
GPU Acceleration of Nonlinear Modeling by the Discontinuous Galerkin

Time-Domain Method

Huan-Ting Meng and Jian-Ming Jin

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

meng2@illinois.edu, j-jin1@illinois.edu

Abstract ─ A discontinuous Galerkin time-domain

(DGTD) algorithm is formulated and implemented to

model the third-order instantaneous nonlinear effect on

electromagnetic fields due the field-dependent medium

permittivity. The nonlinear DGTD computation is

accelerated using graphics processing units (GPUs).

Two nonlinear examples are presented to show the

different Kerr effects observed through the third-order

nonlinearity. With the acceleration using MPI + GPU

under a large cluster environment, the solution times for

nonlinear simulations are significantly reduced.

Index Terms ─ Computational electromagnetics, DGTD,

GPU acceleration, Kerr effect, nonlinear electromagnetics,

third-order nonlinearity.

I. INTRODUCTION
Nonlinear phenomena in electromagnetics generally

involve changes in the material properties due to the

presence of electromagnetic fields. The changes in the

material properties in turn modify the state of the original

electromagnetic fields in the medium. Since the material

properties and the contained fields interact with each

other constantly, it is most natural to describe and model

these interactions in the time domain, where at each time

instant the changes in the fields induce nonlinear

modifications on both the material properties and the

fields themselves.

The nonlinear Kerr effect [1] is one of the most

studied and exploited optical effects. It describes the

third-order interaction between the electric field and the

permittivity of the material, which produces a variety of

nonlinear phenomena [1], [2], such as third-harmonic

generation (THG), self-phase modulation (SPM), self-

focusing, and frequency mixing. Much investigation has

been carried out for the simulation of the nonlinear

optical effects using the finite-difference time-domain

(FDTD) algorithms [3], due to their straightforward

implementation.

This work is focused on the modeling of the third-

order Kerr instantaneous nonlinearity using the

discontinuous Galerkin time-domain (DGTD) algorithm.

The nonlinear DGTD algorithm possesses many

advantages of the linear DGTD algorithms over nonlinear

FDTD algorithms, including the flexibility in complex

geometry modeling, reduced phase shifts, and the ease to

achieve higher order accuracy and convergence. To

speed up the computation, the MPI + GPU framework

developed in [4] is adapted to accelerate the nonlinear

DGTD algorithm.

II. FORMULATION
For a general third-order nonlinear medium, the

relative permittivity can be written as:
(3) 2

,L ,N L ,L() ,r r r r rE E          (1)

where
,Lr and

,N Lr are the linear and nonlinear parts

of the relative permittivity, respectively, (3) is the

third-order nonlinear polarization coefficient, and E is

the magnitude of the time-varying electric field. Here we

focus on the derivation of the DGTD algorithm to model

a nonlinear, lossless, and non-dispersive medium to

update the electric field since the updating equation for

the magnetic field has no nonlinear components and thus

is identical to that in a linear medium. Testing Ampere’s

law using the Galerkin method, substituting in the

expansion of the fields, and applying the central flux, the

equation after taking the time derivative on D for

element e becomes:

0

0

[]{ } { }

{ }
[]{ },

e

e

e er

e i j

V

e e

r i j eh

V

S h N N dV e
t

e
N N dV F h h

t




  

 
   


      





(2)

where

1
(,) () () ,

e

e e

e i j

V

S i j N N dV


    (3)

and { }e and { }h are the electric and magnetic field

solution vectors and e

iN and
e

jN are vector basis

functions. The terms associated with the boundary

conditions are omitted for simplicity. Since the time-

varying permittivity is embedded in the mass matrix of

ACES JOURNAL, Vol. 33, No. 2, February 2018

Submitted On: August 29, 2015
Accepted On: March 30, 2016 1054-4887 © ACES

156

the DGTD algorithm, the volume integration pertaining

to the electric field is now split into two terms by the

product rule, where for the nonlinear medium, both the

relative permittivity and the electric field are functions

of time. Discretizing Equation (2) in the time domain

using central difference gives:
1 1

0

1 1

0

1/2

{ } { }

2

{ } { }

2

{ } ,

e

e

n n n n
e er r

i j

V

n n n n
e er r

i j

V

n

e e
N N dV

t

e e
N N dV

t

b

 


