
Abstract—Advances in computer hardware 
technologies accompanied by easy-to-use parallel 
programming software platforms have led to the 
wide spread use of parallel processing 
architectures, such as multi-core central processor 
units (CPUs) and graphic processing units (GPUs), 
in technical and scientific computing. Among 
electromagnetic numerical analysis methods, the 
finite-difference time-domain (FDTD) method is 
very well suited for parallel programming, and 
several implementations of FDTD have been 
developed and reported to solve electromagnetics 
problems orders of magnitude faster. Examination 
of performances of these implementations reveals 
that, in general, it is more efficient to solve larger 
FDTD domains than smaller domains. In this paper 
it is demonstrated that one can exploit the higher 
efficiency inherent to the solution of larger 
problem sizes to solve parameter sweep and 
optimization problems faster: instead of solving 
multiple smaller FDTD domains separately, these 
domains can be combined or stacked to form a 
larger problem and the large problem can be 
solved more efficiently. It has been shown that up 
to 40% faster solution can be achieved on GPUs 
with this method.  
 
Index Terms—FDTD methods, parallel 
architectures, graphics processing unit (GPU) 
programming, Compute Unified Device 
Architecture (CUDA), hardware accelerated 
computing. 

I. INTRODUCTION 
The finite-difference time-domain (FDTD) 

method [1]-[3] has been the most popular 
numerical analysis technique throughout the past 
decades to solve a variety of electromagnetics 

problems. In FDTD, the problem space is 
composed of cells, in which electric and magnetic 
field components are located at discrete positions. 
These field components are recalculated at every 
time-step of a time-marching algorithm. The 
calculations for each cell can be performed 
independent from other cells at each time step; 
thus FDTD is very suitable for parallel 
programming. Until recently central processor 
units (CPUs) have been the main hardware 
architecture to perform high performance scientific 
and technical computing, and several 
implementations of FDTD have been developed 
for high performance CPU clusters and multi-core 
CPUs.  

Recently, graphic processing units (GPUs), 
equipped with hundreds of processing cores, have 
evolved rapidly and outmatched CPUs in terms of 
computation power. Accompanied by advances in 
parallel programming software technologies, the 
advances in GPUs enabled widespread use of these 
devices, which had been initially designed for 
processing computer graphics, for general purpose 
computing. Initially GPUs were designed to 
support only single-precision floating-point 
arithmetic operations, which is sufficient for 
graphics processing. To further aid general 
purpose computing, latest generation GPUs 
support double-precision floating-point arithmetic 
operations as well. Thus graphics cards have 
evolved into computation cards.  

Implementations of various numerical analysis 
methods have been developed on GPU platforms 
to solve electromagnetics problems faster. In 
particular, several implementations of FDTD 
method have been developed and reported [4]-
[24]. These implementations are based on various 
programming platforms. For instance, [4]-[7] are 
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based on OpenGL; [8]-[14] are based on Brook; 
[15] uses High Level Shader Language (HLSL); 
and [16]-[20] are based on compute unified device 
architecture (CUDA) [25]. Independent of the 
different programming languages used in these 
contributions, it has been shown that FDTD 
problems can be solved orders of magnitude faster 
on graphics cards.  

Parameter sweep and optimization are two 
commonly used techniques in the design of 
circuits. Electromagnetic calculations are 
computationally expensive and usually it takes a 
long time to run a simulation. Since, parameter 
sweeps and most optimization techniques need a 
large number of runs to achieve their target; long 
execution times can seriously hinder the adoption 
of these techniques. With the significant speed 
gains available with the GPU based FDTD solvers; 
optimization becomes a viable option in 
electromagnetic design [13]. The use of GPU 
based FDTD solvers for optimization and 
parameter sweep has been presented in [13]. 
Similarly, GPU based FDTD is used in [16] and 
[20] in optimization for radio coverage prediction.  

