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Abstract ─ We introduce an algebraic recursive multilevel 

approximate inverse-based preconditioner, based on a 

distributed Schur complement formulation. The proposed 

preconditioner combines recursive combinatorial 

algorithms and multilevel mechanisms to maximize 

sparsity during the factorization.  

Index Terms ─ Approximate inverse preconditioners, 

computational electromagnetics, Krylov subspace 

methods, sparse matrices. 

I. INTRODUCTION
We consider multilevel approximate inverse-based 

factorization preconditioners for solving systems of 

linear equations; 

Ax = b, (1) 

where
n nA  is a typically large nonsymmetric sparse 

matrix arising from finite difference, finite element or 

finite volume discretization of systems of partial 

differential equations in electromagnetism applications. 

Approximate inverse methods directly approximate 

A−1 as the product of sparse matrices, so that the 

preconditioning operation reduces to forming one (or 

more) sparse matrix-vector product(s). Due to their 

inherent parallelism and numerical robustness, this class 

of methods are receiving renewed consideration for 

iterative solutions of large linear systems on emerging 

massively parallel computer systems. In practice, 

however, some questions need to be addressed. First of 

all the computed preconditioner could be singular. In the 

second place, these techniques usually require more 

CPU-time to compute the preconditioner than 

Incomplete LU factorization (ILU)-type methods. Third, 

the computation of the sparsity pattern of the 

approximate inverse can be problematic, as the inverse 

of a general sparse matrix is typically fairly dense. This 

leads to prohibitive computational and storage costs. 

In this paper we present experiments with an 

algebraic recursive multilevel inverse-based factorization 

preconditioner that attempts to remedy these problems. 

The solver, proposed in [1], uses recursive combinatorial 

algorithms to preprocess the structure of A and to 

produce a suitable ordering of the unknowns of the linear 

system that can maximize sparsity in the approximate 

inverse. An efficient tree-based recursive data structure 

is generated to compute and apply the multi-level 

approximate inverse fast and efficiently. We assess the 

effectiveness of the sparse approximate inverse to reduce 

the number of iterations of Krylov methods for solving 

matrix problems arising from electromagnetism 

applications, also against other popular solvers in use 

today. 

II. THE MULTILEVEL FRAMEWORK

We divide the solution of the linear system into the

following five distinct phases: 

1) a scale phase, where the matrix A is scaled by

rows and columns so that the largest entry of the

scaled matrix has magnitude smaller than one;

2) a preorder phase, where the structure of A is used

to compute a suitable ordering that maximizes

sparsity in the approximate inverse factors;

3) an analysis phase, where the sparsity preserving

ordering is analyzed and an efficient data

structure is generated for the factorization;

4) a factorization phase, where the nonzero entries

of the preconditioner are actually computed;

5) a solve phase, where all the data structures are

accessed for solving the linear system.

A. Scale phase

Prior to solving the system, we scale it by rows and
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columns to reduce its condition number. We replace 

system (1) with: 

 
1/2 1/2 1/2

1 1 2,  ,D Ay D b y D x   (2) 

where the n × n diagonal scaling matrices have the form: 
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For simplicity, we still refer to the scaled system (2) as 

Ax = b. 

 
B. Preorder phase 

We describe this step using standard notation of 

graph theory. First, we compute the undirected graph 

Ω(Ã) associated with the matrix; 

 
, if A is symmetric,

if A is unsymmetric.,T

A
Ã

A A


 


 

Then, Ω(Ã) is partitioned into p non-overlapping 

subgraphs Ωi of roughly equal size by using the 

multilevel graph partitioning algorithms available in the 

Metis package [2]. For each partition Ωi we distinguish 

two disjoint sets of nodes: interior nodes that are 

connected only to nodes in the same partition, and 

interface nodes that straddle between two different 

partitions; the set of interior nodes of Ωi form a so called 

separable or independent cluster. After renumbering the 

vertices of Ω one cluster after another, followed by the 

interface nodes as last, and permuting A according to this 

new ordering, a block bordered linear system is obtained, 

with coefficient matrix of the form: 
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 (3) 

In (3), each diagonal block Bi corresponds to the interior 

nodes of Ωi; the blocks Ei and Fi correspond to the 

interface nodes of Ωi; the block C is associated to the 

mutual interactions between the interface nodes. In our 

multilevel scheme we apply the same block downward 

arrow structure to the diagonal blocks of Ã recursively, 

until a maximum number of levels is achieved or until 

the blocks at the last level are sufficiently small and easy 

to factorize. As an example, in Fig. 1 (a) we show the 

structure of the general sparse matrix rdb2048 from Tim 

Davis matrix collection [3] after three reordering levels. 

                        
(a) The structure of 

rdb2048 after permutation 

(b) The structure of the inverse 

factor (In red are displayed the 

entries actually stored) 
 

Fig. 1. Structure of the multilevel inverse-based 

factorization for the matrix rdb2048. 
 

