
Fast CPU/GPU Pattern Evaluation of Irregular Arrays

A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno, and P. Vinetti

Dipartimento di Ingegneria Biomedica, Elettronica e delle Telecomunicazioni
Università di Napoli Federico II, Via Claudio, 21 Naples, Italy

a.capozzoli@unina.it

Abstract- An approach for the fast analysis of
“irregular”, i.e., of conformal, periodic or
aperiodic, 2D arrays, based on the use of the p-
series approach and Non-Uniform FFT (NUFFT)
routines is proposed. The approach allows for
modulating the computational burden depending
on the array curvature and, thanks to the use of the
NUFFT, the asymptotic growth of the computing
time reduces to that of a few, standard FFTs. A
sub-array partition strategy is also sketched and
shown to further unburden the procedure and
control the accuracy. The approach has been
implemented in both sequential and parallel codes
enabling its execution on CPUs and on cost-
effective, massively parallel computing platforms
like Graphic Processing Units (GPUs). Its
performance in terms of computational efficiency
and accuracy has been assessed by an extensive
numerical analysis and also against benchmarks
provided by algorithms based on fast Matrix-
Vector Multiplication routines.

Index Terms- Aperiodic array antennas,
conformal array antennas, fast antenna analysis,
GPU computing, CUDA.

I. INTRODUCTION
Array pattern synthesis is a computationally

challenging problem since it requires demanding
iterative algorithms for the (local or global)
optimization of a properly defined objective
functional [1-3]. The computational bottleneck of
such algorithms is essentially related to the
repeated calculation of the far field pattern (FFP)
and possibly of the functional gradient (FG) (as
long as gradient-based optimization approaches
are adopted).

Different kinds of arrays have been subject in
the literature of synthesis procedures. Many of the
developed synthesis algorithms refer to “regular
arrays” (RAs), for which the elements are arranged

on a periodic grid of a portion of a line or plane
(see Fig. 1). In the last decade, “irregular arrays”
(IAs), namely, arrays for which the elements lay
on an “aperiodic” grid and/or on conformal lines
or surfaces have been proposed (see Figs. 2-4) to
overcome the typical issues of RAs [4-8]. Indeed,
“aperiodic” structures allow, as compared to
“periodic” ones, a more efficient power handling,
if uniformly excited in amplitude [5], and permit
improving the bandwidth performance [9], while
also reducing the overall number of elements and
mitigating the effects of the grating lobes [10].
Furthermore, “conformal” structures, as compared
to linear or planar ones, satisfy aerodynamic and
low-scattering requirements in aircraft antennas
[4], permit space deployability [11] and
considerably reduce the feed path length, thus
improving the bandwidth behavior, of reflectarray
antennas [7]. However, IA synthesis appears
computationally more demanding than RAs
synthesis, since the FFP or FG evaluations become
more burdened.

Fig. 1. Example of planar, periodic array.

For RAs, when the array factor can be

employed [12] and the far field pattern is
evaluated on a regular spectral grid, the excitation
coefficients and the array factor are related by a
“standard” Discrete Fourier Transform (DFT) link,
i.e., a DFT defined on Cartesian, regular grids, as

355

1054-4887 © 2010 ACES

ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

Fig. 2. Example of planar, aperiodic array.

Fig. 3. Example of conformal, periodic array.

Fig. 4. Example of conformal, aperiodic array.

discussed in [13]. In this case, the speedup is
achieved by means of standard Fast Fourier
Transform (FFT) routines [14]. Indeed, taking for
example arrays of M elements, the use of FFTs
changes the O(M2) computational complexity of
each DFT to O(MlogM).

On the other hand, for IAs, the possibility of a
direct use of FFTs [6-8] breaks down. Indeed, for
planar IAs, evaluating the FFP as well as the FG
requires the DFT to be computed on irregular grids
(Cartesian non-uniform or non-Cartesian), so that
the requirement of standard FFTs is not met
anymore. Moreover, for IAs whose elements are
arranged on non-linear or non-planar domains, a
standard DFT link between array factor and
excitation coefficients is lost [7].

The aim of the paper is to show how the
asymptotic growth of the computational burden
when dealing with IAs can be reduced to
O(MlogM) as long as the computation of the FFP
can be recast as that of a few FFTs. To this end,
three different tools are exploited in the following,
namely the p-series approach [7,15,16], the Non-
Uniform FFT (NUFFT) algorithms [17,18] and a
sub-array partitioning strategy. In particular, the p-
series approach enables, for conformal surfaces
with mild curvature, recasting the link between the
array excitation coefficients and the FFP as the
sum of a few, possibly non-standard, DFTs. On
the other hand, NUFFT algorithms quickly
evaluate non-standard DFTs as the sum of a few
FFTs. And so, the two approaches together are
able to restore the yearned O(MlogM)
computational complexity. Finally, the sub-array
partitioning strategy is capable to additionally
improve the method in terms of computational
burden and accuracy. It is also shown that the
computational approach herein proposed can be
even more fruitfully exploited if implemented on
innovative, intrinsically parallel, off-the-shelf
hardware provided by Graphical Processor Units
(GPUs) [19]. GPUs represent, in fact, inexpensive,
highly-parallel hardware, significantly mitigating
the requirements in terms of space, management,
cost and user access, when compared to more
complex CPU grid/cluster systems [20]. In
addition, while programming on GPUs remains
more involved than standard sequential
programming, the recent interest in GPUs for
scientific computing has promoted the
development of effective programming

356 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

frameworks [21,22], which in return simplified
implementations on these platforms [23]. Finally,
it is further shown how the proposed strategy
fruitfully modulates, depending on the array
curvature, the computational burden without
impairing the accuracy of the FFP evaluation.

The performance of the approach is tested by an
implementation in C language on a standard,
single-core (sequential) CPU and by an
implementation in NVIDIA CUDA (Compute
Device Unified Architecture) language [24] on a
(multithread) NVIDIA GTX 260 GPU. More in
detail, C language implementations of the
proposed strategy and of an approach based on
sequential Optimized Matrix-Vector
Multiplication (OMVM) [25,26], generally having
an O(M2) asymptotic complexity, but performing
better than a brute-force (i.e., a matrix vector
multiplication based on the use of “for loops”
[27]) one, have been setup. The OMVM approach
has been purposely developed in this paper to be
used as a reference for assessing the performance
of the proposed strategy. Speedups of more than
10 times for arrays of 104 elements obtained by
our method as compared to OMVM, FFP
evaluation are highlighted. Similarly, CUDA
language implementations of the proposed strategy
and of an approach based on parallel OMVM
routines have been realized. Speedups of more
than 8 times for arrays of 104 elements, when
comparing the GPU version of our approach
against that of employing parallel OMVMs are
pointed out. Moreover, speedups of more than 40
times, when comparing the GPU and CPU
versions of the developed algorithm, are indicated.

Finally, the accuracy of the procedure is
discussed.

The paper is organized as follows. In Section II,
the problem of radiation is formulated and the
strategy exploited for the NUFFT-based
evaluation of the FFP, relying on the use of the p-
series approach, is presented. The benchmarking,
OMVM-based method is also sketched. Section III
briefly enlightens some details of the sequential
(CPU) and parallel (GPU) implementations for
both considered approaches (i.e. NUFFT and
OMVM). Sections IV and V illustrate and
compare the computational performance and
accuracy of the NUFFT-based method, as
compared to the OMVM-based one. Finally, in
Section VI, conclusions are drawn and future

developments are foreseen. In the Appendices, the
NUFFT algorithm is shortly recalled, C-like and
CUDA-like listings of the developed NUFFT
routines are reported and ancillary calculations
concerning the convenience of adopting a sub-
array partitioning are presented.

