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Abstract-  An approach for the fast analysis of 
“irregular”, i.e., of conformal, periodic or 
aperiodic, 2D arrays, based on the use of the p-
series approach and Non-Uniform FFT (NUFFT) 
routines is proposed. The approach allows for 
modulating the computational burden depending 
on the array curvature and, thanks to the use of the 
NUFFT, the asymptotic growth of the computing 
time reduces to that of a few, standard FFTs. A 
sub-array partition strategy is also sketched and 
shown to further unburden the procedure and 
control the accuracy. The approach has been 
implemented in both sequential and parallel codes 
enabling its execution on CPUs and on cost-
effective, massively parallel computing platforms 
like Graphic Processing Units (GPUs). Its 
performance in terms of computational efficiency 
and accuracy has been assessed by an extensive 
numerical analysis and also against benchmarks 
provided by algorithms based on fast Matrix-
Vector Multiplication routines. 
 
Index Terms-  Aperiodic array antennas, 
conformal array antennas, fast antenna analysis, 
GPU computing, CUDA. 
 

I. INTRODUCTION 
Array pattern synthesis is a computationally 

challenging problem since it requires demanding 
iterative algorithms for the (local or global) 
optimization of a properly defined objective 
functional [1-3]. The computational bottleneck of 
such algorithms is essentially related to the 
repeated calculation of the far field pattern (FFP) 
and possibly of the functional gradient (FG) (as 
long as gradient-based optimization approaches 
are adopted). 

Different kinds of arrays have been subject in 
the literature of synthesis procedures. Many of the 
developed synthesis algorithms refer to “regular 
arrays” (RAs), for which the elements are arranged 

on a periodic grid of a portion of a line or plane 
(see Fig. 1). In the last decade, “irregular arrays” 
(IAs), namely, arrays for which the elements lay 
on an “aperiodic” grid and/or on conformal lines 
or surfaces have been proposed (see Figs. 2-4) to 
overcome the typical issues of RAs [4-8]. Indeed, 
“aperiodic” structures allow, as compared to 
“periodic” ones, a more efficient power handling, 
if uniformly excited in amplitude [5], and permit 
improving the bandwidth performance [9], while 
also reducing the overall number of elements and 
mitigating the effects of the grating lobes [10]. 
Furthermore, “conformal” structures, as compared 
to linear or planar ones, satisfy aerodynamic and 
low-scattering requirements in aircraft antennas 
[4], permit space deployability [11] and 
considerably reduce the feed path length, thus 
improving the bandwidth behavior, of reflectarray 
antennas [7]. However, IA synthesis appears 
computationally more demanding than RAs 
synthesis, since the FFP or FG evaluations become 
more burdened. 

 
 

Fig. 1.  Example of planar, periodic array. 
 
For RAs, when the array factor can be 

employed [12] and the far field pattern is 
evaluated on a regular spectral grid, the excitation 
coefficients and the array factor are related by a 
“standard” Discrete Fourier Transform (DFT) link, 
i.e., a DFT defined on Cartesian, regular grids, as 
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Fig. 2. Example of planar, aperiodic array. 

 

 
 

Fig. 3. Example of conformal, periodic array. 
 

 
 
Fig. 4. Example of conformal, aperiodic array. 

discussed in [13]. In this case, the speedup is 
achieved by means of standard Fast Fourier 
Transform (FFT) routines [14]. Indeed, taking for 
example arrays of M elements, the use of FFTs 
changes the O(M2) computational complexity of 
each DFT to O(MlogM). 

On the other hand, for IAs, the possibility of a 
direct use of FFTs [6-8] breaks down. Indeed, for 
planar IAs, evaluating the FFP as well as the FG 
requires the DFT to be computed on irregular grids 
(Cartesian non-uniform or non-Cartesian), so that 
the requirement of standard FFTs is not met 
anymore. Moreover, for IAs whose elements are 
arranged on non-linear or non-planar domains, a 
standard DFT link between array factor and 
excitation coefficients is lost [7]. 

The aim of the paper is to show how the 
asymptotic growth of the computational burden 
when dealing with IAs can be reduced to 
O(MlogM) as long as the computation of the FFP 
can be recast as that of a few FFTs. To this end, 
three different tools are exploited in the following, 
namely the p-series approach [7,15,16], the Non-
Uniform FFT (NUFFT) algorithms [17,18] and a 
sub-array partitioning strategy. In particular, the p-
series approach enables, for conformal surfaces 
with mild curvature, recasting the link between the 
array excitation coefficients and the FFP as the 
sum of a few, possibly non-standard, DFTs. On 
the other hand, NUFFT algorithms quickly 
evaluate non-standard DFTs as the sum of a few 
FFTs. And so, the two approaches together are 
able to restore the yearned O(MlogM) 
computational complexity. Finally, the sub-array 
partitioning strategy is capable to additionally 
improve the method in terms of computational 
burden and accuracy. It is also shown that the 
computational approach herein proposed can be 
even more fruitfully exploited if implemented on 
innovative, intrinsically parallel, off-the-shelf 
hardware provided by Graphical Processor Units 
(GPUs) [19]. GPUs represent, in fact, inexpensive, 
highly-parallel hardware, significantly mitigating 
the requirements in terms of space, management, 
cost and user access, when compared to more 
complex CPU grid/cluster systems [20]. In 
addition, while programming on GPUs remains 
more involved than standard sequential 
programming, the recent interest in GPUs for 
scientific computing has promoted the 
development of effective programming 
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frameworks [21,22], which in return simplified 
implementations on these platforms [23]. Finally, 
it is further shown how the proposed strategy 
fruitfully modulates, depending on the array 
curvature, the computational burden without 
impairing the accuracy of the FFP evaluation. 