One reasonable way to measure the efficiency of 
an FDTD implementation is to calculate the 
number of cells processed per second, in other 
terms the throughput, such as [26] 

          610steps
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where NMCPS is the number of million cells 
processed per second, stepsn is the total number of 

time steps the program has been run, and st is the 
total computation time in seconds. Here, Nx , Ny , 
and Nz  are the number of cells in an FDTD 
problem space in x, y, and z directions, 
respectively. Such throughput data as a function of 
the FDTD domain size have been provided in [18], 
[24], and [26]. Generally the trend of throughput 
as a function of problem size in these data is 
similar to that illustrated in Fig. 1. The data shows 
that the computation efficiency is directly 
proportional to the problem size; i.e. the efficiency 
is higher for larger problem sizes. This trend is 
expectable since it is more efficient to load larger 
amounts of data to the GPU memory at once than 
loading smaller chunks at multiple times. 
Furthermore, the multiprocessors can more 

efficiently schedule the threads for larger number 
of threads, thus problem sizes. The higher 
efficiency inherent to the solution of a larger 
domain implies that if solutions of multiple 
smaller problems are required, it will be more 
efficient to combine their spatial domains as a 
single larger domain and solve the larger problem. 
This scenario fits to optimizations or parameter 
sweeps very well, since solutions of multiple 
similar size problems are sought in such cases: 
Similar size FDTD spatial domains can be stacked, 
where each domain is electromagnetically isolated 
from the others, and a large domain can be 
obtained. The entire combined domain can be 
solved in a single run. Using this method, a 
significantly faster solution can be achieved 
compared to the case where all the individual 
domains are solved separately.    

 
Fig. 1. Throughput versus problem size. 

 
This paper demonstrates, via examples, that 

overall simulation time can be significantly 
reduced by a CUDA based FDTD code using the 
presented stacking method. The paper is organized 
as follows. Section II presents an FDTD 
implementation based on CUDA for GPU 
platforms. Section III discusses various schemes to 
stack FDTD spatial domains and shows time 
reductions in calculation times achieved by these 
stacking schemes in an example case. Section IV 
presents an analysis to examine the effect of 
orientation of the problem geometry on the 
efficiency of the solutions. Section V discusses 
some other benefits the stacking method can offer 
to the FDTD solutions of problems. 
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II. FDTD USING CUDA 
New software development platforms and 

languages have accompanied and aided the general 
purpose GPU (GPGPU) computing as it has 
evolved and become widespread. OpenGL, Brook, 
and HLSL are among those languages that are 
commonly used, as discussed earlier, to program 
FDTD. However, steep learning curves of these 
languages prevent their widespread use.   

Recently, Compute Unified Device Architecture 
(CUDA) is introduced by NVIDIA as a software 
development platform. CUDA is a general purpose 
parallel computing architecture. To program the 
CUDA architecture, developers can use C, which 
can then be run at great performance on a CUDA 
enabled processor [27]. Compared to other 
programming languages, some advantages and 
disadvantages of CUDA can be listed [28]. One of 
the main limitations of CUDA is that it can be 
used only with CUDA-enabled GPUs, which are 
manufactured only by NVIDIA. Some of the main 
advantages of CUDA are listed as availability of 
scattered reads from arbitrary addresses in 
memory, and shared memory that can be 
simultaneously accessed by the threads in the same 
thread block. Besides these advantages, two major 
factors led to its widespread use in many 
applications including FDTD: NVIDIA provides 
extensive support to programmers who would like 
to develop codes using CUDA, and programming 
for GPU computing is easier with CUDA.  

In this current contribution a CUDA 
implementation of FDTD is used to prove the 
performance improvement achieved by the 
proposed stacking method. The details of this 
implementation are presented in [29], where the 
algorithm of the implementation is referred to as 
xy-mapping. In order to aid the understanding of 
discussions in the subsequent sections, some 
details of this implementation are summarized here 
as a reference. 

In CUDA a number of threads work in parallel 
and form a thread block, while a number of thread 
blocks form a grid. In the xy-mapping algorithm, a 
grid of threads is mapped to the cells in the xy-
plane cut of an FDTD problem space. Each thread 
is mapped to a cell and the field components in 
that cell are updated by the thread. Each thread 
then traverses the cells in the same column in the z 

direction and updates the field components in the 
same column, as illustrated in the pseudocode in 
Listing 1. This algorithm implies that there is 
anisotropy in the computations in the sense that 
computation in the z direction is treated 
differently. 

In CUDA, it is very important to have global 
memory accesses coalesced to achieve faster 
computations. In the xy-maping algorithm, to make 
sure that the global memory accesses are 
coalesced, the FDTD problem space is enlarged by 
padding extra cells to the problem space, such that 
the number of cells in x and y directions are 
integer multiples of 16. For instance, if a problem 
space is composed of Nx Ny Nz× ×  cells, the 
problem size becomes Nxx Nyy Nz× ×  after the 
padding, where Nxx  and Nyy  are integer multiples 
of 16.  