II. RADIATION BY 2D IRREGULAR
ARRAYS

In the following, the approach to the fast
analysis of IAs is presented by referring to a
general 2D geometry.

Let us consider an antenna array made of M
elements, non-uniformly distributed on a 2D
arbitrary surface, S, of equation z=f(x,y), (x,y)∈D,
with D a planar, auxiliary domain, so that the
radiating elements are located at the points
(xm,ym,zm) with zm=f(xm,ym) and m = 0, 1, …, M-1
(see Fig. 5). The complex excitation coefficients
are denoted with am, m = 0, 1, …, M-1.

Generally speaking, the FFP of an IA can be
written as [4,6-8]

[]∑
−

=

+=
1

0

),,,(),(
M

m

vyuxj
mmrmr

mmeyxvuhavuF (1)

where





=
=

ϕθβ
ϕθβ

sinsin

cossin

v

u
, (2)

β=2π/λ, λ being the wavelength, and hr(u,v,xm,ym)
accounts for the radiation characteristics and
position of the m-th element (see also Subsection
C).

Henceforth, the vector aspects of the problem
are dismissed. In other words, we assume that h
can be factored out as

),(),,,(),,,(vupyxvuhyxvuh mmmmr = , (3)

that is, all the array elements share a common
polarization behavior described by p. Accordingly,
Fr(u,v)=F(u,v)p(u,v), where

[]∑
−

=

+=
1

0

),,,(),(
M

m

vyuxj
mmm

mmeyxvuhavuF .(4)

357CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

We notice that
• for mild conformal geometries (the elements

have approximately the same orientation),
vector correction terms to eq. (3) are often
negligible;

• for non-mild conformal geometries, the sub-
array partitioning strategy helps to mitigate
the assumptions needed for the validity of eq.
(3) (see Subsection II.e).

In practice, the FFP is required at a number H
of spectral positions (uh,vh), so that the
corresponding discrete values Fh of F can be
written, following eq. (4), as

Fh = amh(uh,vh ,xm,ym)e j uhxm +vhym[]

m= 0

M −1

∑ . (5)

Thus, even in the case when the spatial and

spectral points (xm,ym) and (uh,vh), respectively,
form a Cartesian grids, the samples of the FFP
cannot be evaluated by a standard FFT since eq.
(5) is not in the form of a DFT [28].

A. Far Field Pattern Computation by
Optimized Matrix-Vector Multiplications

Whenever it is not possible to conveniently
express the function h(u,v,xm,ym), an effective way
to evaluate the samples Fh of the FFP is employing
OMVM routines.

Indeed, the kernel h(uh,vh,xm,ym)expj[uhxm+
vhym] of eq. (5) can be arranged as a matrix B
whose generic element is

Bhm = h(uh,vh ,xm,ym)e j uhxm +vhym[] (6)

so that eq. (5) can be recast as a matrix-vector
multiplication

Fh = Bhmam
m= 0

M −1

∑ . (7)

Eq. (7) is amenable to be evaluated by OMVM

routines, which in general perform as O(M2) or, in
the case of particular symmetries of B, as
O(Mlog5M) [25,26].

In the following, we illustrate a strategy capable
of reducing the computational complexity needed
to calculate Fh’s in cases when the function
h(xm,ym,u,v) can be factored out.

B. Factorization of the Function h(u,v,xm,ym)
As long as h(u,v,xm,ym) can be written (in an

exact or approximate way) as

h(xm,ym ,u,v) = ϕ p (u,v)ψ p (xm,ym)
p= 0

P−1

∑ , (8)

then the FFP samples Fh can be calculated as

Fh = ϕ p (uh,vh)
p= 0

P−1

∑

[]







∑
−

=

+
1

0

),(
M

m

yvxuj
mmpm

mhmheyxa ψ . (9)

Now, each inner summation of eq. (9) is in the

form of a (possibly non-uniform, depending on the
values of xm, ym, uh, and vh) DFT which can be
computed, in the general case, by a NUFFT
routine call, performing, as already stressed in the
Introduction, as O(MlogM). Consequently, the
FFP samples Fh can be evaluated by P NUFFT
calls, for an overall O(PMlogM) complexity.

Generally speaking, a simple way to obtain a
factorization of h is to regard it as the kernel of a
linear operator A so that the singular functions of
A, can be employed [29] as functions ϕp and ψp
which then provide, when the summation in eq. (9)
involves infinite terms, an exact representation of
h. However, when truncating, such summation
requires a high number of terms for an accurate
representation, then the expansion of h can be
obtained by selecting proper basis functions ϕp and
ψp, depending on the features of h. In the
following, we present a simple example, of
relevant practical interest, concerning the
factorization (8), for a proper choice of ϕp and ψp.

C. p-Series Factorization

In order to focus the attention on a case of
practical interest, we consider an IA for which

mjwz

mm evufyxvuh),(),,,(= , (10)

where)(222 vuw +−= β and f(u,v) is the element

factor [12]. As prefigured at the beginning of
Section II, h depends on the radiation
characteristics of the m-th element through the

358 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

element factor p, and on its position through the
quota zm. For the sake of simplicity, in the
following formulas we will skip the element
factor, unessential in the discussion, and we will
nevertheless deal with it throughout the numerical
analysis.

Under this hypothesis, following the approach
in [7, 15, 16] and on denoting by w0 the value of w
related to the main beam direction, eq. (4) can be
rewritten as

F(u,v) = a'm e j[uxm +vym +w'zm]

m= 0

M −1

∑ (11)

with w’=w–w0 and a’m =am exp[jw0zm]. For mild

curvatures of S, the exponential exp[jw’zm] can be
expanded by a truncated Taylor series up to the
(P-1)-th order (p-series), so that

F(u,v) ≅
(jw')p

p!
zm

p

m= 0

M −1

∑ am
, e j uxm +vym[]

p= 0

P−1

∑ (12)

and the discrete values Fh of F can be expressed as

Fh =
(jwh

,)p

p!
zm

p

m= 0

M −1

∑ am
, e j(uhxm +vhym)

p= 0

P−1

∑ . (13)

Obviously, the smaller the curvature of S, the

smaller the value of P required for a given
accuracy. In practice, a proper value for P can be
chosen to trade off the computational burden and
the accuracy of the approach, as it will be clearer
in Subsection II.e and in the numerical analysis
presented in Section IV. In general, the number of
p-series terms is chosen in a way to ensure that the
argument of exp[jw’zm] is less than a “small” value
all over the spectral (u,v) region of interest. Such a
value is typically assumed equal to π/8, or even
lower if more accurate results are desired.
Moreover, the chosen number of p-series terms
depends also on the coverage, so that, once the
array and the coverage are given, the number of p-
series terms can be consequently assigned. We
stress that the inner summation in eq. (13) is not in
the form of a standard DFT [28], so that, to
recover the desired computational complexity, a
NUFFT structure should be employed.

Fig. 5. Geometry of the problem.

D. Use of the NUFFT
Concerning the fast evaluation of each inner

summation in eq. (13), a different NUFFT
algorithm should be considered depending on the
spatial and spectral grids at hand. More in detail:

a) for an arbitrary spatial grid (xm,ym) (aperiodic
conformal array) and for a regular, Cartesian
spectral lattice (uh,vh), a Non-Equispaced
Data (NED), or “type-1”, NUFFT is of
interest [17];

b) for a regular, Cartesian spatial grid (periodic
conformal array) and for an arbitrary spectral
one, a Non-Equispaced Result (NER), or
“type-2”, NUFFT should be employed [17];

c) for arbitrary spatial and spectral grids, a
“type-3” NUFFT should be adopted [18].