The performance of the approach is tested by an 
implementation in C language on a standard, 
single-core (sequential) CPU and by an 
implementation in NVIDIA CUDA (Compute 
Device Unified Architecture) language [24] on a 
(multithread) NVIDIA GTX 260 GPU. More in 
detail, C language implementations of the 
proposed strategy and of an approach based on 
sequential Optimized Matrix-Vector 
Multiplication (OMVM) [25,26], generally having 
an O(M2) asymptotic complexity, but performing 
better than a brute-force (i.e., a matrix vector 
multiplication based on the use of “for loops” 
[27]) one, have been setup. The OMVM approach 
has been purposely developed in this paper to be 
used as a reference for assessing the performance 
of the proposed strategy. Speedups of more than 
10 times for arrays of 104 elements obtained by 
our method as compared to OMVM, FFP 
evaluation are highlighted. Similarly, CUDA 
language implementations of the proposed strategy 
and of an approach based on parallel OMVM 
routines have been realized. Speedups of more 
than 8 times for arrays of 104 elements, when 
comparing the GPU version of our approach 
against that of employing parallel OMVMs are 
pointed out. Moreover, speedups of more than 40 
times, when comparing the GPU and CPU 
versions of the developed algorithm, are indicated.  

Finally, the accuracy of the procedure is 
discussed. 

The paper is organized as follows. In Section II, 
the problem of radiation is formulated and the 
strategy exploited for the NUFFT-based 
evaluation of the FFP, relying on the use of the p-
series approach, is presented. The benchmarking, 
OMVM-based method is also sketched. Section III 
briefly enlightens some details of the sequential 
(CPU) and parallel (GPU) implementations for 
both considered approaches (i.e. NUFFT and 
OMVM). Sections IV and V illustrate and 
compare the computational performance and 
accuracy of the NUFFT-based method, as 
compared to the OMVM-based one. Finally, in 
Section VI, conclusions are drawn and future 

developments are foreseen. In the Appendices, the 
NUFFT algorithm is shortly recalled, C-like and 
CUDA-like listings of the developed NUFFT 
routines are reported and ancillary calculations 
concerning the convenience of adopting a sub-
array partitioning are presented. 
 

II. RADIATION BY 2D IRREGULAR 
ARRAYS 

In the following, the approach to the fast 
analysis of IAs is presented by referring to a 
general 2D geometry.  

Let us consider an antenna array made of M 
elements, non-uniformly distributed on a 2D 
arbitrary surface, S, of equation z=f(x,y), (x,y)∈D, 
with D a planar, auxiliary domain, so that the 
radiating elements are located at the points 
(xm,ym,zm) with zm=f(xm,ym) and m = 0, 1, …, M-1 
(see Fig. 5). The complex excitation coefficients 
are denoted with am, m = 0, 1, …, M-1. 

Generally speaking, the FFP of an IA can be 
written as [4,6-8] 
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β=2π/λ, λ being the wavelength, and hr(u,v,xm,ym) 
accounts for the radiation characteristics and 
position of the m-th element (see also Subsection 
C). 

Henceforth, the vector aspects of the problem 
are dismissed. In other words, we assume that h 
can be factored out as  
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that is, all the array elements share a common 
polarization behavior described by p. Accordingly, 
Fr(u,v)=F(u,v)p(u,v), where 
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We notice that 
• for mild conformal geometries (the elements 

have approximately the same orientation), 
vector correction terms to eq. (3) are often 
negligible; 

• for non-mild conformal geometries, the sub-
array partitioning strategy helps to mitigate 
the assumptions needed for the validity of eq. 
(3) (see Subsection II.e). 

In practice, the FFP is required at a number H 
of spectral positions (uh,vh), so that the 
corresponding discrete values Fh of F can be 
written, following eq. (4), as 

 

 

Fh = amh(uh,vh ,xm,ym )e j uhxm +vhym[ ]

m= 0

M −1

∑ .        (5) 

 
Thus, even in the case when the spatial and 

spectral points (xm,ym) and (uh,vh), respectively, 
form a Cartesian grids, the samples of the FFP 
cannot be evaluated by a standard FFT since eq. 
(5) is not in the form of a DFT [28]. 

 
A. Far Field Pattern Computation by 
Optimized Matrix-Vector Multiplications 

Whenever it is not possible to conveniently 
express the function h(u,v,xm,ym), an effective way 
to evaluate the samples Fh of the FFP is employing 
OMVM routines. 