It should be noted that in the xy-mapping 
algorithm, the fields in the cells padded in the x 
direction are computed by the associated threads, 
while the cells padded in the y direction are not 
processed, as shown in Listing 1. This algorithm 
implies another anisotropy in the x and y directions 
throughout the computations. As a result, the 
FDTD algorithm in consideration is anisotropic in 
the sense of computations in x, y, and z directions. 
Therefore, if a non-cubic problem space will be 
computed, different computation performances 
should be expected if the problem geometry is 
rotated to align in different directions.   

 
Function update_magnetic_fields 
 
Calculate thread index ti 
Calculate cell index i and j using ti 
 
If j < ny 
For k from 1 to nz 
Update Hx, Hy, and Hz 

End for 
End if 

 
End function 
 
Listing 1. Pseudocode of CUDA kernel to update 

magnetic field components based on 
xy-mapping. 
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III. STACKING SCHEMES 
Many different scenarios can be envisioned to 

stack smaller FDTD spatial domains to obtain a 
larger domain. For instance, domains can be 
stacked in a linear sequence in one-dimension, a 
planar sequence in two-dimensions, or a cuboidal 
sequence in three-dimensions. In this contribution, 
linear stacking is considered for the analyses. The 
linear stacking, as well, can be achieved in three-
different scenarios: stacking in the x direction, 
stacking in the y direction, or stacking in the z 
direction, as illustrated in Fig. 2 for three domains. 
These three schemes will be referred to as x-
stacking, y-stacking, and z-stacking, respectively, 
in the following discussions. 

As discussed in the previous section, the 
algorithm acts differently in different directions. 
This algorithmic anisotropy would cause a 
different calculation time every time the problem 
spaces are stacked in different directions.  

 

 
Fig. 2. FDTD problem spaces stacking schemes. 
 

A performance analysis test is performed to find 
which direction is the best for stacking. An 
NVIDIA® Tesla™ C1060 Computing Processor 
running at 1.3 GHz is used for the tests presented 
in this paper. A problem space composed of 
100 100 25× ×  cells is used as the base FDTD 
spatial domain, where a smaller number of cells is 
used in the z direction to model a microstrip type 
structure. Then this domain is stacked in x, y, and z 
directions. Each time the number of stacked 
domains is increased, simulation is performed, and 
throughput is calculated. The results of this test are 
plotted in Fig. 3. It is found that as the problem 
size increases the efficiency increases, as 
expected. Furthermore, the x-stacking is found to 
be the best performing scheme, while the z-
stacking is the worst. One reason for why x-
stacking performs better is that as the problem 
domain is enlarged in the x direction, the number 
of unnecessarily processed padding cells becomes 
negligible compared to the number of cells in the 
main domain. The reason for why the y-padding 

performs better than the z-padding is that as the 
domain size increases, the number of thread blocks 
also increases with the y-padding, and the thread 
blocks are scheduled more efficiently by the GPU 
multiprocessor. 

In this given example, the base problem domain 
size is 250,000 cells, and this number of cells is 
processed with a throughput of 340 million cells 
per second. When 128 of this domain are stacked 
in the x direction, the problem size becomes 32 
million cells, while the throughput becomes 497 
million cells per second. These numbers show that, 
for instance, if 128 runs of the base domain are 
required for an optimization problem, it will be 
more than 40% faster to complete the optimization 
using the proposed stacking method compared to 
the case where all the base domains are solved 
separately.  

 

 
 
Fig. 3. Throughput of different stacking schemes. 

 
It should be noted that these findings are valid 

only for the code of the presented xy-mapping 
algorithm and for different codes based on 
different algorithms the efficiencies due to 
stacking directions may be different. In any case, 
an increase in efficiency should be expected if the 
problem size is increased by stacking. 

IV. ALIGNMENT OF GEOMETRIES  
The analysis presented in the previous section 

revealed that it is better to stack the FDTD spatial 
domains in the x direction to achieve the best 
performance out the presented algorithm. In 
general a problem space can be in arbitrary size in 
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different directions; i.e. number of cells in a 
direction may be different from the number of 
cells in other directions. It is easy to rotate the 
geometry such that a side is aligned in any desired 
direction. For instance, one can align the longest 
side of a domain in x, y, or z direction by simple 
transformations.  