Since cases b) and c) are extensions of case a)
which do not add any conceptual difficulty, in this
paper we assume to evaluate the FFP on a regular,
Cartesian spectral lattice, so that NED-NUFFTs
are of interest (case a)). This is the most frequently
occurring case, since, in antenna synthesis, the
design specifications are usually given on a
regular, Cartesian spectral lattice (uh,vh), leading
indeed to the use of NED NUFFTs. Accordingly,
for the sake of brevity, cases b) and c) will not be
dealt with in the details.

Different approaches have been proposed in the
literature for evaluating NUFFTs [17,18,30-33].

The main idea underlying many NUFFT
algorithms is to approximate the non-uniform
exponential function exp(jp∆uxm) (having assumed
that the h-th spectral point (uh,vh) corresponds to
the (p∆u,q∆v) uniform spectral grid point), by
interpolating L, “oversampled”, properly chosen
and windowed uniform exponentials
exp(jp∆ul∆x), l=1,..,L. Accordingly, non-

x

S

O

y

(xN,yN,zN)

z

θ

ϕ

(x1,y1,z1)

(x2,y2,z2)

(u,v)-
direction

359CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

uniformly sampled exponentials can be
approximated by properly weighted sums of
uniform exponentials, enabling to exploit a finite
number of standard FFT routine calls. It is worth
noting that this strategy is not equivalent to a
“brute-force thinning” of an array which, on the
contrary, requires significantly denser element
grids [34]. In this paper, we use the approach in
[17], based on an “exact” representation of the
exponentials exp(jp∆uxm). For the reader’s
convenience, we quote Appendix A for a brief
mathematical description of the employed NUFFT
algorithm.

E. Sub-Array Partitioning

It should be mentioned that the array can be
also partitioned into N sub-arrays, each one made
up of mn elements, such that m0+ m1+... mN-1=M.
Accordingly, eq. (13) can be rewritten by
explicitly describing the radiation by each array
portion, thus leading to

Fh =
(jwh

,)p

p!
zm

p

m= mn

mn+1

∑ am
, e j(uhxm +vhym)

p= 0

P−1

∑
n= 0

N−1

∑ . (14)

As an advantage, the number P of terms
involved to represent the exponential in (10) by a
Taylor series expansion associated to each
subarray is expected to reduce, for a fixed
accuracy. Accordingly, the strategy can be applied
to non-mild shapes, also to reduce model errors
related to the vector aspects (i.e., model errors in
the assumption (3)). To better enlighten this
advantage, we mention the borderline case of a
faceted array (or a faceted reflectarray [35-37]). In
this case, across the junctions between the facets,
the curvature is singular. Nevertheless, a
partitioning into subarrays enables accurate
computations with a number of P=1 terms for each
facet (see also Subsection IV.c). Moreover, the
sub-array partitioning strategy is further facilitated
by the use of type-2 (for non-aperiodic arrays) or
type-3 (for aperiodic arrays) NUFFT routines.
Indeed, even when dealing with a uniform array,
the field radiated by the various facets should be
computed onto the common (u,v) grid associated
to the overall antenna, a procedure requiring in
general time-consuming interpolation stages. From
this point of view, the opportunity of employing
(type-2 or type-3) NUFFT routines, enabling
arbitrary (u,v) output grids, offers the possibility of
performing such an interpolation with O(MlogM)

complexity. In Section IV, we discuss how much
convenient such a strategy can be.

Finally, the sub-array approach is amenable to a
multi-level implementation [38], but, for the sake
of simplicity, in this paper we will deal with a
single-level one.

III. IMPLEMENTATION OF THE

ALGORITHMS
The approach proposed in Subsections B-E has

been implemented in both, a sequential code,
running on conventional computing architectures
(single-core CPU), and in a parallel code, taking
advantage of GPU acceleration. Moreover,
sequential and parallel implementations of an
approach based on OMVM routines according to
eq. (7) have been also setup to serve as a
benchmark for the performance of the proposed
approach.

For both, the sequential and parallel codes,
particular care has been devoted to

• selecting high performance FFT routines, as
required by the proposed, NUFFT-based
approach;

• choosing high performance Matrix-Vector
multiplication routines, as required by the
OMVM-based scheme.

In the following, some implementation details
concerning the developed sequential and parallel
codes will be discussed. We remark that symbols
in the following are defined in the Appendices A,
B and C.

A. Sequential Implementations

All the sequential codes have been developed in
ANSI C language. Such a choice is due to the use
of the CUDA environment to develop the parallel
counterpart. Indeed, a CUDA program consists of
“phases” that are executed on the host (CPU) or
the device (GPU) and of data structures that can be
allocated on the host or the device, as well (see
[24]). The host code is straight ANSI C code. The
device code is ANSI C code, extended with
special keywords for calling data-parallel
functions (kernels), and managing the associated
data structures. Accordingly, the development of a
parallel code can be performed by starting with the
sequential ANSI C code, spotting the phases that
should be parallelized, and extending the
corresponding instruction and data structures with

360 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

the special keywords for parallel executions
provided by CUDA.

In particular, concerning the sequential code:
• the NUFFT algorithm has been implemented

according to [17] (see also Appendix A); a
particularly fast implementation of the FFT,
based on the same philosophy of FFTW [39],
and contained in the Intel Math Kernel
Library (MKL) [40], has been exploited to
speedup the required FFT calculations; a C-
style listing of the algorithm is reported in
Appendix B; the critical point of the
algorithm is represented by the U matrix
filling operations, performed within three,
nested (m, l1 and l2) for loops; such a filling is
“pseudo-random” (i.e., it does not obey to a
“row-major” filling criterion [41]) since the
indices ix and iy “jump” between non-
consecutive values as long as m, l1 and l2 are
swept; as known, this severely affects the
memory latency when accessing the elements
of U [41];

• the implementation of the OMVM-based
approach relies on BLAS routines;

For both the cases, Intel Math Kernel Libraries
(MKL) (v.1.0.02), including BLAS and FFT
routines, have been exploited.

B. Parallel Implementations

As already stressed in the Introduction, all the
parallel codes have been developed by means of
the CUDA language [24].

For both, the NUFFT-based and OMVM-based
algorithms, the GPU is exploited as an
accelerating device, executing portions of the code
in parallel [19]. More in detail:

• for the proposed approach, in correspondence
to each NUFFT call, the execution is
delivered to the GPU and the evaluation of
each NUFFT performed by a proper, parallel
implementation of the scheme detailed in
Appendix A;

• for the OMVM-based approach, the
evaluation of the matrix multiplication
required by eq. (7) is performed, again
through a parallel implementation on the
GPU;

In the sequel, some details concerning the
parallel implementations of the two considered
approaches will be reported.

1. NUFFT-based approach

All the stages of Appendix A have been
carefully examined and parallelized, according to
the key rules of GPU programming [24]. A
CUDA-style listing of the algorithm is reported in
Appendix C. More in detail:

Stage 1
The calculations of the samples of the spatial

and spectral windows Φ and Φ̂ , respectively, as
well as of the indices µx,m and µy,m (see Appendix
B) are fully independent from each other and are
evaluated in parallel, rather than by for loops as in
the sequential case.

The computation of the U matrix is also
parallel, but requires some more care, since
different approaches could be envisaged to this
end and the best performing one should be
selected. Indeed, due to the already remarked
“pseudo-random” access to U required by the
sequential implementation, devising an efficient
filling procedure in the parallel case is not
straightforward and represents the main difficulty
to be solved throughout the parallelization of the
whole code described in Appendix B.

