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Abstract ─ A discontinuous Galerkin time-domain 

(DGTD) algorithm is formulated and implemented to 

model the third-order instantaneous nonlinear effect on 

electromagnetic fields due the field-dependent medium 

permittivity. The nonlinear DGTD computation is 

accelerated using graphics processing units (GPUs). 

Two nonlinear examples are presented to show the 

different Kerr effects observed through the third-order 

nonlinearity. With the acceleration using MPI + GPU 

under a large cluster environment, the solution times for 

nonlinear simulations are significantly reduced. 

Index Terms ─ Computational electromagnetics, DGTD, 

GPU acceleration, Kerr effect, nonlinear electromagnetics, 

third-order nonlinearity. 

I. INTRODUCTION
Nonlinear phenomena in electromagnetics generally 

involve changes in the material properties due to the 

presence of electromagnetic fields. The changes in the 

material properties in turn modify the state of the original 

electromagnetic fields in the medium. Since the material 

properties and the contained fields interact with each 

other constantly, it is most natural to describe and model 

these interactions in the time domain, where at each time 

instant the changes in the fields induce nonlinear 

modifications on both the material properties and the 

fields themselves. 

The nonlinear Kerr effect [1] is one of the most 

studied and exploited optical effects. It describes the 

third-order interaction between the electric field and the 

permittivity of the material, which produces a variety of 

nonlinear phenomena [1], [2], such as third-harmonic 

generation (THG), self-phase modulation (SPM), self-

focusing, and frequency mixing. Much investigation has 

been carried out for the simulation of the nonlinear 

optical effects using the finite-difference time-domain 

(FDTD) algorithms [3], due to their straightforward 

implementation. 

This work is focused on the modeling of the third-

order Kerr instantaneous nonlinearity using the 

discontinuous Galerkin time-domain (DGTD) algorithm. 

The nonlinear DGTD algorithm possesses many 

advantages of the linear DGTD algorithms over nonlinear 

FDTD algorithms, including the flexibility in complex 

geometry modeling, reduced phase shifts, and the ease to 

achieve higher order accuracy and convergence. To 

speed up the computation, the MPI + GPU framework 

developed in [4] is adapted to accelerate the nonlinear 

DGTD algorithm. 

II. FORMULATION
For a general third-order nonlinear medium, the 

relative permittivity can be written as: 
(3) 2

,L ,N L ,L( ) ,r r r r rE E          (1) 

where 
,Lr  and 

,N Lr are the linear and nonlinear parts

of the relative permittivity, respectively, (3)  is the 

third-order nonlinear polarization coefficient, and E  is 

the magnitude of the time-varying electric field. Here we 

focus on the derivation of the DGTD algorithm to model 

a nonlinear, lossless, and non-dispersive medium to 

update the electric field since the updating equation for 

the magnetic field has no nonlinear components and thus 

is identical to that in a linear medium. Testing Ampere’s 

law using the Galerkin method, substituting in the 

expansion of the fields, and applying the central flux, the 

equation after taking the time derivative on D  for 

element e becomes: 
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and { }e  and { }h  are the electric and magnetic field 

solution vectors and e

iN and
e

jN are vector basis 

functions. The terms associated with the boundary 

conditions are omitted for simplicity. Since the time-

varying permittivity is embedded in the mass matrix of 
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the DGTD algorithm, the volume integration pertaining 

to the electric field is now split into two terms by the 

product rule, where for the nonlinear medium, both the 

relative permittivity and the electric field are functions 

of time. Discretizing Equation (2) in the time domain 

using central difference gives: 
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where 1n

r
 is the field-dependent nonlinear permittivity

at the future time step, n

r is the converged permittivity

at the current time step, and 
1/2 1/2 1/2 1/2{ } [ ]({ } { } ) [ ]{ } .n n n n

eh eb F h h S h       (5) 

After rearranging the terms, Equation (4) can be cast into 

a field-marching form as: 
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Due to the variation of the field magnitude at each time 

step, ( )r E   of each element changes with time, and 

therefore the mass matrix 1[ ]n

eM   has to be reassembled 

at every time step. Note that, we have recovered the 

original expression for [ ]eM   as in the linear DGTD 

algorithm, albeit with a field- and time-dependent 

permittivity. The dependency of 1{ }ne   in 1[ ]n

eM 

renders Equation (6) a nonlinear equation. 