Indeed, the kernel h(uh,vh,xm,ym)expj[uhxm+ 
vhym] of eq. (5) can be arranged as a matrix B 
whose generic element is  
 

 

 

Bhm = h(uh,vh ,xm,ym )e j uhxm +vhym[ ]              (6) 
 
so that eq. (5) can be recast as a matrix-vector 
multiplication 

 

 

Fh = Bhmam
m= 0

M −1

∑ .             (7)  

 
Eq. (7) is amenable to be evaluated by OMVM 

routines, which in general perform as O(M2) or, in 
the case of particular symmetries of B, as 
O(Mlog5M) [25,26]. 

In the following, we illustrate a strategy capable 
of reducing the computational complexity needed 
to calculate Fh’s in cases when the function 
h(xm,ym,u,v) can be factored out. 

B. Factorization of the Function h(u,v,xm,ym) 
As long as h(u,v,xm,ym) can be written (in an 

exact or approximate way) as 
 

 

h(xm,ym ,u,v) = ϕ p (u,v)ψ p (xm,ym )
p= 0

P−1

∑ ,       (8) 

 
then the FFP samples Fh can be calculated as 
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Now, each inner summation of eq. (9) is in the 

form of a (possibly non-uniform, depending on the 
values of xm, ym, uh, and vh) DFT which can be 
computed, in the general case, by a NUFFT 
routine call, performing, as already stressed in the 
Introduction, as O(MlogM). Consequently, the 
FFP samples Fh can be evaluated by P NUFFT 
calls, for an overall O(PMlogM) complexity. 

Generally speaking, a simple way to obtain a 
factorization of h is to regard it as the kernel of a 
linear operator A so that the singular functions of 
A, can be employed [29] as functions ϕp and ψp 
which then provide, when the summation in eq. (9) 
involves infinite terms, an exact representation of 
h. However, when truncating, such summation 
requires a high number of terms for an accurate 
representation, then the expansion of h can be 
obtained by selecting proper basis functions ϕp and 
ψp, depending on the features of h. In the 
following, we present a simple example, of 
relevant practical interest, concerning the 
factorization (8), for a proper choice of ϕp and ψp. 
 
C. p-Series Factorization 

In order to focus the attention on a case of 
practical interest, we consider an IA for which  

 
mjwz

mm evufyxvuh ),(),,,( = ,          (10) 

 
where )( 222 vuw +−= β  and f(u,v) is the element 

factor [12]. As prefigured at the beginning of 
Section II, h depends on the radiation 
characteristics of the m-th element through the 
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element factor p, and on its position through the 
quota zm. For the sake of simplicity, in the 
following formulas we will skip the element 
factor, unessential in the discussion, and we will 
nevertheless deal with it throughout the numerical 
analysis. 

Under this hypothesis, following the approach 
in [7, 15, 16] and on denoting by w0 the value of w 
related to the main beam direction, eq. (4) can be 
rewritten as 

 

 

F(u,v) = a'm e j[uxm +vym +w'zm ]

m= 0

M −1

∑           (11)  

 
with w’=w–w0 and a’m =am exp[jw0zm]. For mild 

curvatures of S, the exponential exp[jw’zm] can be 
expanded by a truncated Taylor series up to the 
(P-1)-th order (p-series), so that 
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( jw')p
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p

m= 0

M −1

∑ am
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P−1

∑        (12)  

  
and the discrete values Fh of F can be expressed as 

 

       

 

Fh =
( jwh

, )p

p!
zm

p

m= 0

M −1
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, e j(uhxm +vhym )

p= 0

P−1

∑ .       (13)  

 
Obviously, the smaller the curvature of S, the 

smaller the value of P required for a given 
accuracy. In practice, a proper value for P can be 
chosen to trade off the computational burden and 
the accuracy of the approach, as it will be clearer 
in Subsection II.e and in the numerical analysis 
presented in Section IV. In general, the number of 
p-series terms is chosen in a way to ensure that the 
argument of exp[jw’zm] is less than a “small” value 
all over the spectral (u,v) region of interest. Such a 
value is typically assumed equal to π/8, or even 
lower if more accurate results are desired. 
Moreover, the chosen number of p-series terms 
depends also on the coverage, so that, once the 
array and the coverage are given, the number of p-
series terms can be consequently assigned. We 
stress that the inner summation in eq. (13) is not in 
the form of a standard DFT [28], so that, to 
recover the desired computational complexity, a 
NUFFT structure should be employed.  

 
 

Fig. 5. Geometry of the problem. 
 

D. Use of the NUFFT 
Concerning the fast evaluation of each inner 

summation in eq. (13), a different NUFFT 
algorithm should be considered depending on the 
spatial and spectral grids at hand. More in detail: 

a) for an arbitrary spatial grid (xm,ym) (aperiodic 
conformal array) and for a regular, Cartesian 
spectral lattice (uh,vh), a Non-Equispaced 
Data (NED), or “type-1”, NUFFT is of 
interest [17]; 

b) for a regular, Cartesian spatial grid (periodic 
conformal array) and for an arbitrary spectral 
one, a Non-Equispaced Result (NER), or 
“type-2”, NUFFT should be employed [17]; 

c) for arbitrary spatial and spectral grids, a 
“type-3” NUFFT should be adopted [18]. 