A first possible parallelization strategy would
be to commit a thread to compute a single matrix
element of U. However, in this way, the generic
thread should perform, due to the “pseudo-
random” filling, a time-consuming browsing of the
input elements to establish whether they contribute
to the committed element of U or not.

As an alternative, the implemented parallel
code employs a 1D block grid of length M, each
block allocating (2K+1)×(2K+1) threads. In this
way, the above mentioned browsing is avoided
since each thread is assigned to a different input
element and updates the corresponding element of
the U matrix.

Generally speaking, the number of allocable
blocks in a 1D grid depends on the computing
capability of the employed GPU [24]. For the
GPU employed in this paper, the number of
allocatable blocks is 65535, which is large enough
for all the considered numerical tests. For arrays
with M>65535, the algorithm should foresee a
sequential allocation of 1D block grids. Since the
maximum number of allocatable blocks depends
on the employed GPU, the actual performance of

361CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

the algorithm depends on the hardware
performance of the available graphic card.

However, it should be noticed that, by this
solution and regardless to M, more than one thread
may need to simultaneously update (namely, read,
compute and store a new value) the same element
U(ix,iy). Unfortunately, when this happens, a
conflict such as Writing After Writing (WAW)
and Writing After Reading (RAW) [41] can occur,
affecting the results. To preserve the integrity of
the data, atomic operations have been exploited
[41,42], which basically ensure the semantic
correctness of the algorithm through a serialization
of the updating operations. We finally observe
that, the parallel implementation is such that two
threads belonging to the same block never update
the same element U(ix,iy) (although threads
belonging to different blocks can do). Moreover,
since each block is (2K+1)×(2K+1) sized and,
generally speaking, K is usually “small” (typical
values range from 6, for single precision
arithmetic, to 12, for double precision [17]), in
order to speed-up the memory access, the updating
operations are performed first on a temporary
(2K+1)×(2K+1) matrix, allocated in the shared
memory (and then shared by threads belonging to
the same block), and subsequently on the global
memory by the mentioned atomic operations.

Stage 2
The computation of the required FFT has been

parallelized by means of the latest release of the
cuFFT library (cuFFT v2.3) [43], implementing
several, optimized parallel FFT algorithms, and
choosing the one to be used depending on the
shared memory occupation of the input array and
on the possibility of reducing its size to a power of
an integer factor.

Stage 3
Extracting the elements of the Û matrix, their

scaling with the elements Φpq and the subsequent
memory updates are independent, and then easily
parallelizable, operations.

We finally remark that, throughout the parallel
implementation of the NUFFT routine, the typical
suggested guidelines in programming GPUs [24]
and concerning, for example,

• avoiding divergencies due, f.i., to conditional
statements or non-coalesced memory
accesses;

• balancing the computational load among the
available resources;

have been applied.
Furthermore, data padding [24] has been

adopted to manage a generic input data size. It
should be noticed that, for the considered case,
data padding does not significantly affect the
algorithm performance since the amount of
employed padding is always less or equal to the
block size (which, as above discussed, contains
(2K+1)×(2K+1) only threads) and, as such,
negligible for a large input data size M.

2. OMVM-based approach

The implementation of the OMVM-based
approach relies on the latest release of the
cuBLAS (cuBLAS v.2.3) routines [44].

Also for this case, data padding has been
applied.

3. Multilevel parallelization

It is worth noting that, the particular expression
in eq. (13) is amenable to a further level of
parallelization, since the different terms of the p-
series summation can be simultaneously computed
and, in turn, each NUFFT can be parallelized
according to the guidelines above. Unfortunately,
a single GPU cannot handle more kernels
simultaneously and hence cannot effectively
manage a multi-level, parallel computation.

Nevertheless, with a multi-GPU system [45],
the computation of each term of the p-series can
be executed by a different GPU accomplishing, in
turn, the computation of a parallel NUFFT.
Afterwards, all the terms can be added together by
means of a reduction operation on a “master”
processing unit. This strategy allows operating a
two-level parallelism, one to compute the p-series
and one to compute the NUFFTs.

Similar considerations apply also to the sub-
array partitioning approach (see eq. (14)). Indeed,
also in this case the computations for each sub-
array are independent from all the others and a
two-level parallelism can be obtained. Obviously,
in this case, a three-level parallelism can even be
achieved, by exploiting the independence of the
sub-arrays and of the p-terms.

362 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

In this paper, only results concerning a single-
level parallelization are shown. The multi-level
case is left to future developments since it does not
introduce any conceptual difficulty, but for
communication protocols between the GPUs [45].

It should be finally observed that, with
reference to the parallel implementation of the
proposed NUFFT-based approach, the order of
computation among the different p-series terms,
or, in other words, the order of computation of the
different required NUFFT routine calls, could be
rearranged to simultaneously execute more than
one NUFFT on the same GPU. In this way,
apparently a multi-level parallelism could be
achieved on a single GPU. However, if ever such a
solution would be more effective, it should not be
considered of practical interest since it would not
comply with the typically required transparent
scalability on a multi-scale architecture [24].

IV. COMPUTATIONAL
PERFORMANCE

In this Section, we present a numerical analysis
showing the computational performance of all the
developed algorithms. More in detail, after having
illustrated the hardware setup employed for the
tests, a comparison between the computational
performance of the CPU and the GPU
implementations of the NUFFT-based and
OMVM-based algorithms are reported. Finally,
the trade-off between computational performance
and accuracy of the p-series and sub-array
partitioning approaches is discussed.

A. Hardware Setup

Sequential implementations have been run on a
personal computer with a single-core, Intel
Pentium IV processor, with 3 GHz of clock
frequency, and equipped with a RAM, 2.0 GBytes
sized.

Parallel CUDA codes have been executed on
the same personal computer used for the
sequential tests, but powered by a GeForce GTX
260 GPU, having 24 multi-processors working at
800 MHz and equipped with a memory, 872
MByte sized.

B. Computational Performance of the
Implemented Algorithms

Fig. 6 reports a comparison of computing times
for the FFP evaluation by all the implementations
discussed in Section III versus the size M of the
IA. More in detail, the computing time has been
normalized, for all the algorithms, to the
corresponding one concerning the case M=80. As
it can be seen, the two GPU implementations
outperform the corresponding CPU ones, and, in
particular, the NUFFT-based implementation on
GPU ensures the lowest growth rate. It is worth
noting that, the considered GPU computing times
(here and in the following) include transfers
from/to host (PC memory) to/from device (GPU
global memory), so that they represent the
effective speed-ups that the GPU can provide
against the CPU architecture. In Fig. 6, the M2 and
MlogM trends, agreeing with those for the two
considered CPU-based algorithms, are also
depicted for higher values of M. Finally, some
relevant speed-ups are summarized in Table 1.

Fig. 6. Growth rates of the computing times for the
FFP evaluation by all the implementations
illustrated in Section III.

 Table 1: Speed-ups among different
implementations for an array with M=104.

Implementations Speed-up
CPU NUFFT vs.

OMVM
>10

GPU NUFFT vs.
OMVM

8

NUFFT GPU vs.
CPU

>40

363CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

In Fig. 7, the speed-up of the GPU
implementation as compared to the CPU one
(CPU computing time / GPU computing time) for
the NUFFT-based approach against the size M of
the input data is depicted. As it can be seen, the
improvement in the performance for the GPU
computation is significant already for small sized
arrays (less than 100 elements) and the speed-up
factor grows dramatically with the increasing IA
dimension M.

Fig. 7. Speed-up of the GPU vs. CPU
implementations for the NUFFT-based approach.