C. Analysis phase 

The data format for storing the block bordered form 

(3) of Ã is defined, allocated and initialized using a tree 

structure. The root is the whole graph Ω and the leaves 

at each level are the independent clusters of each 

subgraph. In other terms, each node of the tree 

corresponds to one partition Ωi or equivalently to one 

block Bi of Ã. The information stored at each node are 

the entries of the off-diagonal blocks E and F of 
iB s  

father, and those of the block C of Bi after its 

permutation, except at the last level of the tree where we 

store the entire block B. These blocks are stored in sparse 

format. 
 

D. Factorization phase 

In this phase, we compute the approximate inverse 

factors 
1L   and 

1U 
of Ã, which have the following form: 
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where Bi = LiUi, and 

 
1 1 1 1 1 1, ,i i i i S i S i i iW U L F GU UL E L          (4) 

and LS, US are the triangular factors of the Schur 

complement matrix: 
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During the factorization, fill-in may occur in 
1L   and 

1U   but only within the nonzero blocks. Additional 

sparsity is gained by applying the arrow structure (3) to 

the diagonal blocks recursively. This can be seen in Fig.  
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1 (b). For computing the factorization we only need to 

invert explicitly the last level blocks and the small Schur 

complements at each reordering level. The blocks Wi, Gi 
do not need to be assembled. They may be applied using 

Eq. (4). For the rdb2048 problem in Fig. 1 (b), we 

display in red the entries that we actually stored for 

computing the exact multilevel inverse factorization; 

these are only 34% of the nonzeros of A. 

E. Solve phase

In the solve phase, the multilevel factorization is

applied at every iteration step of a Krylov method for 

solving the linear system. Notice that the inverse 

factorization of Ã may be written as: 
11
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(5) 

where 
1 1 1 1 1 1, ,S SU L F G L EW U U L         and LS, 

US are the inverse factors of the Schur complement 

matrix 1 .S C EB F   
From Eq. (5), we obtain the following expression for 

the exact inverse: 
1 1 1 1 1 1

1 1 1
.
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(6) 

We can derive preconditioners from Eq. (6) by computing 

approximate solvers 1B  for B and 1S  for S. Hence, 

the preconditioner M has the form: 
1 1 1 1 1 1

1 1 1
.
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M
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III. NUMERICAL EXPERIMENTS
We show some preliminary results with the proposed 

Algebraic Multilevel Explicit Solver (AMES) for solving 

a set of matrix problems arising from electromagnetics 

applications [3]. We summarize the list of problems in 

Table 1. In our experiments, we choose ILUPACK [7] as 

the local solver in AMES to invert the diagonal blocks at 

the last level, and the Schur complements at each level. 

Notice that in this case the entries of the inverse factors 

are not computed explicitly, and the application of the 

preconditioner is carried out through a backward and 

forward substitution procedure. We solve the right 

preconditioned system ,AMy b  x My  instead of (1), 

using restarted GMRES [4] preconditioned by AMES. 

We compare AMES against two other popular algebraic 

preconditioners for linear systems, that are the Algebraic 

Recursive Multilevel Method (ARMS) by Saad and 

Suchomel [5] and the Sparse Approximate Inverse pre-

conditioner (SPAI) by Grote and Huckle [6], at roughly 

equal memory costs.1 We use the zero vector as initial 

1 We choose a combination of parameters for AMES, and tune the dropping 

threshold for ARMS and SPAI to obtain similar memory cost.

guess in our code, and we terminate the solution process 

when the norm of residual is below 10
−12 or the iterations 

count exceeds 5000. For the performance comparison, 

we report on the memory ratio  

 
,

nnz

nnz

M

A

 number of 

iterations (Its), and time costs for performing the 

preordering phase (tp), the factorization phase (tf) and the 

solving phase (ts). The experiments are run in double 

precision floating point arithmetic in Fortran95, on a PC 

equipped with an Intel(R) Core(TM) i5-3470 running at 

3.20 GHz and with 8 GB of RAM and 6144 KB of cache 

memory. 

Table 1: Set and characteristics of test matrix problems 

Matrix Problem Size nnz(A) Field 

dw2048 2,048 10,114 
Square dielectric 

waveguide 

dw8192 8,192 41,746 
Square dielectric 

waveguide 

utm3060 3,060 42,211 Uedge test matrix 

utm5940 5,940 83,842 Uedge test matrix 

2cubes_sphere 101,492 874,378 
FEM 

electromagnetics 

A. Varying number of reduction levels in AMES

We consider the dw2048, dw8192 and 2cubes_sphere 

problems for these experiments. Increasing the number 

of levels may help reduce the number of iterations at 

similar memory cost. In our experiments, varying the 

number of levels nlev from 1 to 3 for a given problem, we 

tuned the dropping threshold to keep roughly the same 

memory cost in each run, and then we studied the effect 

on convergence. The results of our experiments, reported 

in Table 2, show that using more levels enabled us to 

reduce the number of iterations at similar memory 

ratio. However, the computing time for the preordering 

phase (tp) and the solution cost per iteration tend to 

increase with the nlev. We conclude that a small number 

of reduction levels is recommended to use in AMES. 