Since cases b) and c) are extensions of case a) 
which do not add any conceptual difficulty, in this 
paper we assume to evaluate the FFP on a regular, 
Cartesian spectral lattice, so that NED-NUFFTs 
are of interest (case a)). This is the most frequently 
occurring case, since, in antenna synthesis, the 
design specifications are usually given on a 
regular, Cartesian spectral lattice (uh,vh), leading 
indeed to the use of NED NUFFTs. Accordingly, 
for the sake of brevity, cases b) and c) will not be 
dealt with in the details. 

Different approaches have been proposed in the 
literature for evaluating NUFFTs [17,18,30-33]. 

The main idea underlying many NUFFT 
algorithms is to approximate the non-uniform 
exponential function exp(jp∆uxm) (having assumed 
that the h-th spectral point (uh,vh) corresponds to 
the (p∆u,q∆v) uniform spectral grid point), by 
interpolating L, “oversampled”, properly chosen 
and windowed uniform exponentials 
exp(jp∆ul∆x), l=1,..,L. Accordingly, non-

x 
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uniformly sampled exponentials can be 
approximated by properly weighted sums of 
uniform exponentials, enabling to exploit a finite 
number of standard FFT routine calls. It is worth 
noting that this strategy is not equivalent to a 
“brute-force thinning” of an array which, on the 
contrary, requires significantly denser element 
grids [34]. In this paper, we use the approach in 
[17], based on an “exact” representation of the 
exponentials exp(jp∆uxm). For the reader’s 
convenience, we quote Appendix A for a brief 
mathematical description of the employed NUFFT 
algorithm. 

 
E. Sub-Array Partitioning 

It should be mentioned that the array can be 
also partitioned into N sub-arrays, each one made 
up of mn elements, such that m0+ m1+... mN-1=M. 
Accordingly, eq. (13) can be rewritten by 
explicitly describing the radiation by each array 
portion, thus leading to 

 

Fh =
( jwh

, )p

p!
zm

p

m= mn

mn+1

∑ am
, e j(uhxm +vhym )

p= 0

P−1

∑
n= 0

N−1

∑ .    (14) 

As an advantage, the number P of terms 
involved to represent the exponential in (10) by a 
Taylor series expansion associated to each 
subarray is expected to reduce, for a fixed 
accuracy. Accordingly, the strategy can be applied 
to non-mild shapes, also to reduce model errors 
related to the vector aspects (i.e., model errors in 
the assumption (3)). To better enlighten this 
advantage, we mention the borderline case of a 
faceted array (or a faceted reflectarray [35-37]). In 
this case, across the junctions between the facets, 
the curvature is singular. Nevertheless, a 
partitioning into subarrays enables accurate 
computations with a number of P=1 terms for each 
facet (see also Subsection IV.c). Moreover, the 
sub-array partitioning strategy is further facilitated 
by the use of type-2 (for non-aperiodic arrays) or 
type-3 (for aperiodic arrays) NUFFT routines. 
Indeed, even when dealing with a uniform array, 
the field radiated by the various facets should be 
computed onto the common (u,v) grid associated 
to the overall antenna, a procedure requiring in 
general time-consuming interpolation stages. From 
this point of view, the opportunity of employing 
(type-2 or type-3) NUFFT routines, enabling 
arbitrary (u,v) output grids, offers the possibility of 
performing such an interpolation with O(MlogM) 

complexity. In Section IV, we discuss how much 
convenient such a strategy can be. 

Finally, the sub-array approach is amenable to a 
multi-level implementation [38], but, for the sake 
of simplicity, in this paper we will deal with a 
single-level one. 

 
III. IMPLEMENTATION OF THE 

ALGORITHMS 
The approach proposed in Subsections B-E has 

been implemented in both, a sequential code, 
running on conventional computing architectures 
(single-core CPU), and in a parallel code, taking 
advantage of GPU acceleration. Moreover, 
sequential and parallel implementations of an 
approach based on OMVM routines according to 
eq. (7) have been also setup to serve as a 
benchmark for the performance of the proposed 
approach. 

For both, the sequential and parallel codes, 
particular care has been devoted to 

• selecting high performance FFT routines, as 
required by the proposed, NUFFT-based 
approach; 

• choosing high performance Matrix-Vector 
multiplication routines, as required by the 
OMVM-based scheme. 

In the following, some implementation details 
concerning the developed sequential and parallel 
codes will be discussed. We remark that symbols 
in the following are defined in the Appendices A, 
B and C. 

 
A. Sequential Implementations 

All the sequential codes have been developed in 
ANSI C language. Such a choice is due to the use 
of the CUDA environment to develop the parallel 
counterpart. Indeed, a CUDA program consists of 
“phases” that are executed on the host (CPU) or 
the device (GPU) and of data structures that can be 
allocated on the host or the device, as well (see 
[24]). The host code is straight ANSI C code. The 
device code is ANSI C code, extended with 
special keywords for calling data-parallel 
functions (kernels), and managing the associated 
data structures. Accordingly, the development of a 
parallel code can be performed by starting with the 
sequential ANSI C code, spotting the phases that 
should be parallelized, and extending the 
corresponding instruction and data structures with 
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the special keywords for parallel executions 
provided by CUDA. 