In order to explain such a speed-up, a code

profiling has been performed, enlightening that the
improved performance is essentially due to the
critical filling of the matrix U of the sequential
case and to the employed effective solution in its
parallelization.

We finally note that, the relative drops of
GPU/CPU performance are due to particular sizes
of the input elements whose data structure does
not effectively fit the characteristics (number of
shared registers, constant memory size, number of
allocatable blocks, number of processors) of the
employed hardware. As a consequence, for such
particular input dimensions, the code execution is
not as massively parallel as it occurs for the others.
Nevertheless, the GPU still guarantees a
significant speedup as compared to the CPU.

C. Computational Burden of the p-Series and of
the Sub-Array Partitioning Strategy

We now aim at briefly clarifying, for the
sequential implementation, the conditions under
which the sub-array partitioning strategy (eq. (14))

becomes computationally convenient with respect
to the only p-series approach (eq. (13)).

The computational burdens of eqs. (11) and
(14) are reported and compared in Appendix D. As
it can be expected, it turns out that (eq. (D3)), for
sequential implementations, the sub-array
partitioning becomes convenient as long as it
“favorably” exchanges p-series terms with sub-
arrays.

Obviously, these conclusions do not hold true
when a multi-level parallelism is employed since,
in this case, the computation time can be reduced
by a p-series/sub-array partitioning approach
despite the higher number of operations.

A remarkable case when the sub-array
partitioning becomes convenient is that (already
mentioned) of faceted arrays [35-37], i.e., when
the surface S is made up by contiguous planar
portions (facets) with different relative
inclinations. In this case, each facet can be
associated to a sub-array which, being flat,
requires just 1 p-series term. To enlighten this
point, we have considered the case of a faceted
array having 3 facets and M=19600 elements. Tab.
2 summarizes the speed-ups obtained by the sub-
array partitioning strategy as compared to p-series
only evaluations of the FFP, as a function of P.

Table 2: Comparing the computational
performance of sub-array partitioning vs. p-series.

p-series terms Speed-up
3 1
4 1.34
5 1.67
6 2
7 2.34

V. ACCURACY

In this Section, we present a numerical analysis
illustrating the accuracy of the proposed, NUFFT-
based strategy, by focusing the attention on two
examples: a linear, aperiodic and parabolic,
aperiodic arrays.

A. Linear, Aperiodic Array

Let us begin with a linear (non-conformal),
aperiodic array. More in detail, we consider an
equivalently tapered Chebyshev, 1D array [6,8],
made of 2048 elements having uniform

364 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

excitations. The elements positions (see Fig. 8)
have been properly determined, according to the
approach in [6,8], in order to synthesize the same
pattern of a Chebyshev array of 1024 uniformly
spaced elements having a side lobe level of -26dB.
The resulting inter-element spacing of the array
elements varies from a minimum of 0.33λ to a
maximum of 1.8λ, while the overall array size is
1000λ.

Fig. 8. Elements positions for the Chebyshev
array. For the sake of clarity, only the position of
one element every 16 are shown.

The adopted synthesis algorithm is based on

the optimization of a proper objective functional
and requires direct evaluations of the FFP, which
have been performed by means of the proposed
approach. Obviously, the array being linear, only 1
p-series term is required.

Figure 9 shows the synthesized FFP of the
equivalently tapered Chebyshev array. The
computations have been sequential and the
reported “exact evaluation” has been performed by
the OMVM approach. The computing times for
the proposed and OMVM approaches have been
35ms and 62ms, respectively.

Fig. 9. u cut of the FFP of the synthesized
equivalently tapered, 1D Chebyshev array. Red
stars: proposed approach. Blue dashed line: exact
evaluation.

B. Parabolic, Aperiodic Array: Accuracy of the
p-Series and Sub-Array Partitioning Strategies

In this Subsection, we highlight, with reference
to the case of a parabolic, aperiodic array, the
accuracy of the p-series approach versus the array
surface curvature, and the improvements in the
accuracy provided by the sub-array partitioning
strategy.

To this end, we consider two IAs having the
same number (i.e., 65388) of elements lying on
two parabolic surfaces having the same diameter
(D) but different focal length (f). In particular, the
first IA, say IA1, has a focal/diameter ratio (f/D)
equal to 1, while the other, say IA2, has f/D equal
to 1.5. Under these hypotheses, the curvature of
IA2 is smoother than that of IA1 (see Fig. 10).

Fig. 10. The two considered parabolic IAs for the
analysis of the p-series and sub-array partitioning
accuracies. Blue: IA1. Red: IA2.

The histogram in Fig. 11 indicates the Root

Means Square (RMS) error between the exact
evaluations of the FFPs for IA1 and IA2 (eq. (7))
and their computations with the proposed
approach (eq. (14)), against the number of
considered p-series terms and sub-arrays.
Assuming, as acceptable accuracy, the one
corresponding to a RMS equal to 1%, Fig. 11
shows that if no partitioning is adopted for IA1,
even six p-series terms are not enough to attain the
desired precision. On the contrary, partitioning IA1
into 16 sub-arrays ensures the desired accuracy
already with 5 terms and splitting up further the
array into 64 or 256 sub-arrays reduces the number
of required p-series terms to 4 or 3, respectively.
Concerning now IA2, Fig. 11 shows that its milder

365CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

curvature gives rise to a faster p-series
convergence with respect to IA1. Indeed, 4 p-series
terms now ensure 1% of RMS error even without
sub-array partitioning. Introducing the partitioning
in this case allows reducing the p-series terms to 3
or 2 with 16 or 256 sub-arrays, respectively.

Fig. 11. RMS errors when computing the FFPs of
IA1 and IA2 against number of p-series terms for
different numbers of sub-arrays. FFP1 refers to
IA1, while FFP2 refers to IA2.

C. Accuracy of the p-Series Approach Versus
the Degree of Aperiodicity

We finally consider the case of a 2D IA, whose
16384 elements are aperiodically distributed on a
paraboloid with focal length/diameter ratio equal
to 0.8, a typical value in the applications. The
inter-element spacing varies from 0.35λ to 0.9λ,
while the excitation coefficients have been chosen
according to:

1,...,1,0,*1)/(−== −−⋅ Mmeea mm didF
m

βα (15)

where dm is the distance of the m-th array element
from the foci, • is the wave-number and α has
been properly determined to obtain an amplitude
tapering of -4dB at the edge. 3 p-series terms have
been considered, ensuring a negligible RMS error
(~10-5) in the visible region [0.4,0.4]x[0.4,0.4] • 2
of the (u,v) plane.

Figure 12 compares the FFP evaluation of the
considered IA by means of the proposed approach
to the exact evaluation (eq. (7)).

The robustness of the proposed approach versus
the “degree of aperiodicity” of the array is
illustrated in Table 3 which reports the RMS error

of the FFP evaluation when an increasing random
fraction of array elements is erased, as compared
to the setting of Fig. 12, thus increasing the degree
of aperiodicity. It should be mentioned that, as
long as an increasing random fraction of array
elements is erased, the sidelobe intensity rises up,
which leads to the higher RMS in Tab. 3. This
could be however mitigated by an increasing
number of p-series terms.

Fig. 12. u cut of the FFP of the parabolic,
aperiodic array. Red stars: proposed approach with
3 p-series terms. Blue dashed line: exact
evaluation.

Table 3: RMS vs degree of aperiodicity.

RMS error
Erased

elements [%]
10−8 0
2.9−3 1
1.4−1 5
0.27 10

VI. CONCLUSIONS

An approach for the fast analysis of IAs based
on the use of the p-series expansion and NUFFT
routines has been proposed and implemented in
both, sequential (CPU) and parallel (GPU) codes.