 


 

 



    
   

   

    
    

  





 (4)

where 1n

r
 is the field-dependent nonlinear permittivity

at the future time step, n

r is the converged permittivity

at the current time step, and
1/2 1/2 1/2 1/2{ } []({ } { }) []{ } .n n n n

eh eb F h h S h       (5)

After rearranging the terms, Equation (4) can be cast into

a field-marching form as:
1 1 1/2[] { } [] { } { } ,n n n n n

e eM e M e b    (6)

where
1 10[]

e

n n e e

e r i j

V

M N N dV
t


     

, (7)

and

0[] .

e

n n e e

e r i j

V

M N N dV
t


    

(8)

Due to the variation of the field magnitude at each time

step, ()r E of each element changes with time, and

therefore the mass matrix 1[]n

eM  has to be reassembled

at every time step. Note that, we have recovered the

original expression for []eM as in the linear DGTD

algorithm, albeit with a field- and time-dependent

permittivity. The dependency of 1{ }ne  in 1[]n

eM 

renders Equation (6) a nonlinear equation.

At each time marching step n, the fixed-point

method is employed to solve Equation (6), where
1/2{ }nb  is computed with the initial guess 1

0{ } { }n ne e 

and 1

0[] []n n

e eM M  . At the thk iteration step, the mass

matrix 1

1[]n

e kM 


is inverted to update the field solution

1{ }n

ke  . The updated solution is in turn used to update the

mass matrix 1[]n

e kM  using Equation (7). If the norm of

the residual { }n

kr of Equation (6) is smaller than a

predefined threshold, then the nonlinear iteration is

converged, and the equation can be marched to the next

time step 1n . Otherwise it continues with the (1) thk 

iteration step.

III. GPU IMPLEMENTATION
Because of the necessity to solve nonlinear equations

in each time step, the nonlinear DGTD computation is

very time-consuming. This computation can be effectively

accelerated by exploiting the power of graphics

processing units (GPUs). The GPU implementation for

the nonlinear DGTD algorithm is similar to the approach

described in [4], employing the same coalesced memory

accessing pattern and thread/block allocation. Since the

electric field update processes that are not related to
1{ }ne  are similar to the ones found in [6], here we focus

on the parallelization of the computation related to
1{ }ne  , which includes the assembly of the nonlinear

mass matrix
1[]n

eM 
and the inversion of this mass

matrix.

To assemble the nonlinear mass matrix, note that

each mass matrix entry is numerically integrated through

quadrature, where the contribution from each weighted

quadrature point is summed. Due to the presence of

nonlinearity,
r on each quadrature point changes during

each iteration step, while the other constituting terms in

equation (7) remain identical. To parallelize the assembly

of the mass matrix, the constituting matrices at each

quadrature point are pre-calculated and stored, and then

summed together at each iteration step by first multiplying

with the updated .r The proposed parallelization

strategy and the memory access pattern are shown in

Fig. 1, with each of the total numTets elements

parallelized over its numTetDofs unknowns using

CUDA threads. Each threadblock is assigned with a

calculated number of elements to utilize all warps [4]. At

each iteration step, the mass matrices are assembled by

looping through numQuads quadrature points and

summing their contribution, which is completely

parallelizable.

Fig. 1. Parallelization and memory access pattern for the

assembly of the nonlinear mass matrices.

To invert the nonlinear mass matrix, we parallelize

the standard non-pivoting element-level Gaussian

elimination on the GPU. Each numTetDofs threads for

an element loops over each elemental matrix rows and

MENG, JIN: GPU ACCELERATION OF NONLINEAR MODELING BY THE DGTD METHOD 157

reduce them into row echelon form. Although the

elimination is only semi-parallelizable, the batch

processing of the elimination process for the nonlinear

elements somewhat provides a decent speedup. Note

that, the mass matrix has a small condition number, and

therefore can be easily inverted using the standard

Gaussian elimination without partial pivoting. This is

beneficial for the GPU acceleration since the partial

pivoting process involves many conditional statements

and branches, which are undesirable for the parallelization

on GPUs.

