
Fast and Parallel Computational Techniques Applied to Numerical Modeling

of RFX-mod Fusion Device

Domenico Abate 1,2, Bruno Carpentieri 3, Andrea G. Chiariello 4, Giuseppe Marchiori 2,

Nicolò Marconato 2, Stefano Mastrostefano 1, Guglielmo Rubinacci 5, Salvatore Ventre 1,

and Fabio Villone 1

1 DIEI, Università di Cassino e del Lazio Meridionale, Loc. Folcara, 03043 Cassino (FR), Italy

s.mastrostefano@unicas.it, ventre@unicas.it, villone@unicas.it

2 Consorzio RFX, Corso Stati Uniti 4, Padova, Italy

domenico.abate@igi.cnr.it, giuseppe.marchiori@igi.cnr.it, nicolo.marconato@igi.cnr.it

3 Nottingham Trent University, School of Science and Technology, Burton Street, Nottingham NG1 4BU, UK

bruno.carpentieri@ntu.ac.uk

4 DIII, Seconda Università di Napoli, Via Roma 29, Aversa (CE), Italy

andreagaetano.chiariello@unina2.it

5 DIETI, Università di Napoli Federico II, Via Claudio 21, 80125, Napoli

rubinacci@unina.it

Abstract ─ This paper presents fast computational

techniques applied to modelling the RFX-mod fusion

device. An integral equation model is derived for the

current distribution on the active coils of the conducting

structures, and the input-output transfer functions are

computed. Speed-up factors of about 200 can be

obtained on hybrid CPU-GPU parallelization against

uniprocessor computation.

Index Terms ─ Fusion plasma devices, GPUs, HPC,

integral formulation, parallelism.

I. INTRODUCTION
Modelling fusion devices is computationally very

challenging due to the electromagnetic interaction of the

fusion plasma and the surrounding conducting structures,

which makes the problem inherently multiphysics. The

evolution of the plasma may exhibit unstable modes, thus

exacerbating the aforementioned problems and requiring

a feedback controller. The design of such control system

requires rather accurate response model of the overall

system plasma plus conductors. Therefore, fast parallel

techniques are often required to make the computations

affordable [1, 2]. In this paper, we analyze the RFX-mod

device [3], a medium size (major radius R = 2 m, minor

radius a = 0.46 m) toroidal device particularly suited to

explore innovative concepts in plasma control. Passive

and active conductors are very important to determine the

overall properties and performances of such feedback

system and therefore they should also be adequately

represented in any realistic model. The main conducting

structures are the vessel (needed to have the vacuum

inside the machine), the shells (highly conducting sheets

needed for passive stabilization), the mechanical

structure, hosting the active control coils. Figure 1 shows

the 3D hexahedral mesh used.

In particular, RFX-mod is equipped with a state-of-

the-art control system made by 192 (4 poloidal x 48

toroidal) independently fed active coils (Fig. 1), with

more than 600 magnetic sensors acquired in real time.

This makes RFX-mod on the one hand very challenging

for numerical modelling but on the other hand an ideal

test-bed for validating the predicting capabilities of

computational tools. We compute the input-output

transfer functions of the system, assuming as input the

currents or the voltages of the active coils and as output

suitable magnetic measures [4]. The presence of an

axisymmetric plasma evolving through equilibrium states

is self-consistently taken into account [1].

The computer solution of such a problem is very

expensive, due to the complexity of the 3D geometry and

the plasma contribution. The use of High Performance

Computing (HPC) cluster is mandatory. The GPU

architecture has a large amount of cores designed to run

a large number of execution threads at the same time; the

computational model used is the single instruction,

ACES JOURNAL, Vol. 33, No. 2, February 2018

Submitted On: December 31, 2015
Accepted On: May 16, 2016 1054-4887 © ACES

176

mailto:s.mastrostefano@unicas.it
mailto:ventre@unicas.it
mailto:domenico.abate@igi.cnr.it
mailto:giuseppe.marchiori@igi.cnr.it
mailto:andreachiariello@gmail.com

multiple data (SIMD), where concurrent threads execute

the same code (called Kernel) on different data. In the

present work, we focus our attention on a hybrid multi-

node system for modeling RFX-mod devices.

