to the block

C in (3) typically preserves a good deal of sparsity that

can be exploited during the factorization by reordering S

in a multilevel nested dissection structure, similarly to

what is done to the upper leftmost block B. We have

implemented this idea at the first permutation level,

using ILU factorization as local solver for the reduced

Schur complement matrix. We denote by ASlev the number

of reduction levels used for the Schur complement. We

consider again the dw2048, dw8192 and 2cubes_sphere

problems in these experiments. For a certain test problem,

we vary ASlev keeping all the other parameters constant,

and we tune the drop tolerance in the ILU factorization

to have similar memory costs. The value ASlev = 0 means

that only the diagonal blocks of the upper-left block B

are permuted. Clearly, the max value of ASlev is limited

by the size of Schur complement. From Table 3, we see

that simultaneous permutation of both the diagonal

blocks of B and of the Schur complement S can make the

AMES solver more robust to some extent. However, the

implementation cost increases and thus, although useful,

this option is problem dependent. In our experiments of

the coming sections, we select the value for the

parameter ASlev that minimizes the total solution cost.

Table 3: Performance of AMES with varying numbers of

reduction levels

Matrix ASlev
()

()

nnz M

nnz A

Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

0 2.37 24 0.023 0.025 0.008 0.056

1 2.37 12 0.023 0.027 0.005 0.055

2 2.37 12 0.024 0.031 0.012 0.067

dw8192

0 3.22 87 0.067 0.109 0.312 0.488

1 3.26 21 0.067 0.164 0.057 0.288

2 3.26 18 0.073 0.156 0.060 0.289

2cubes_
sphere

0 0.31 12 1.271 3.691 0.310 5.272

1 0.31 11 1.277 3.974 0.334 5.585

2 0.31 11 1.288 4.016 0.350 5.654

3 0.31 11 1.298 3.985 0.355 5.638

C. Comparing AMES against other preconditioners

From Table 4, we can clearly see that the AMES

preconditioner shows a good potential of reducing the

number of iterations against other state-of-the-art

preconditioning techniques at similar memory costs.

This result demonstrates the overall good efficiency

of the fill reducing strategies implemented in the

preconditioner on the selected electromagnetic problems.

One exception is the 2cubes_sphere problem, which has

favourable properties for the SPAI method. The good

decay of the entries away from the diagonal makes this

problem suitable for SPAI. The AMES method still

remains competitive. However, the pre-processing and

solution costs for setting up and applying the multilevel

recursive scheme do not pay off in this case.

Table 4: Performance comparison of the multilevel

approximate inverse preconditioner against other iterative

solvers

Matrix Method
()

()

nnz M

nnz A

Its

tp

(sec)

tf

(sec)

ts

(sec)

ttot

(sec)

dw2048

AMES 2.37 12 0.023 0.027 0.005 0.055

ARMS 2.39 670 0 0.009 0.081 0.090

SPAI 2.37 2239 0 0.094 0.367 0.461

dw8192

AMES 3.26 21 0.067 0.164 0.057 0.288

ARMS 3.37 +5000 0 0.040 +10.89 +10.93

SPAI 3.33 +5000 0 0.836 +4.841 +5.677

Utm3060
AMES 2.79 125 0.077 0.145 0.366 0.588

ARMS 2.93 402 0 0.030 0.763 0.793

SPAI 2.88 +5000 0 3.131 +3.095 +6.226

Utm5940
AMES 3.50 267 0.147 0.409 2.738 3.294

ARMS 3.51 1150 0 0.077 5.085 5.162

SPAI 3.51 +5000 0 11.76 +11.02 +22.78

2cubes_
sphere

AMES 0.31 12 1.271 3.691 0.310 5.272

ARMS 0.32 68 0 0.262 0.986 1.248

SPAI 0.32 8 0 3.269 0.153 3.422

IV. CONCLUSIONS

In this paper we used recursive combinatorial

techniques to remedy two typical drawbacks of explicit

preconditioning, that are lack of robustness and high

construction cost. The numerical experiments show that

these strategies can improve the performance of

conventional approximate inverse methods, yielding

iterative solutions that can compete favourably against

other popular solvers in use today.

REFERENCES
[1] Y. Bu, B. Carpentieri, Z. Shen, and T.-Z. Huang,

“A hybrid recursive multilevel incomplete

factorization preconditioner for solving general

linear systems,” Applied Numerical Mathematics,

vol. 104, pp. 141-157, 2016.

[2] G. Karypis and V. Kumar, “A fast and high quality

multilevel scheme for partitioning irregular graphs,”

SIAM J. Sci. Comput., vol. 20, pp. 359-392, 1999.

[3] T. Davis, Sparse Matrix Collection, (1994).

Available at the URL: http: //www.cise.ufl.edu/

research/sparse/matrices

[4] Y. Saad, Iterative Methods for Sparse Linear

Systems. SIAM Publications, 2nd edition, 2003.

[5] Y. Saad and B. Suchomel, “ARMS: An algebraic

recursive multilevel solver for general sparse linear

systems,” Numer. Linear Algebra Appl., vol. 9, no.

5, pp. 359-378, 2002.

[6] M. Grote and T. Huckle, “Parallel preconditionings

with sparse approximate inverses,” SIAM J. Sci.

Comput., vol. 18, pp. 838-853, 1997.

[7] M. Bollhoefer, Y. Saad, and O. Schenk, ILUPACK -

Preconditioning Software Package, 2010. Available

online at the URL: http://ilupack.tu-bs.de.

BU, CARPENTIERI, SHEN, HUANG: MULTILEVEL INVERSE-BASED FACTORIZATION PRECONDITIONER FOR SPARSE LINEAR SYSTEMS 163

	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 123
 TR
 1
 0
 629
 187
 0
 8.0000

 Odd
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 126
 64

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 123
 TR
 1
 0
 629
 187

 0
 8.0000

 Even
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 127
 64

 1

 HistoryList_V1
 qi2base