The performance of the algorithms has been
analyzed both in terms of computational efficiency
and of achievable accuracy.

In particular:
• both, the sequential and parallel, NUFFT-

based approaches are capable of improved
performance as compared to (sequential and
parallel) algorithms based on OMVMs;

366 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

• a sub-array partitioning approach can
further reduce the computational burden by
speeding-up the convergence of the p-series;

• a proper parallel code implementation
enables GPU computing to significantly
speed-up the execution as compared to that
on CPU.

We finally remark that, some of these results
can be extended to the FG computation in
synthesis algorithm and to the case of volumetric
(3D) IAs. Concerning array synthesis, it should be
mentioned that often multi-stage synthesis
approaches are employed as in [46] and that the
most computationally demanding stages can
strongly benefit of calculating FFP and FG by the
approach here above proposed, committing the
computation according to more sophisticated
vector models just to the last synthesis steps.

APPENDIX A: THE NUFFT ALGORITHM

According to [17], the “exact” representation of

the exponential function exp(jp∆uxm) is the
following:

e jp∆uxm =
(2π)−1/ 2

Φ(p∆u /c)
ˆ Φ (cxm − l1)

l1 ∈Z

∑ e jp∆ul1 / c (A1)

where c > 1 is an “oversampling factor”, Φ is a

∞
0C function with support in [-π,π] and strictly

positive in [-π/c,π/c], and Φ̂ is its Fourier
transform.

Following eq. (A1), any of the NUFFTs in eqs.
(13) or (14) can be rewritten as

  

  

  

2) (Step FFT 2D standard aby Evaluate

,

//

1) (Step),(

1

0
21

3 Step

11

0

)(

21

21

21

)(ˆ)(ˆ

)/()/(
)2(~

∑ ∑

∑

∈

∆∆
−

=

−−

=

∆+∆









−Φ−Φ

∆Φ∆Φ
==

Zll

culjqculjp

llU

M

m
mmm

M

m

vqyupxj
mpq

eelcylcxb

cvqcup
ebb mm

π

 (A2)

where ,
m

p
mm azb = . Henceforth, we assume to

be interested in the values of pqb
~

 for p=-N1/2,…,

N1/2 and q=-N2/2,…, N2/2.
The sums over l1 and l2 in eq. (A2) require the

computation of standard 2D, FFTs. Furthermore,

they can be effectively evaluated provided that Φ̂
is small outside some interval [-K,K], so that it is
required that Φ has compact support in [-α,α] and

Φ̂ is concentrated, as much as possible, in [-K,K].
To this end, a Kaiser-Bessel window Φ is used
[17].

The computation of eq. (A2) can be divided
into three stages (see also [17]).

Stage 1
For each (xm,ym), the nearest equispaced spatial

frequencies l1/c and l2/c are determined. The
samples of the windowing/interpolating functions

Φ and Φ̂ , respectively, are computed. The inner
m summation in eq. (A2), that is, the U(l1,l2)
function, is calculated.

Stage 2
A standard, 2D FFT routine is performed on U.

The output matrix Û has size cM×cM.

Stage 3

Û is reduced to an N1×N2 matrix and then
scaled with the windowing function

(2π)−1 /Φ(p∆u /c)Φ(q∆v /c).

APPENDIX B: C-STYLE LISTING OF THE
SEQUENTIAL NUFFT ALGORITHM

// *********
// * STEP 1 *
// *********

for(p=-N1/2;p<N1/2;p++) {
 for(q=-N2/2;q<N2/2;q++) {

 Φpq=Φ(2πp/(cN1))Φ(2πq/(cN2));
 }
 }

 for (m=0;m<M;m++) {

 µx,m=round(c*xm);
 µy,m=round(c*ym);

 for (l1=-K;l1<=K;l1++) {

 ix=mod(µx,m +l1+c*N1/2,c*N1);

367CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

 wxm= Φ̂ (c*xm-(µx,m+l1));

 for(l2=-K;l2<=K;l2++){

 iy=mod(µy,m+l2+c*N2/2,c*N2);

 wym= Φ̂ (c* ym-(µy,m+l2));
 U[ix,iy]=U[ix,iy]+wxm*wym*bm;
 }
 }
 }

// *********
// * STEP 2 *
// *********

Û =fft(U); // 2D fft routine provided by MKL

// *********
// * STEP 3 *
// *********

for (p=0;p<N1;p++){
 for(q=0;q<N2;q++) {

 nufft[p,q]=div(u[(c-
1)*N1/2*c*N2+p*c*N2+(c-1)*N2/2+q],Φpq);
 }
 }

APPENDIX C: CUDA-STYLE LISTING OF

THE PARALLEL NUFFT ALGORITHM

// *********
// * STEP 1 *
// *********

/* Generates a 1D grid of threads to evaluate
µx,m and µy,m. NUM_THREADS = # threads per block
*/
dim3 dimGrid_mu(M/NUM_THREADS,1);
dim3 dimBlock_mu(NUM_THREADS,1);

// Parallel evaluation of µx,m and µy,m
data_round<<<dimGrid_mu,dimBlock_mu>>>(xm,ym,µx,

m,µy,m);

// Generates a 2D grid of threads to evaluate
Φpq
dim3 dimGrid_phi(N1/BLOCK_SIZE, N2/BLOCK_SIZE);

// Parallel evaluation of Φpq

dim3 dimBlock_phi(BLOCK_SIZE,BLOCK_SIZE);
Φ<<<dimGrid_phi,dimBlock_phi>>>(Φpq,N1,N2);

/* Generates a 2D grid of threads to evaluate
wxm and wym and evaluates those quantities */

dim3 dimGrid_phi_hat(M,1);
dim3 dimBlock_phi_hat(2*K+1,1);

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wxm,xm
,µx,m,M);

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wym,ym
,µy,m,M);

// Generates a 1D grid of threads and
evaluates U
dim3 dimBlock_u(2*K+1,2*K+1);
dim3 dimGrid_u(M,1);
U_matrix_evaluation<<<dimGrid_u,
dimBlock_u>>>(bm,M,µx,m,µy,m,U,wxm,wym,N1,N2);

// *********
// * STEP 2 *
// *********

Û =cuFFT(U);

// *********
// * STEP 3 *
// *********

dim3 dimGrid_scaling(N1/BLOCK_SIZE,N2
/BLOCK_SIZE);
dim3 dimBlock_scaling(BLOCK_SIZE,BLOCK_SIZE);
scaling<<<dimGrid_scaling,dimBlock_scaling>>>(
Φpq);

APPENDIX D: COMPUTATIONAL

BURDENS OF THE p-SERIES AND SUB-
ARRAY PARTITIONING APPROACHES

In the un-partitioned case, according to eq.

(13), the number of operations needed to
determine the FFP, say No, is (neglecting
summation operations as compared to
multiplications)

No = M P 4.5c 2 log2(c 2M) + 20K 2 + 3[]+ 2{ }, (D1)

where K and c are the NUFFT oversampling

factor and interpolation length, respectively, and
the complexity for the evaluation of a single
NUFFT has been determined according to [17].