At each time marching step n, the fixed-point 

method is employed to solve Equation (6), where 
1/2{ }nb  is computed with the initial guess 1

0{ } { }n ne e 

and 1

0[ ] [ ]n n

e eM M  . At the thk iteration step, the mass 

matrix 1

1[ ]n

e kM 


is inverted to update the field solution

1{ }n

ke  . The updated solution is in turn used to update the

mass matrix 1[ ]n

e kM  using Equation (7). If the norm of

the residual { }n

kr of Equation (6) is smaller than a 

predefined threshold, then the nonlinear iteration is 

converged, and the equation can be marched to the next 

time step 1n . Otherwise it continues with the ( 1) thk   

iteration step. 

III. GPU IMPLEMENTATION
Because of the necessity to solve nonlinear equations 

in each time step, the nonlinear DGTD computation is 

very time-consuming. This computation can be effectively 

accelerated by exploiting the power of graphics 

processing units (GPUs). The GPU implementation for 

the nonlinear DGTD algorithm is similar to the approach 

described in [4], employing the same coalesced memory 

accessing pattern and thread/block allocation. Since the 

electric field update processes that are not related to 
1{ }ne   are similar to the ones found in [6], here we focus 

on the parallelization of the computation related to 
1{ }ne  , which includes the assembly of the nonlinear

mass matrix 
1[ ]n

eM 
and the inversion of this mass

matrix. 

To assemble the nonlinear mass matrix, note that 

each mass matrix entry is numerically integrated through 

quadrature, where the contribution from each weighted 

quadrature point is summed. Due to the presence of 

nonlinearity, 
r on each quadrature point changes during

each iteration step, while the other constituting terms in 

equation (7) remain identical. To parallelize the assembly 

of the mass matrix, the constituting matrices at each 

quadrature point are pre-calculated and stored, and then 

summed together at each iteration step by first multiplying 

with the updated .r The proposed parallelization

strategy and the memory access pattern are shown in 

Fig. 1, with each of the total numTets elements 

parallelized over its numTetDofs unknowns using 

CUDA threads. Each threadblock is assigned with a 

calculated number of elements to utilize all warps [4]. At 

each iteration step, the mass matrices are assembled by 

looping through numQuads quadrature points and 

summing their contribution, which is completely 

parallelizable. 

Fig. 1. Parallelization and memory access pattern for the 

assembly of the nonlinear mass matrices. 

To invert the nonlinear mass matrix, we parallelize 

the standard non-pivoting element-level Gaussian 

elimination on the GPU. Each numTetDofs threads for 

an element loops over each elemental matrix rows and 
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reduce them into row echelon form. Although the 

elimination is only semi-parallelizable, the batch 

processing of the elimination process for the nonlinear 

elements somewhat provides a decent speedup. Note 

that, the mass matrix has a small condition number, and 

therefore can be easily inverted using the standard 

Gaussian elimination without partial pivoting. This is 

beneficial for the GPU acceleration since the partial 

pivoting process involves many conditional statements 

and branches, which are undesirable for the parallelization 

on GPUs. 

IV. NUMERICAL EXAMPLES
Two examples are presented here to demonstrate the 

self-phase modulation, the third-harmonic generation, 

and the self-focusing effects captured by the extended 

DGTD algorithm and the GPU speedup. The simulation 

was carried out on the XSEDE Stampede cluster with 

NVIDIA Tesla K20 GPUs and Xeon E5-2680 CPU 

threads. 

A. Demonstration of the self-phase modulation and

the third-harmonic generation

The first example is a coaxial waveguide with an 

inner and outer radius of 1 and 2 mm, respectively, and 

a length of 40 mm. A small section of linear medium is 

placed near each end for excitation and absorption of the 

fields, and the rest of the coaxial waveguide is filled with 

either a linear or nonlinear medium, with a linear 

permittivity of 
,L 1.0r   and a third-order nonlinearity 

coefficient of (3) 4e-8.   The input signal is a modulated 

Gaussian pulse with a center frequency of 20 GHz. The 

number of finite elements is 110,715, and the solution 

marches at a time step of 0.075pst   for a total of 

10,000 time steps for both the linear and nonlinear cases. 

Mixed first-order basis functions are used for the 

computation. The time-domain response for the two 

cases is shown in  

Fig. 2. It can be observed that with a linear medium, 

the shape of the output signal is identical to the input, 

whereas with a nonlinear medium the output signal 

steepens and forms shock waves, showing the self-

steepening effect [1]. 