In particular, concerning the sequential code: 
• the NUFFT algorithm has been implemented 

according to [17] (see also Appendix A); a 
particularly fast implementation of the FFT, 
based on the same philosophy of FFTW [39], 
and contained in the Intel Math Kernel 
Library (MKL) [40], has been exploited to 
speedup the required FFT calculations; a C-
style listing of the algorithm is reported in 
Appendix B; the critical point of the 
algorithm is represented by the U matrix 
filling operations, performed within three, 
nested (m, l1 and l2) for loops; such a filling is 
“pseudo-random” (i.e., it does not obey to a 
“row-major” filling criterion [41]) since the 
indices ix and iy “jump” between non-
consecutive values as long as m, l1 and l2 are 
swept; as known, this severely affects the 
memory latency when accessing the elements 
of U [41]; 

• the implementation of the OMVM-based 
approach relies on BLAS routines;  

For both the cases, Intel Math Kernel Libraries 
(MKL) (v.1.0.02), including BLAS and FFT 
routines, have been exploited. 

 
B. Parallel Implementations 

As already stressed in the Introduction, all the 
parallel codes have been developed by means of 
the CUDA language [24]. 

For both, the NUFFT-based and OMVM-based 
algorithms, the GPU is exploited as an 
accelerating device, executing portions of the code 
in parallel [19]. More in detail: 

• for the proposed approach, in correspondence 
to each NUFFT call, the execution is 
delivered to the GPU and the evaluation of 
each NUFFT performed by a proper, parallel 
implementation of the scheme detailed in 
Appendix A; 

• for the OMVM-based approach, the 
evaluation of the matrix multiplication 
required by eq. (7) is performed, again 
through a parallel implementation on the 
GPU; 

In the sequel, some details concerning the 
parallel implementations of the two considered 
approaches will be reported.  

 
1. NUFFT-based approach 

All the stages of Appendix A have been 
carefully examined and parallelized, according to 
the key rules of GPU programming [24]. A 
CUDA-style listing of the algorithm is reported in 
Appendix C. More in detail: 

 
Stage 1 
The calculations of the samples of the spatial 

and spectral windows Φ and Φ̂ , respectively, as 
well as of the indices µx,m and µy,m (see Appendix 
B) are fully independent from each other and are 
evaluated in parallel, rather than by for loops as in 
the sequential case. 

The computation of the U matrix is also 
parallel, but requires some more care, since 
different approaches could be envisaged to this 
end and the best performing one should be 
selected. Indeed, due to the already remarked 
“pseudo-random” access to U required by the 
sequential implementation, devising an efficient 
filling procedure in the parallel case is not 
straightforward and represents the main difficulty 
to be solved throughout the parallelization of the 
whole code described in Appendix B. 

A first possible parallelization strategy would 
be to commit a thread to compute a single matrix 
element of U. However, in this way, the generic 
thread should perform, due to the “pseudo-
random” filling, a time-consuming browsing of the 
input elements to establish whether they contribute 
to the committed element of U or not. 

As an alternative, the implemented parallel 
code employs a 1D block grid of length M, each 
block allocating (2K+1)×(2K+1) threads. In this 
way, the above mentioned browsing is avoided 
since each thread is assigned to a different input 
element and updates the corresponding element of 
the U matrix.  

Generally speaking, the number of allocable 
blocks in a 1D grid depends on the computing 
capability of the employed GPU [24]. For the 
GPU employed in this paper, the number of 
allocatable blocks is 65535, which is large enough 
for all the considered numerical tests. For arrays 
with M>65535, the algorithm should foresee a 
sequential allocation of 1D block grids. Since the 
maximum number of allocatable blocks depends 
on the employed GPU, the actual performance of 
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the algorithm depends on the hardware 
performance of the available graphic card. 

However, it should be noticed that, by this 
solution and regardless to M, more than one thread 
may need to simultaneously update (namely, read, 
compute and store a new value) the same element 
U(ix,iy). Unfortunately, when this happens, a 
conflict such as Writing After Writing (WAW) 
and Writing After Reading (RAW) [41] can occur, 
affecting the results. To preserve the integrity of 
the data, atomic operations have been exploited 
[41,42], which basically ensure the semantic 
correctness of the algorithm through a serialization 
of the updating operations. We finally observe 
that, the parallel implementation is such that two 
threads belonging to the same block never update 
the same element U(ix,iy) (although threads 
belonging to different blocks can do). Moreover, 
since each block is (2K+1)×(2K+1) sized and, 
generally speaking, K is usually “small” (typical 
values range from 6, for single precision 
arithmetic, to 12, for double precision [17]), in 
order to speed-up the memory access, the updating 
operations are performed first on a temporary 
(2K+1)×(2K+1) matrix, allocated in the shared 
memory (and then shared by threads belonging to 
the same block), and subsequently on the global 
memory by the mentioned atomic operations. 

 
Stage 2 
The computation of the required FFT has been 

parallelized by means of the latest release of the 
cuFFT library (cuFFT v2.3) [43], implementing 
several, optimized parallel FFT algorithms, and 
choosing the one to be used depending on the 
shared memory occupation of the input array and 
on the possibility of reducing its size to a power of 
an integer factor. 

 
Stage 3 
Extracting the elements of the Û  matrix, their 

scaling with the elements Φpq and the subsequent 
memory updates are independent, and then easily 
parallelizable, operations. 