When the surface is partitioned into Nsub• M
sub-arrays, the computational complexity becomes
(neglecting again summation operations as
compared to multiplications)

No
sub = M ⋅ P ' ⋅{ N sub[⋅ (4.5c 2 log2(c 2M) +

20K 2 + 2)+1]+ Nsub +1}
 (D2)

where P’• P is the number of p-series terms

needed in eq. (17) to achieve the same accuracy as
for the un-partitioned case. Dividing (D2) by (D1)
and enforcing that the ratio is less than one, we
have:

368 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

No
sub

No
≤1⇒

⇒ Nsub ≤
9c 2P log2 c + 20K 2P + ∆P +1

1+ (20K 2 + 9c 2 log2 c)(P − ∆P)

(D3)

where P’=P-• P. Eq. (D3) provides a necessary

(but not sufficient) condition, in terms of number
of sub-arrays Nsub, for the sub-array partitioning
approach to be computationally convenient as
compared to the un-partitioned case, for a fixed
accuracy. Obviously, in eq. (D3), 0• • P<P since
the partitioning can reduce the number of p-series
terms at most to P’=1. Generally speaking, • P is a
function of Nsub and it increases with the number
of sub-array partitions.

To be more specific we observe that, typically,
the values of the NUFFT oversampling factor and
interpolation length are 2 and 6, respectively.
Substituting these values in eq. (D3), we get:

Nsub ≤
756P + ∆P +1

1+ 756(P − ∆P)
≅

P
(P − ∆P)

≤ P .(D4)

REFERENCES

[1] O.M. Bucci, G. D’Elia, G. Mazzarella, and G.
Panariello, “Antenna pattern synthesis: a new
general approach”, Proc. of the IEEE, vol. 82,
no. 3, pp. 358-371, Mar. 1994.

[2] A. Capozzoli and G. D’Elia, “Global
optimization and antennas synthesis and
diagnostics, part one: concepts, tools,
strategies and performances”, Progr.
Electromagn. Res. PIER, vol. 56, pp. 195-232,
2006.

[3] A. Capozzoli and G. D’Elia, “Global
optimization and antennas synthesis and
diagnosis, part two: applications to advanced
reflector antennas synthesis and diagnosis
techniques”, Progr. Electromagn. Res. PIER,
vol. 56, pp. 233-261, 2006.

[4] L. Josefsson and P. Persson, Conformal array
antenna theory and design, J. Wiley & Sons.,
New York, 2006.

[5] G. Caille, I. Lager, L.P. Ligthart, C. Mangenot,
A.G. Roederer, G. Toso, and M.C. Viganò,
“Aperiodic arrays for multiple beam satellite
applications,” Proc. of the 11th Int. Symp. on
Microw. Opt. Tech., pp. 419-422, Dec. 2007.

[6] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno,
and P. Vinetti, “FFT & aperiodic arrays with
phase-only control and constraints due to
super-directivity, mutual coupling and overall
size”, Proc. of the 30th ESA Antenna
Workshop on Antennas for Earth Observ.,
Science, Telecomm. and Navig. Space
Missions, May 2008.

[7] A. Capozzoli, C. Curcio, G. D’Elia, and A.
Liseno, “Fast power pattern synthesis of
conformal reflectarrays”, Proc. of the IEEE
Antennas Prop. Symp., pp. 1-4, July 2008.

[8] A. Capozzoli, C. Curcio, G. D’Elia, A. Liseno,
and P. Vinetti, “FFT & equivalently tapered
arrays”, Proc. of the XXIX URSI General
Assembly, Aug. 2008.

[9] J.H. Doles III and F.D. Benedict, “Broad-band
array design using the asymptotic theory of
unequally spaced arrays,” IEEE Trans.
Antennas Prop., vol. 36, no. 1, pp. 27-33, Jan.
1988.

[10] A. Akdagli and K. Guney, “Shaped-beam
pattern synthesis of equally and unequally
spaced linear antenna arrays using a modified
tabu search algorithm,” Microw. Optical Tech.
Lett., vol. 36, no. 1, pp. 16-20, Jan. 2003.

[11] J. Huang, M. Lou, A. Feria, and Y. Kim, “An
inflatable L-band microstrip SAR array”,
Proc. of the IEEE Antennas Prop. Int. Symp.,
pp. 2100-2103, Jun. 1998.

[12] R.E. Collin, Antennas and radiowave
propagation, McGraw-Hill, New York, 1985.

[13] A.W. Rudge, K. Milne, A.D. Olver, and P.
Knight, The Handbook of Antenna Design Vol.
2, London, Peter Peregrinus, 1983.

[14] J.W. Cooley and J.W. Tukey, “An algorithm
for the machine calculation of complex
Fourier series”, Math. Comput., vol. 19, no.
90, pp. 297-301, Apr. 1965.

[15] V. Galindo-Israel and R. Mittra, “A new
series representation of the radiation integral
with application to reflector antennas”, IEEE
Trans. Antennas Prop., vol. AP-25, no. 5, pp.
631-641, Sept. 1977.

[16] O.M. Bucci, G. Franceschetti, and G. D’Elia,
“Fast analysis of large antennas – a new
computational philosophy”, IEEE Trans.
Antennas Prop., vol. AP-28, no. 3, pp. 306-
310, May 1980.

[17] K. Fourmont, “Non-equispaced fast Fourier
transforms with applications to tomography,”

369CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

J. Fourier Anal. Appl., vol. 9, no. 5, pp. 431-
450, Sept. 2003.

[18] J. Y. Lee and L. Greengard, “The type 3
nonuniform FFT and its applications”, J.
Comput. Phys., vol. 206, n. 1, pp. 1-5, Jun.
2005.

[19] J.D. Owens, M. Houston, D. Luebke, S.
Green, J. E. Stone, and J. C. Phillips, “GPU
computing”, Proc. of the IEEE, vol. 96, no. 5,
pp. 879-899, May 2008.

[20] www.top500.org .
[21] T. R. Halfhill, “Parallel processing with

CUDA”, Microproc. Rep.,
http://www.nvidia.com/docs/IO/55972/220401
_Reprint.pdf, Jan. 28, 2008.

[22] S. S. Stone, J. P. Haldar, S. C. Tsao, W. M.
Hwu, B.P. Sutton, and Z.P. Liang,
“Accelerating advanced MRI reconstructions
on GPUs”, J. Parallel Distr. Comp., vol. 68,
no. 10, pp. 1307-1318, Oct. 2008.

[23] M. J. Inman and A. Z. Elsherbeni,
“Programming video cards for computational
electromagnetics applications”, IEEE
Antennas Prop. Mag., vol. 47, no. 6, pp. 71-
78, Dec. 2005.

[24] D. Kirk and H. M. Hwu, CUDA Textbook, in
press.

[25] M. Bläser, “Lower bounds for the
multiplicative complexity of matrix
multiplication”, Comput. Complex., vol. 8, no.
3, pp. 203-226, Dec. 1999.

[26] K. Atkinson and D. D. K. Chien, “A fast
matrix-vector multiplication method for
solving the radiosity equation”, Adv. in
Comput. Math., vol. 12, no. 2-3, Feb. 2000,
pp. 151-174.

[27] http://matrixprogramming.com/MatrixMultipl
y/

[28] D. Sundararajan, The Discrete Fourier
Transform: Theory, Algorithms and
Applications, Singapore, Word Scientific,
2001.

[29] F. Smithies, Integral equations, Cambridge,
Cambridge University Press, 1958.

[30] J. P. Boyd, “A fast algorithm for Chebyshev,
Fourier and sinc interpolation onto an irregular
grid”, J. Comput. Phys., vol. 103, no. 2, pp.
243-257, Dec. 1992.

[31] A. Dutt and V. Rokhlin, “Fast Fourier
transforms for nonequispaced data”, SIAM J.

Sci. Comput., vol. 14, no. 6, pp. 1368-1393,
Nov. 1993.

[32] Q. H. Liu and N. Nguyen, “An accurate
algorithm for nonuniform fast Fourier
transforms (NUFFT’s)”, IEEE Microw.
Guided Wave Lett., vol. 8, no. 1, pp. 18-20,
Jan. 1998.