IV. NUMERICAL EXAMPLES
Two examples are presented here to demonstrate the

self-phase modulation, the third-harmonic generation,

and the self-focusing effects captured by the extended

DGTD algorithm and the GPU speedup. The simulation

was carried out on the XSEDE Stampede cluster with

NVIDIA Tesla K20 GPUs and Xeon E5-2680 CPU

threads.

A. Demonstration of the self-phase modulation and

the third-harmonic generation

The first example is a coaxial waveguide with an

inner and outer radius of 1 and 2 mm, respectively, and

a length of 40 mm. A small section of linear medium is

placed near each end for excitation and absorption of the

fields, and the rest of the coaxial waveguide is filled with

either a linear or nonlinear medium, with a linear

permittivity of
,L 1.0r  and a third-order nonlinearity

coefficient of (3) 4e-8.  The input signal is a modulated

Gaussian pulse with a center frequency of 20 GHz. The

number of finite elements is 110,715, and the solution

marches at a time step of 0.075pst  for a total of

10,000 time steps for both the linear and nonlinear cases.

Mixed first-order basis functions are used for the

computation. The time-domain response for the two

cases is shown in

Fig. 2. It can be observed that with a linear medium,

the shape of the output signal is identical to the input,

whereas with a nonlinear medium the output signal

steepens and forms shock waves, showing the self-

steepening effect [1].

The frequency-domain response for the output

signal is shown in

Fig. 3. For the linear case, we have retained the

frequency profile of the original input Gaussian pulse

centered at 20 GHz. For the nonlinear case, the third-

harmonic effect generates harmonics at odd multiples of

the original 20 GHz signal at 60 GHz, 100 GHz, 140

GHz, and so on. In addition, the self-phase modulation

effect broadens the input bandwidth, where the leading

and the trailing edges shift to lower and higher

frequencies, respectively [1]. This result is validated

using COMSOL. Table 1 gives the average per-step CPU

and GPU timing for the simulation. The lower speedup

as comparing to [4] is in large due to the uneven

nonlinearity encountered by the different elements,

which correlates to thread idling in a warp, and the semi-

serial nature of the Gaussian elimination process. This

thread idleness effectively lowers the number of FLOPS

as well as the overall bandwidth.

Fig. 2. Time-domain response of the electric field for a

coaxial waveguide filled with a section of linear or

nonlinear medium.

Fig. 3. Frequency-domain response of the output signal

for a coaxial waveguide filled with a section of linear or

nonlinear medium.

Table 1: Average per-step timing comparison for the

simulation of a nonlinear coaxial waveguide

MPI 1 2 4 8

CPU Time per Step (ms)

Marching 1,482.00 741.61 369.71 183.15

Comm. 0 35.51 33.74 38.79

Per-Step 1,482.00 777.12 403.45 221.94

GPU Time per Step (ms)

Marching 47.21 23.73 12.00 6.14

Comm. 0 2.94 1.53 4.57

Per-Step 47.21 26.67 13.52 10.71

Speedup 31.39 29.14 29.83 20.72

ACES JOURNAL, Vol. 33, No. 2, February 2018158

B. Demonstration of the self-focusing effect

The second example demonstrates the self-focusing

effect through beam-shaped field propagation in a

1mm 1mm 3mm  bulk medium. The linear relative

permittivity is
,L 1.0r  and the third-order nonlinearity

coefficient is (3) 8  . The excitation is a tapered TEM

sine wave at 300 GHz, launched through a square

aperture with a dimension of a half of the excitation

wavelength. The number of finite elements is 664,039,

and the solution marches at a time step of 0.01pst 

for a total of 5,000 time steps, where mixed first-order

basis functions are used for the simulation. The field

profiles in the bulk medium at various times for both

linear and nonlinear cases are shown in Fig. 4. In the

nonlinear medium, the specific electric field generates a

strong nonlinearity, which results in a maximum

instantaneous relative permittivity of 8.27,r  or a

727% change to the linear relative permittivity. As can

be seen, due to nonlinearity, the field experiences pulse

compression which shortens the duration of each pulse.