The paper is organized as follows. Section II

describes the model, while in Section III we illustrate the

computational technique. Section IV reports the results

and draws the conclusions.

Fig. 1. Mesh used for the analysis of the problem.

II. MODEL
We consider a system of 3D conductors Vc

discretized with a finite elements mesh. We use an

integral formulation, which assumes as primary

unknown the current density in Vc. We introduce the

electric vector potential T, such that TJ  , and then

we expanded T in terms of edge elements kN , we have:

 

k

kkI NJ . (1)

Imposing Ohm’s law in weak form, we get [1,2,8]:

,
d I dU

L R I V
dt dt

   (2)

0
,

() (')
',

4 'c c

i j

i j
V V

L dV dV




 


 
N r N r

r r
 (3)

 
cV

jiji dVR NηN, . (4)

In these equations, I is the vector of degrees of

freedom Ik in (1), V is the vector of externally applied

voltages and  is the resistivity tensor. Matrix L is a fully

populated square matrix, which is the 3D analogue of

mutual inductance of a system of magnetically coupled

conductors; conversely, R matrix is sparse and represents

the resistance matrix of the 3D conductors. The quantity

U is the magnetic flux due to plasma currents [1, 8]:

S
jMU  ,

eS
Sj ̂ , IQ

e
̂ , (5)

where
S

j are equivalent currents located on a coupling

surface, M is a mutual inductance matrix between the

equivalent current and the 3D conducting structures,
e

̂

is the external magnetic flux, Q is a matrix representing

Biot-Savart integral [1] and S is the plasma response

matrix [8].

Combining (2)-(5), finally we get [8]:

VIR
dt

Id
L 

* ,
*

,L L M SQ  (6)

to which we can add the expression for the magnetic field

and flux perturbations y at given points, linearly related

to 3D currents through a suitable matrix C [1,8]:

ICy  . (7)

Equations (6)-(7) represent the model; they can be

easily recast in standard state space form. In the present

paper, they are used to get the frequency-domain transfer

functions between the inputs (voltages or currents in

active coils) and the outputs (linear combinations of

magnetic measurements). In doing so, the inversion of

a complex matrix is required. Indeed, we split the

unknowns into three subsets; the corresponding subset

of indices of the various matrices are identified with

the following suffix: “p” (passive structures), “m”

(measurement coils), “a” (active coils), so that Equation

(6) reads as:

 * *

* *

0,

,

p app pp pa

p a mmp ma

j L R I j L I

L I L I

   

  

(8)

where
m represent the fluxes induced at measurements

coils (i.e., the output of the system). After some simple

algebraic manipulations it turns out:

   

    .)(

,

**

1

aamampm

aapappppp

IjTILjHL

IjHILRLjjI










 (9)

Equation (9) can be used to evaluate
m for a given

assigned unitary current flowing in excitation coil. This

transfer function can be used to design the feedback

control. For each frequency and each active coil, we set

Ia to 1 (the known terms in the Eq. (9)) and find the Flux

for all measurement coils (unknowns variables).

III. FAST TECHNIQUES
In order to speed up the overall computation we

move in two directions:

 parallelize the matrix assembly phase;

 accelerate the inversion of system (9).

A. Parallel assembly strategies

Matrices L and Q are very expensive to assemble.

For L matrix, parallelization can be achieved grouping

elements of nodes into boxes, distributing boxes among

processors, and performing the element-element

integration independently on each processor. The locally

assembled matrix is then compressed (see [2]).

The computation of matrix Q is the most time

consuming part of the assembly algorithm. In order to

reduce this cost, in the present work, parallel assembly

is implemented on multi CPUs and multi GPUs

environment. Here we take advantage of the fact that

ABATE, CARPENTIERI, CHIARIELLO, ET AL.: PARALLEL COMPUTATIONAL TECHNIQUES FOR RFX-MOD FUSION DEVICE MODELING 177

Biot-Savart integral computation for elements and field

points, are independent from each other. Of course,

different implementations are necessary to adapt the

parallel computation to the two different hardware

architectures. In the following, we briefly recall the main

features of the two algorithms.