We finally remark that, throughout the parallel 
implementation of the NUFFT routine, the typical 
suggested guidelines in programming GPUs [24] 
and concerning, for example, 

• avoiding divergencies due, f.i., to conditional 
statements or non-coalesced memory 
accesses; 

• balancing the computational load among the 
available resources; 

have been applied. 
Furthermore, data padding [24] has been 

adopted to manage a generic input data size. It 
should be noticed that, for the considered case, 
data padding does not significantly affect the 
algorithm performance since the amount of 
employed padding is always less or equal to the 
block size (which, as above discussed, contains 
(2K+1)×(2K+1) only threads) and, as such, 
negligible for a large input data size M. 

 
2. OMVM-based approach 

The implementation of the OMVM-based 
approach relies on the latest release of the 
cuBLAS (cuBLAS v.2.3) routines [44]. 

Also for this case, data padding has been 
applied. 

 
3.  Multilevel parallelization 

It is worth noting that, the particular expression 
in eq. (13) is amenable to a further level of 
parallelization, since the different terms of the p-
series summation can be simultaneously computed 
and, in turn, each NUFFT can be parallelized 
according to the guidelines above. Unfortunately, 
a single GPU cannot handle more kernels 
simultaneously and hence cannot effectively 
manage a multi-level, parallel computation.  

Nevertheless, with a multi-GPU system [45], 
the computation of each term of the p-series can 
be executed by a different GPU accomplishing, in 
turn, the computation of a parallel NUFFT. 
Afterwards, all the terms can be added together by 
means of a reduction operation on a “master” 
processing unit. This strategy allows operating a 
two-level parallelism, one to compute the p-series 
and one to compute the NUFFTs. 

Similar considerations apply also to the sub-
array partitioning approach (see eq. (14)). Indeed, 
also in this case the computations for each sub-
array are independent from all the others and a 
two-level parallelism can be obtained. Obviously, 
in this case, a three-level parallelism can even be 
achieved, by exploiting the independence of the 
sub-arrays and of the p-terms. 
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In this paper, only results concerning a single-
level parallelization are shown. The multi-level 
case is left to future developments since it does not 
introduce any conceptual difficulty, but for 
communication protocols between the GPUs [45]. 

It should be finally observed that, with 
reference to the parallel implementation of the 
proposed NUFFT-based approach, the order of 
computation among the different p-series terms, 
or, in other words, the order of computation of the 
different required NUFFT routine calls, could be 
rearranged to simultaneously execute more than 
one NUFFT on the same GPU. In this way, 
apparently a multi-level parallelism could be 
achieved on a single GPU. However, if ever such a 
solution would be more effective, it should not be 
considered of practical interest since it would not 
comply with the typically required transparent 
scalability on a multi-scale architecture [24]. 
 

IV. COMPUTATIONAL 
PERFORMANCE 

In this Section, we present a numerical analysis 
showing the computational performance of all the 
developed algorithms. More in detail, after having 
illustrated the hardware setup employed for the 
tests, a comparison between the computational 
performance of the CPU and the GPU 
implementations of the NUFFT-based and 
OMVM-based algorithms are reported. Finally, 
the trade-off between computational performance 
and accuracy of the p-series and sub-array 
partitioning approaches is discussed.  
 
A. Hardware Setup 

Sequential implementations have been run on a 
personal computer with a single-core, Intel 
Pentium IV processor, with 3 GHz of clock 
frequency, and equipped with a RAM, 2.0 GBytes 
sized.  

Parallel CUDA codes have been executed on 
the same personal computer used for the 
sequential tests, but powered by a GeForce GTX 
260 GPU, having 24 multi-processors working at 
800 MHz and equipped with a memory, 872 
MByte sized.  

 
 
 

B. Computational Performance of the 
Implemented Algorithms 

Fig. 6 reports a comparison of computing times 
for the FFP evaluation by all the implementations 
discussed in Section III versus the size M of the 
IA. More in detail, the computing time has been 
normalized, for all the algorithms, to the 
corresponding one concerning the case M=80. As 
it can be seen, the two GPU implementations 
outperform the corresponding CPU ones, and, in 
particular, the NUFFT-based implementation on 
GPU ensures the lowest growth rate. It is worth 
noting that, the considered GPU computing times 
(here and in the following) include transfers 
from/to host (PC memory) to/from device (GPU 
global memory), so that they represent the 
effective speed-ups that the GPU can provide 
against the CPU architecture. In Fig. 6, the M2 and 
MlogM trends, agreeing with those for the two 
considered CPU-based algorithms, are also 
depicted for higher values of M. Finally, some 
relevant speed-ups are summarized in Table 1. 

 

 
 
Fig. 6. Growth rates of the computing times for the 
FFP evaluation by all the implementations 
illustrated in Section III. 
 
 Table 1: Speed-ups among different 
implementations for an array with M=104. 
 

Implementations Speed-up 
CPU NUFFT vs. 

OMVM 
>10 

GPU NUFFT vs. 
OMVM 

8 

NUFFT GPU vs. 
CPU 

>40 
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In Fig. 7, the speed-up of the GPU 
implementation as compared to the CPU one 
(CPU computing time / GPU computing time) for 
the NUFFT-based approach against the size M of 
the input data is depicted. As it can be seen, the 
improvement in the performance for the GPU 
computation is significant already for small sized 
arrays (less than 100 elements) and the speed-up 
factor grows dramatically with the increasing IA 
dimension M.  
 