[33] J. A. Fessler, B. P. Sutton, “Nonuniform fast
Fourier transforms using min-max
interpolation”, IEEE Trans. Signal Proc., vol.
51, no. 2, pp. 560-574, Feb. 2003.

[34] W. P. M. N. Keizer, “Large planar array
thinning using iterative FFT techniques”,
IEEE Trans. Antennas Prop., vol. 57, no. 10,
pp. 3359-3362, Oct. 2009.

[35] H. Legay, B. Salome, E. Labiole, M. A.
Milon, D. Cadoret, R. Gillard, R.
Chaharmir,and J. Shaker, “Reflectarrays for
satellite telecommunication antennas”, Proc.
of the 2nd Europ. Conf. on Antennas Prop.,
Nov. 11-16, 2007.

[36] A. G. Roederer, “Reflectarray antennas”,
Proc. of the 3rd Europ. Conf. on Antennas
Prof., pp. 18-22, Mar. 2009.

[37] A. Capozzoli, C. Curcio, G. D’Elia, A.
Liseno, D. Bresciani, and H. Legay, “Fast
phase-only synthesis of faceted reflectarrays”,
Proc. of the 3rd Europ. Conf. on Antennas
Prop., pp. 1329-1333, Mar. 23-27, 2009,

[38] N. Yuan, T. S. Yeo, X. C. Nie, and L. W. Li,
“A fast analysis of scattering and radiation of
large microstrip antenna arrays”, IEEE Trans.
Antennas Prop., vol. 51, no .9, pp. 2218-2226,
Sept. 2003.

[39] M. Frigo and S.G. Johnson, “The design and
implementation of FFTW3”, Proc. of the
IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005.

[40] The Numerical Algorithms Group, Intel Math
Kernel Library Reference Manual, Intel
Corporation, 2001.

[41] J. L. Hennessy and D. A. Patterson, Computer
Architecture: a quantitative approach, San
Francisco, USA, Morgan Kauffman Publisher,
2007.

[42] NVIDIA CUDA Reference Manual, v. 2.0,
Jun. 2008.

[43] CUDA cuFFT Library, Oct. 2007.
[44] CUDA cuBLAS Library, Sept. 2007.
[45] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P.

McCormick, S.H.M. Buijssen, M. Grajewski,
and S. Turek, “Exploring weak scalability for

370 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

FEM calculations on a GPU-enhanced
cluster”, Parallel Comp., vol. 33, no. 10-11,
pp. 685-699, Nov. 2007.

[46] A. Capozzoli, C. Curcio, G. D’Elia, and A.
Liseno, “Power pattern synthesis of multifeed
reconfigurable reflectarrays”, Proc. of the 29th
ESA Antenna Workshop on Multiple Beams
Reconfig. Antennas, Apr. 2007.

Amedeo Capozzoli graduated (summa cum laude)
in Electronic Engineering and received the PhD
degree in Electronic Engineering and Computer
Science, both from the University of Naples
Federico II in 1994 and 2000 respectively.
In 1996, he was awarded the Telecom Italia Prize
for the best degree thesis in Electronic
Engineering discussed at the University of Naples
Federico II in the Academic Year 1994-1995. In
November 1999, he won the open competition for
the post of Researcher at the University of Naples
Federico II. In September 2002, he was awarded
the Barzilai Prize for young scientists at the XIV
Riunione Nazionale di Elettromagnetismo. In
April 2003, he won the open competition for the
post of Associate Professor at Politecnico di
Milano. Since January 2005, he has been
Associate Professor of Electromagnetic Fields at
the University of Naples Federico II. His research
interests include synthesis and diagnosis of
radiating systems, inverse-scattering techniques,
advanced measurement techniques, and the
restoring of aberrations due to propagation through
random media.

Claudio Curcio received the Laurea degree
(summa cum laude) in Electronic Engineering and
the PhD degree in Electronic and
Telecommunication Engineering, both from the
Università di Napoli Federico II, Naples, Italy, in
2002 and 2005, respectively. In 2006-2007, he
held a post-doctoral position at the University of
Naples Federico II. He is currently a Researcher at
Università di Napoli Federico II. His main fields
of interest are antenna measurements, phaseless
near-field/far-field transformation techniques,
optical beamforming techniques for array
antennas, and reflectarray synthesis.
In February 2002, he was the recipient of the
Optimus Award at the SIMAGINE 2002
“Worldwide GSM & Java Card Developer
Contest.”

Giuseppe D'Elia was born in Italy in 1950. He
received the EE degree (summa cum laude) from
the Università di Napoli, Naples, Italy. From 1983
to 1987, he was with the IRECE Institute of the
National Research Council (CNR). From 1987 to
1990, he was an Associate Professor of Antennas
and Propagation at the Università di Salerno,
Salerno, Italy. From 1990 to 2001, he was an
Associate Professor of Antennas at the
Dipartimento di Ingegneria Elettronica e delle
Telecomunicazioni, Università di Napoli Federico
II, Naples, Italy, where, since 2001, he has been a
full Professor of Electromagnetic Fields.
Prof. D'Elia has been a visiting scientist at many
microwave labs, such as the Electrical Engineering
Research Laboratory, University of Texas at
Austin; the Popov Society, Moscow, Russia; the
Institute of Electrical Engineering of the Queen
Mary College at the University of London; the
Microwave Laboratory of the Marconi GEG,
Great Britain; and JPL, Pasadena, California. His
main fields of interest include the transient
behavior of antennas in dispersive media, efficient
and non-redundant techniques for analysis and
synthesis of reflector and array antennas, phase-
less near-field antenna characterization, wavefront
reconstruction from amplitude data by blind
deconvolution, NF-FF transformation techniques,
non-redundant representation of radiated or
scattered fields, and inverse scattering and remote
sensing from polarimetric data. Prof. D'Elia was
awarded the 1999 Honorable Mention for the H.
A. Wheeler Applications Prize Paper Award of the
IEEE Antennas and Propagation Society.

Angelo Liseno was born in Italy in 1974. He
received the Laurea degree (summa cum laude)
and the PhD degree in 1998 and 2001,
respectively, both in Electrical Engineering, from
the Seconda Università di Napoli, Italy. In 2001-
2002, he held a postdoctoral position at the
Seconda Università di Napoli. In 2003-2004, he
was a research scientist with the Institut flir
Hochfrequenztechnik und Radarsysteme of the
Deutsches; Zentrum für Luft- und Raumfahrt
(DLR), Oberpfaffenhofen, Germany. Since 2005,
he has been a Researcher with the Università di
Napoli Federico II, Dipartimento di Ingegneria
Elettronica e delle Telecomunicazioni, Naples,
Italy. His main fields of interest are phaseless

371CAPOZZOLI, CURCIO, D'ELIA, LISENO, VINETTI: FAST CPU/GPU PATTERN EVALUATION OF IRREGULAR ARRAYS

near-field/far-field transformation techniques,
remote sensing, and inverse scattering.

Pietro Vinetti was born in Naples in 1978. He
received the Laurea degree in Telecommunication
Engineering from the University of Naples
Federico II, Naples, Italy, in 2003. Since 2005, he
has been a PhD student in Electronic and
Telecommunication Engineering at University of
Naples Federico II, with electromagnetic as his
area of interest. His research activity is mainly
focused on the development of innovative near-
field antenna-characterization systems, based on
non-invasive dielectric probes and phaseless near-
field/far- field transformation techniques.

372 ACES JOURNAL, VOL. 25, NO. 4, APRIL 2010