In multi CPUs environment we propose a standard

parallel strategy using a simple domain decomposition

approach that distributes the field points equally among

the processors. After the local computations, a reduction

operation is required to retrieve the complete matrix

from each MPI process. This strategy scales linearly with

the number of the processors.

In multi GPUs environment we propose to assign

to each computational thread the evaluation of a

contribution of the Biot-Savart integral corresponding to

a given element and a given field point. All the

contributions are summed on the CPU. The algorithm is

briefly summarized in the follow, see [1] for details:

1) Allocate temporary data for storing the local

contribute (CPU).

2) Compute the considered element and source point

from the thread and block index (GPU).

3) Compute the shape function related to the considered

element (GPU).

4) Compute the local contribution (GPU).

5) Return the partial matrix to the host memory (CPU).

6) Scatter the output data on the complete matrix on the

host (CPU).

The final step is due to uncoalescent memory access

needed to store the results in the final matrix and possible

race conditions when two different contributions are

summed in the same location. The dimension of the

matrix can be huge compared to the on board GPU

memory (which is typically of a few GB). Step 5

involves memory transfer from GPU to Host memory,

but fortunately this has no impact on the overall

performance of the code. We point to [9] for more

sophisticated approaches not considered here.

B. Speed up of the linear system inversion

As far as the inversion of the linear system involved

in (9) is concerned, it is worth noting that *

xy
L are fully

populated submatrices of matrix *
L and

pp
R is a sparse

positive definite matrix. Using a direct solver, the cost of

the inversion procedure is O(N3), N being the number of

unknowns present in the passive part of the device. When

geometric details are added and/or a great accuracy is

required in the computation, it is easy to exceed quickly

the computational resources available on a uniprocessor

system. The use of powerful computing facilities can

help in the search of additional speed and increase the

size of the solvable problems [5].

Nevertheless, there are cases in which parallelization

fails poorly. For this problem, an approximated

compression technique is mandatory. The authors

successfully applied these methods for the study of

plasma fusion devices [2] as well as in other fields (e.g.,

NDT [6]). These techniques are based on an effective

low-rank approximation of the submatrix representing

the far interaction between well separated parts of the

device. The matrix-by-vector product
jij

IL
* related to

these parts is replaced by an accurate low cost operator

(the complexity is asymptotically only O(N)). Finally,

the inversion in (9) can be performed by an iterative

method (such as the GMRES method). It is worth noting

that the preconditioner (essential for any iterative solver)

is 1

pp
R , which can be computed in fast and accurate way

by the means of Cholesky decomposition. It is important

to stress that its factorization and back substitution

is very cheap using a single CPU. Moreover the

preconditioner turns out to be very effective, being the

number of iterations required to converge very small.

IV. RESULTS
The computational cluster used for the evaluation of

the numerical performances is made by two nodes. Each

node consist of 16x cores Intel Xeon CPU E5-2690

(@ 2.90 GHz processor, 20 MB L2), 128 GB RAM,

2×NVIDIA Kepler K20 (2496 cores, 6 GB VRAM).

A. 2D validation and transfer function computation

First of all, a numerical validation of the procedure

is carried out. We generated a 3D mesh which fictitiously

reproduce an axisymmetric geometry, so that a 2D

code (CREATE_L [7]) can be used as benchmark. We

computed the transfer function T defined in the previous

section with the two codes, finding a very good

agreement, as shown in Fig. 2. This confirms the

correctness of the procedure.

In order to show the actual effect due to the presence

of the plasma, we compare the results obtained with and

without plasma on the full 3D mesh described above.

The plasmaless computation is in fact a purely magneto-

quasi-static calculation. The number of elements of the

mesh is equal to 30907, the number of nodes is 81550.

The number of unknowns in the passive structure (i.e.,

the dimension of the matrix to invert) is 22619. The

results are reported in Fig. 3. Evidently, the presence of

the plasma has an effect not only on the dynamical

properties of the model (e.g., the phase behavior at high

frequencies), but also on the static gain (amplitude at

zero frequency limit). This is not surprising, since the

plasma affects also the magnetostatic coupling between

active coils and sensors, because it reacts to external

static magnetic field perturbations, so as to reach a

different equilibrium configuration and hence, modifying

the whole magnetic field map in the surrounding regions.