The frequency-domain response for the output 

signal is shown in  

Fig. 3. For the linear case, we have retained the 

frequency profile of the original input Gaussian pulse 

centered at 20 GHz. For the nonlinear case, the third-

harmonic effect generates harmonics at odd multiples of 

the original 20 GHz signal at 60 GHz, 100 GHz, 140 

GHz, and so on. In addition, the self-phase modulation 

effect broadens the input bandwidth, where the leading 

and the trailing edges shift to lower and higher 

frequencies, respectively [1]. This result is validated 

using COMSOL. Table 1 gives the average per-step CPU 

and GPU timing for the simulation. The lower speedup 

as comparing to [4] is in large due to the uneven 

nonlinearity encountered by the different elements, 

which correlates to thread idling in a warp, and the semi-

serial nature of the Gaussian elimination process. This 

thread idleness effectively lowers the number of FLOPS 

as well as the overall bandwidth. 

Fig. 2. Time-domain response of the electric field for a 

coaxial waveguide filled with a section of linear or 

nonlinear medium. 

Fig. 3. Frequency-domain response of the output signal 

for a coaxial waveguide filled with a section of linear or 

nonlinear medium. 

Table 1: Average per-step timing comparison for the 

simulation of a nonlinear coaxial waveguide 

# MPI 1 2 4 8 

CPU Time per Step (ms) 

Marching 1,482.00 741.61 369.71 183.15 

Comm. 0 35.51 33.74 38.79 

Per-Step 1,482.00 777.12 403.45 221.94 

GPU Time per Step (ms) 

Marching 47.21 23.73 12.00 6.14 

Comm. 0 2.94 1.53 4.57 

Per-Step 47.21 26.67 13.52 10.71 

Speedup 31.39 29.14 29.83 20.72 
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B. Demonstration of the self-focusing effect 

The second example demonstrates the self-focusing 

effect through beam-shaped field propagation in a 

1mm 1mm 3mm  bulk medium. The linear relative 

permittivity is 
,L 1.0r   and the third-order nonlinearity 

coefficient is (3) 8  . The excitation is a tapered TEM 

sine wave at 300 GHz, launched through a square 

aperture with a dimension of a half of the excitation 

wavelength. The number of finite elements is 664,039, 

and the solution marches at a time step of 0.01pst   

for a total of 5,000 time steps, where mixed first-order 

basis functions are used for the simulation. The field 

profiles in the bulk medium at various times for both 

linear and nonlinear cases are shown in Fig. 4. In the 

nonlinear medium, the specific electric field generates a 

strong nonlinearity, which results in a maximum 

instantaneous relative permittivity of 8.27,r   or a 

727% change to the linear relative permittivity. As can 

be seen, due to nonlinearity, the field experiences pulse 

compression which shortens the duration of each pulse. 

This effect is due to self-phase modulation. As the field 

propagates along the bulk medium, the wave is naturally 

diffracted in the linear medium, where the magnitude of 

the field decreases significantly after a couple of 

wavelengths. In the nonlinear medium, the intensity of 

the field modifies the surrounding medium into a self-

induced waveguide, which counteracts natural diffraction 

and preserves the magnitude of the propagating wave for 

a longer distance in the medium. 

 

 
       (a)          (b) 

Fig. 4. Time-domain field profile for wave propagation 

in a: (a) linear and (b) nonlinear medium at 5, 20, 25, and 

50ns, respectively. 

 

Table 2 shows the GPU average per-step timing. 

Since different elements experience different levels of 

nonlinearity at different times due to the propagation of 

the field, the CUDA threads for a converged element will 

idle and wait for the rest of the elements in the same GPU 

to synchronize before completing the kernel (a single 

time step). This results in some MPI nodes having to idle 

and wait for the others to iteratively converge before 

moving onto the next time step together. This idling time 

is taking into account in the average communication 

time, which is significantly longer for the fixed-point 

method due to the large differences in the number of 

iterations between different regions at any particular 

moment. Due to the high nonlinearity of the example, it 

is impractical to analyze the CPU performance. However, 

it is expected that higher speedup can be achieved 

comparing to the previous example, due to the increasing 

number of elements [4]. 

 

Table 2: Average GPU per-step timing (in ms) for the 

wave propagation in a bulk medium 

# MPI 1 2 4 8 

Volume 569.93 287.23 142.95 72.41 

Surface 10.01 5.04 2.55 1.31 

Comm. 0 35.51 33.74 38.79 

Per-Step 1,482.00 777.12 403.45 221.94 

 

V. CONCLUSION 
The DGTD algorithm was extended to model the 

instantaneous third-order Kerr-type nonlinearity. The 

resulting computationally intensive DGTD algorithm 

was accelerated with GPUs based on the parallelization 

framework from our prior work. Numerical examples 

demonstrated that the DGTD simulation was able to 

capture various nonlinear phenomena and the GPU 

acceleration was able to achieve a good speedup for this 

computationally intensive simulation. 
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