Since there is a flexibility to align sides in 
desired directions, one can expect different 
performances from stacking for different 
alignments. In order to find which alignment is the 
best, an alignment test is performed as described 
below. A base FDTD domain with size of 64 cells 
on the short side, 128 cells on the medium side, 
and 192 cells on the long side, as shown in Fig. 4, 
is prepared. Then this domain is rotated and 
stacked in the x direction for six different 
alignment scenarios. For instance, Fig. 5 illustrates 
one of these cases, in which the three copies of the 
base domain are stacked in the x direction such 
that the short side is aligned in the x direction, and 
the long side is aligned in the z direction. 

 

 
Fig. 4. A problem space with different sizes in 

different directions. 
 

 
Fig. 5. Base FDTD domain stacked in the x 

direction such that short side is aligned in 
the x direction and the long side is 
aligned in the z direction. 

For each of these six cases, first, the base 
domain is simulated alone and then 20 copies of 
the base domain are stacked and simulations are 
repeated. The throughput is calculated for each 
simulation, and results are tabulated as shown in 
Table 1. The results reveal that for all of these six 
cases the efficiencies of the stacked domains 
simulations are better than that of individual 
domains simulation. When the efficiencies of the 
stacked domains simulations are compared, no 
significant difference has been observed between 
the six alignments. However, the case in which the 
shortest side is aligned in the z direction, the last 
row in Table 1, has slightly higher throughput, 
thus efficiency. It should be reminded that this 
alignment efficiency analysis is valid for the code 
of the xy-mapping in consideration, and for a 
different code the results might be different. 
Nonetheless, alignment directions of geometries 
shall be taken into consideration to reach the best 
performance out of the proposed stacking 
algorithm.  

V. OTHER ADVANTAGES OF 

STACKING 
The tests presented in the previous section are 

performed using a simple FDTD domain with PEC 
boundaries and a microstrip structure excited by a 
single voltage source. For some other classes of 
problems, stacking can provide some other means 
to achieve better performance in speed as well as 
memory usage.  

One class of problems that can benefit from 
stacking is scattering due to an incident field. For 
scattering calculations, the problem space is 
illuminated by an incident field that has to be 
recalculated at every time step of time-marching. 
In an optimization problem, all problem spaces 
will be excited with the same incident field. 
Therefore, if incident field is calculated and stored 
for the base domain, it can be used to excite the 
other domains in the stack as well. This way, 
recalculation and storage of fields for separate 
domains can be avoided and efficiency can be 
significantly improved both in terms of simulation 
time and memory.  

Another class of problems is the calculation of 
scattering parameters in a multi-port circuit. For 
the solution of such problems, in each simulation, 
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one port is active as a source and scattering 
parameters are calculated with respect to the active 
port. Thus for an N-port problem, the calculation 
shall be repeated N times. These N problem spaces 
can be stacked and simulated at one run; thus a 
faster solution can be achieved. Another advantage 
is that, all FDTD updating coefficients are 
essentially the same in all of these individual 
problems. Therefore, it is sufficient to calculate 
and store the updating coefficients only for a base 
domain and reuse these coefficients in other 
domains. Thus efficiency can be achieved in terms 
of memory use as well. 

 
 

Table 1. Efficiency of stacking with respect to 
alignment. 
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 x y z 1 1.6 324 
x y z 20 31.5 499 
x z y 1 1.6 375 
x z y 20 31.5 496 
y x z 1 1.6 344 
y x z 20 31.5 480 
y z x 1 1.6 414 
y z x 20 31.5 495 
z x y 1 1.6 436 
z x y 20 31.5 499 
z y x 1 1.6 448 
z y x 20 31.5 503 

   

VI. CONCLUSION 
The concept of stacking FDTD problem spaces 

to achieve computation efficiency in terms of 
solution speed is introduced for optimization and 
parameter sweep problems on graphics processing 
platforms. In particular, an FDTD implementation 
based on CUDA is discussed for GPU platforms 
and it has been shown that significantly shorter 
solution times can be achieved if problem spaces 

are stacked and solved at one run compared to the 
case where all these problems are solved 
separately. It has also been shown that, for some 
classes of problems, stacking can achieve memory 
efficiency as well.   
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