ACES JOURNAL, Vol. 33, No. 2, February 2018178

Fig. 2. Comparison of one element of the transfer

function T: proposed approach and reference 2D code.

Fig. 3. Effect of plasma on the transfer function.

B. Numerical issues

Regarding the speedup of the matrix assembly, using

25 cores the time required to compute the compressed

matrix L is about 90 s, the total time required to compute

the plasma matrices is about 549 s (540 s of this time is

due to the computation of Q matrix). In Fig. 4 we report

the speedup for assembling Q matrix, defined as the

assembly time required by one CPU divided by the time

obtained using a parallel multi GPUs. Using standard

parallel strategy (multi CPUs) the maximum achievable

speed up on the proposed computational system is

limited to 32.

Fig. 4. Speedup for Q-matrix assembly

The time required for each single inversion is about

17.5 s. The total time for all inversions is about 7000s.

The number of iterations required by GMRES to

converge increases with the excitation frequency.

Without the plasma (i.e., the response due to only the

passive structures) the number of iterations required by

GMRES to converge is 21 at a frequency of 100 Hz and

9 at 10 Hz. If the plasma is present the number of iteration

is 41 at frequency of 100 Hz and 9 at 10 Hz. This is

coherent with the general expectation that the used

preconditioner is more effective at lower frequencies and

without plasma.

V. CONCLUSIONS
We have presented fast parallel techniques for the

computation of input-output transfer functions on the

RFX-mod fusion devices on hybrid architectures,

featuring multiple CPUs and GPUs. The peculiarities of

fusion devices make this approach particularly effective

in significantly improving the performances of the

computation, allowing speed-ups up to almost 200 with

respect to standard computations.

REFERENCES
[1] F. Villone, A. G. Chiariello, S. Mastrostefano, A.

Pironti, and S. Ventre, “GPU-accelerated analysis

of vertical instabilities in ITER including three-

dimensional volumetric conducting structures,”

Plasma Phys. Control. Fusion, vol. 54, no. 8, 2012.

[2] G. Rubinacci, S. Ventre, F. Villone, and Y. Liu, “A

fast technique applied to the analysis of resistive

wall modes with 3D conducting structures,”

Journal of Comp. Phys., vol. 228, no. 5, pp. 1562-

1572, 2009.

[3] P. Sonato, et al., Fusion Eng. Des., vol. 66-68, pp.

161, 2003.

[4] F. Villone, et al., “ITER passive and active RWM

analysis with the CarMa code,” 38th EPS

Conference, paper P5.107, 2011.

[5] R. Fresa, G. Rubinacci, and S. Ventre, “An eddy

current integral formulation on parallel computer

systems,” Int. Journal for Numerical Methods in

Engineering, vol. 62, no. 9, pp. 1127-1147, 2005.

[6] G. Rubinacci, A. Tamburrino, and S. Ventre, “Fast

numerical techniques for electromagnetic non-

destructive evaluation,” Nondestr. Testing Eval.,

vol. 24, pp. 165-194, 2009.

[7] R. Albanese and F. Villone, “The linearized

CREATE-L plasma response model for the control

of current, position and shape in tokamaks,” Nucl.

Fusion, vol. 38, no. 5, pp. 723, 1998.

[8] A. Portone, et al., “Linearly perturbed MHD

equilibria and 3D eddy current coupling via the

control surface method,” Plasma Phys. Control.

Fusion, 50, 085004, 2008.

[9] A. Capozzoli, et al., “Speeding up aperiodic

reflectarray antenna analysis by CUDA dynamic

parallelism,” Proc. of the Int. Conf. on Numerical

Electromagn. Model. and Opt. for RF, Microwave

and Terahertz Appl., Pavia, Italy, pp. 1-4c, 2014.

ABATE, CARPENTIERI, CHIARIELLO, ET AL.: PARALLEL COMPUTATIONAL TECHNIQUES FOR RFX-MOD FUSION DEVICE MODELING 179

	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 123
 TR
 1
 0
 629
 187
 0
 8.0000

 Odd
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 126
 64

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 123
 TR
 1
 0
 629
 187

 0
 8.0000

 Even
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 127
 64

 1

 HistoryList_V1
 qi2base