Table 2: Performance of AMES with varying numbers of 

reduction levels 

Matrix nlev 
( )

( )

nnz M

nnz A
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

1 2.37 24 0.023 0.025 0.008 0.056 

2 2.33 22 0.029 0.021 0.011 0.061 

3 2.38 17 0.030 0.021 0.027 0.078 

dw8192 

1 3.22 87 0.067 0.109 0.312 0.488 

2 3.27 82 0.083 0.128 0.417 0.628 

3 3.28 78 0.092 0.141 0.744 0.977 

2cubes_ 
sphere 

1 0.31 12 1.271 3.691 0.310 5.272 

2 0.31 12 1.503 2.552 0.598 4.653 

3 0.31 11 2.333 1.829 1.200 5.362 
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B. Varying the number of reduction levels for the 

Schur complement 

The Schur complement matrix S relative to the block 

C in (3) typically preserves a good deal of sparsity that 

can be exploited during the factorization by reordering S 

in a multilevel nested dissection structure, similarly to 

what is done to the upper leftmost block B. We have 

implemented this idea at the first permutation level, 

using ILU factorization as local solver for the reduced 

Schur complement matrix. We denote by ASlev the number 

of reduction levels used for the Schur complement. We 

consider again the dw2048, dw8192 and 2cubes_sphere 

problems in these experiments. For a certain test problem, 

we vary ASlev keeping all the other parameters constant, 

and we tune the drop tolerance in the ILU factorization 

to have similar memory costs. The value ASlev = 0 means 

that only the diagonal blocks of the upper-left block B 

are permuted. Clearly, the max value of ASlev is limited 

by the size of Schur complement. From Table 3, we see 

that simultaneous permutation of both the diagonal 

blocks of B and of the Schur complement S can make the 

AMES solver more robust to some extent. However, the 

implementation cost increases and thus, although useful, 

this option is problem dependent. In our experiments of 

the coming sections, we select the value for the 

parameter ASlev that minimizes the total solution cost. 

 

Table 3: Performance of AMES with varying numbers of 

reduction levels 

Matrix ASlev 
( )

( )

nnz M

nnz A

 
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

0 2.37 24 0.023 0.025 0.008 0.056 

1 2.37 12 0.023 0.027 0.005 0.055 

2 2.37 12 0.024 0.031 0.012 0.067 

dw8192 

0 3.22 87 0.067 0.109 0.312 0.488 

1 3.26 21 0.067 0.164 0.057 0.288 

2 3.26 18 0.073 0.156 0.060 0.289 

2cubes_ 
sphere 

0 0.31 12 1.271 3.691 0.310 5.272 

1 0.31 11 1.277 3.974 0.334 5.585 

2 0.31 11 1.288 4.016 0.350 5.654 

3 0.31 11 1.298 3.985 0.355 5.638 

 

C. Comparing AMES against other preconditioners 

From Table 4, we can clearly see that the AMES 

preconditioner shows a good potential of reducing the 

number of iterations against other state-of-the-art 

preconditioning techniques at similar memory costs. 

This result demonstrates the overall good efficiency  

of the fill reducing strategies implemented in the 

preconditioner on the selected electromagnetic problems. 

One exception is the 2cubes_sphere problem, which has 

favourable properties for the SPAI method. The good 

decay of the entries away from the diagonal makes this 

problem suitable for SPAI. The AMES method still 

remains competitive. However, the pre-processing and 

solution costs for setting up and applying the multilevel 

recursive scheme do not pay off in this case. 

Table 4: Performance comparison of the multilevel 

approximate inverse preconditioner against other iterative 

solvers 

Matrix Method 
( )

( )

nnz M

nnz A

 
Its 

tp 

(sec) 

tf 

(sec) 

ts 

(sec) 

ttot 

(sec) 

dw2048 

AMES 2.37 12 0.023 0.027 0.005 0.055 

ARMS 2.39 670 0 0.009 0.081 0.090 

SPAI 2.37 2239 0 0.094 0.367 0.461 

dw8192 

AMES 3.26 21 0.067 0.164 0.057 0.288 

ARMS 3.37 +5000 0 0.040 +10.89 +10.93 

SPAI 3.33 +5000 0 0.836 +4.841 +5.677 

Utm3060 
AMES 2.79 125 0.077 0.145 0.366 0.588 

ARMS 2.93 402 0 0.030 0.763 0.793 

SPAI 2.88 +5000 0 3.131 +3.095 +6.226 

Utm5940 
AMES 3.50 267 0.147 0.409 2.738 3.294 

ARMS 3.51 1150 0 0.077 5.085 5.162 

SPAI 3.51 +5000 0 11.76 +11.02 +22.78 

2cubes_ 
sphere 

AMES 0.31 12 1.271 3.691 0.310 5.272 

ARMS 0.32 68 0 0.262 0.986 1.248 

SPAI 0.32 8 0 3.269 0.153 3.422 

 

IV. CONCLUSIONS 

In this paper we used recursive combinatorial 

techniques to remedy two typical drawbacks of explicit 

preconditioning, that are lack of robustness and high 

construction cost. The numerical experiments show that 

these strategies can improve the performance of 

conventional approximate inverse methods, yielding 

iterative solutions that can compete favourably against 

other popular solvers in use today.  
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