This effect is due to self-phase modulation. As the field

propagates along the bulk medium, the wave is naturally

diffracted in the linear medium, where the magnitude of

the field decreases significantly after a couple of

wavelengths. In the nonlinear medium, the intensity of

the field modifies the surrounding medium into a self-

induced waveguide, which counteracts natural diffraction

and preserves the magnitude of the propagating wave for

a longer distance in the medium.

 (a) (b)

Fig. 4. Time-domain field profile for wave propagation

in a: (a) linear and (b) nonlinear medium at 5, 20, 25, and

50ns, respectively.

Table 2 shows the GPU average per-step timing.

Since different elements experience different levels of

nonlinearity at different times due to the propagation of

the field, the CUDA threads for a converged element will

idle and wait for the rest of the elements in the same GPU

to synchronize before completing the kernel (a single

time step). This results in some MPI nodes having to idle

and wait for the others to iteratively converge before

moving onto the next time step together. This idling time

is taking into account in the average communication

time, which is significantly longer for the fixed-point

method due to the large differences in the number of

iterations between different regions at any particular

moment. Due to the high nonlinearity of the example, it

is impractical to analyze the CPU performance. However,

it is expected that higher speedup can be achieved

comparing to the previous example, due to the increasing

number of elements [4].

Table 2: Average GPU per-step timing (in ms) for the

wave propagation in a bulk medium

MPI 1 2 4 8

Volume 569.93 287.23 142.95 72.41

Surface 10.01 5.04 2.55 1.31

Comm. 0 35.51 33.74 38.79

Per-Step 1,482.00 777.12 403.45 221.94

V. CONCLUSION
The DGTD algorithm was extended to model the

instantaneous third-order Kerr-type nonlinearity. The

resulting computationally intensive DGTD algorithm

was accelerated with GPUs based on the parallelization

framework from our prior work. Numerical examples

demonstrated that the DGTD simulation was able to

capture various nonlinear phenomena and the GPU

acceleration was able to achieve a good speedup for this

computationally intensive simulation.

REFERENCES
[1] R. W. Boyd, Nonlinear Optics. Burlington, MA:

Academic Press, 2008.

[2] B. Saleh and M. Tech, Fundamentals of Photonics.

New York, NY: Wiley, 2013.

[3] R. M. Joseph and A. Taflove, “FDTD Maxwell’s

equations models for nonlinear electrodynamics

and optics,” IEEE Trans. Antennas Propag., vol.

45, pp. 364-374, Mar. 1997.

[4] H.-T. Meng and J.-M. Jin, “Acceleration of the

dual-field domain decomposition algorithm using

MPI-CUDA on large-scale computing systems,”

IEEE Trans. Antennas Propag., vol. 62, no. 9, pp.

4706-4715, Sept. 2014.

MENG, JIN: GPU ACCELERATION OF NONLINEAR MODELING BY THE DGTD METHOD 159

	FRONTAL PAGE ONE ONLY.pdf
	JOURNAL
	ISSN 1054-4887

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 640
 293

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 8.0 point
 Origin: top right
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TR

 123
 TR
 1
 0
 629
 187
 0
 8.0000

 Odd
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 126
 64

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 8.0 point
 Origin: top left
 Offset: horizontal 43.20 points, vertical 26.64 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 TL

 123
 TR
 1
 0
 629
 187

 0
 8.0000

 Even
 128
 1
 AllDoc

 CurrentAVDoc

 43.2000
 26.6400

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 128
 127
 64

 1

 HistoryList_V1
 qi2base