 
 
Fig. 7. Speed-up of the GPU vs. CPU 
implementations for the NUFFT-based approach. 

 
In order to explain such a speed-up, a code 

profiling has been performed, enlightening that the 
improved performance is essentially due to the 
critical filling of the matrix U of the sequential 
case and to the employed effective solution in its 
parallelization. 

We finally note that, the relative drops of 
GPU/CPU performance are due to particular sizes 
of the input elements whose data structure does 
not effectively fit the characteristics (number of 
shared registers, constant memory size, number of 
allocatable blocks, number of processors) of the 
employed hardware. As a consequence, for such 
particular input dimensions, the code execution is 
not as massively parallel as it occurs for the others. 
Nevertheless, the GPU still guarantees a 
significant speedup as compared to the CPU. 

 
C. Computational Burden of the p-Series and of 
the Sub-Array Partitioning Strategy 

We now aim at briefly clarifying, for the 
sequential implementation, the conditions under 
which the sub-array partitioning strategy (eq. (14)) 

becomes computationally convenient with respect 
to the only p-series approach (eq. (13)). 

The computational burdens of eqs. (11) and 
(14) are reported and compared in Appendix D. As 
it can be expected, it turns out that (eq. (D3)), for 
sequential implementations, the sub-array 
partitioning becomes convenient as long as it 
“favorably” exchanges p-series terms with sub-
arrays. 

Obviously, these conclusions do not hold true 
when a multi-level parallelism is employed since, 
in this case, the computation time can be reduced 
by a p-series/sub-array partitioning approach 
despite the higher number of operations. 

A remarkable case when the sub-array 
partitioning becomes convenient is that (already 
mentioned) of faceted arrays [35-37], i.e., when 
the surface S is made up by contiguous planar 
portions (facets) with different relative 
inclinations. In this case, each facet can be 
associated to a sub-array which, being flat, 
requires just 1 p-series term. To enlighten this 
point, we have considered the case of a faceted 
array having 3 facets and M=19600 elements. Tab. 
2 summarizes the speed-ups obtained by the sub-
array partitioning strategy as compared to p-series 
only evaluations of the FFP, as a function of P. 
 
Table 2: Comparing the computational 
performance of sub-array partitioning vs. p-series. 

 

# p-series terms Speed-up 
3 1 
4 1.34 
5 1.67 
6 2 
7 2.34 

 
V. ACCURACY 

In this Section, we present a numerical analysis 
illustrating the accuracy of the proposed, NUFFT-
based strategy, by focusing the attention on two 
examples: a linear, aperiodic and parabolic, 
aperiodic arrays. 
 
A. Linear, Aperiodic Array 

Let us begin with a linear (non-conformal), 
aperiodic array. More in detail, we consider an 
equivalently tapered Chebyshev, 1D array [6,8], 
made of 2048 elements having uniform 
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excitations. The elements positions (see Fig. 8) 
have been properly determined, according to the 
approach in [6,8], in order to synthesize the same 
pattern of a Chebyshev array of 1024 uniformly 
spaced elements having a side lobe level of -26dB. 
The resulting inter-element spacing of the array 
elements varies from a minimum of 0.33λ to a 
maximum of 1.8λ, while the overall array size is 
1000λ. 

 
Fig. 8. Elements positions for the Chebyshev 
array. For the sake of clarity, only the position of 
one element every 16 are shown. 

 
The adopted synthesis algorithm is based on 

the optimization of a proper objective functional 
and requires direct evaluations of the FFP, which 
have been performed by means of the proposed 
approach. Obviously, the array being linear, only 1 
p-series term is required. 

Figure 9 shows the synthesized FFP of the 
equivalently tapered Chebyshev array. The 
computations have been sequential and the 
reported “exact evaluation” has been performed by 
the OMVM approach. The computing times for 
the proposed and OMVM approaches have been 
35ms and 62ms, respectively.  

 
Fig. 9. u cut of the FFP of the synthesized 
equivalently tapered, 1D Chebyshev array. Red 
stars: proposed approach. Blue dashed line: exact 
evaluation. 
 

 

B. Parabolic, Aperiodic Array: Accuracy of the 
p-Series and Sub-Array Partitioning Strategies 

In this Subsection, we highlight, with reference 
to the case of a parabolic, aperiodic array, the 
accuracy of the p-series approach versus the array 
surface curvature, and the improvements in the 
accuracy provided by the sub-array partitioning 
strategy. 

To this end, we consider two IAs having the 
same number (i.e., 65388) of elements lying on 
two parabolic surfaces having the same diameter 
(D) but different focal length (f). In particular, the 
first IA, say IA1, has a focal/diameter ratio (f/D) 
equal to 1, while the other, say IA2, has f/D equal 
to 1.5. Under these hypotheses, the curvature of 
IA2 is smoother than that of IA1 (see Fig. 10).  

 

 
 

Fig. 10. The two considered parabolic IAs for the 
analysis of the p-series and sub-array partitioning 
accuracies. Blue: IA1. Red: IA2. 

 
The histogram in Fig. 11 indicates the Root 

Means Square (RMS) error between the exact 
evaluations of the FFPs for IA1 and IA2 (eq. (7)) 
and their computations with the proposed 
approach (eq. (14)), against the number of 
considered p-series terms and sub-arrays. 
Assuming, as acceptable accuracy, the one 
corresponding to a RMS equal to 1%, Fig. 11 
shows that if no partitioning is adopted for IA1, 
even six p-series terms are not enough to attain the 
desired precision. On the contrary, partitioning IA1 
into 16 sub-arrays ensures the desired accuracy 
already with 5 terms and splitting up further the 
array into 64 or 256 sub-arrays reduces the number 
of required p-series terms to 4 or 3, respectively. 
Concerning now IA2, Fig. 11 shows that its milder 
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curvature gives rise to a faster p-series 
convergence with respect to IA1. Indeed, 4 p-series 
terms now ensure 1% of RMS error even without 
sub-array partitioning. Introducing the partitioning 
in this case allows reducing the p-series terms to 3 
or 2 with 16 or 256 sub-arrays, respectively. 

 

 
Fig. 11. RMS errors when computing the FFPs of 
IA1 and IA2 against number of p-series terms for 
different numbers of sub-arrays. FFP1 refers to 
IA1, while FFP2 refers to IA2. 
 
C. Accuracy of the p-Series Approach Versus 
the Degree of Aperiodicity 

We finally consider the case of a 2D IA, whose 
16384 elements are aperiodically distributed on a 
paraboloid with focal length/diameter ratio equal 
to 0.8, a typical value in the applications. The 
inter-element spacing varies from 0.35λ to 0.9λ, 
while the excitation coefficients have been chosen 
according to: 

 

1,...,1,0,*1)/( −== −−⋅ Mmeea mm didF
m

βα     (15) 

 
where dm is the distance of the m-th array element 
from the foci, •  is the wave-number and α has 
been properly determined to obtain an amplitude 
tapering of -4dB at the edge. 3 p-series terms have 
been considered, ensuring a negligible RMS error 
(~10-5) in the visible region [0.4,0.4]x[0.4,0.4] • 2 
of the (u,v) plane.  

Figure 12 compares the FFP evaluation of the 
considered IA by means of the proposed approach 
to the exact evaluation (eq. (7)). 

The robustness of the proposed approach versus 
the “degree of aperiodicity” of the array is 
illustrated in Table 3 which reports the RMS error 

of the FFP evaluation when an increasing random 
fraction of array elements is erased, as compared 
to the setting of Fig. 12, thus increasing the degree 
of aperiodicity. It should be mentioned that, as 
long as an increasing random fraction of array 
elements is erased, the sidelobe intensity rises up, 
which leads to the higher RMS in Tab. 3. This 
could be however mitigated by an increasing 
number of p-series terms. 

 
Fig. 12. u cut of the FFP of the parabolic, 
aperiodic array. Red stars: proposed approach with 
3 p-series terms. Blue dashed line: exact 
evaluation. 
 

Table 3:  RMS vs degree of aperiodicity. 
 

RMS error 
Erased 

elements [%] 
10−8 0 
2.9−3 1 
1.4−1 5 
0.27 10 

 
VI. CONCLUSIONS 

An approach for the fast analysis of IAs based 
on the use of the p-series expansion and NUFFT 
routines has been proposed and implemented in 
both, sequential (CPU) and parallel (GPU) codes. 

The performance of the algorithms has been 
analyzed both in terms of computational efficiency 
and of achievable accuracy.  

In particular: 
• both, the sequential and parallel, NUFFT-

based approaches are capable of improved 
performance as compared to (sequential and 
parallel) algorithms based on OMVMs; 
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• a sub-array partitioning approach can 
further reduce the computational burden by 
speeding-up the convergence of the p-series;  

• a proper parallel code implementation 
enables GPU computing to significantly 
speed-up the execution as compared to that 
on CPU. 

We finally remark that, some of these results 
can be extended to the FG computation in 
synthesis algorithm and to the case of volumetric 
(3D) IAs. Concerning array synthesis, it should be 
mentioned that often multi-stage synthesis 
approaches are employed as in [46] and that the 
most computationally demanding stages can 
strongly benefit of calculating FFP and FG by the 
approach here above proposed, committing the 
computation according to more sophisticated 
vector models just to the last synthesis steps. 

 
APPENDIX A: THE NUFFT ALGORITHM 
 
According to [17], the “exact” representation of 

the exponential function exp(jp∆uxm) is the 
following: 

 

 

e jp∆uxm =
(2π )−1/ 2

Φ(p∆u /c)
ˆ Φ (cxm − l1)

l1 ∈Z

∑ e jp∆ul1 / c   (A1)  

 
where c > 1 is an “oversampling factor”, Φ is a 

∞
0C  function with support in [-π,π] and strictly 

positive in [-π/c,π/c], and Φ̂  is its Fourier 
transform. 

Following eq. (A1), any of the NUFFTs in eqs. 
(13) or (14) can be rewritten as 
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where ,
m

p
mm azb = . Henceforth, we assume to 

be interested in the values of pqb
~

 for p=-N1/2,…, 

N1/2 and q=-N2/2,…, N2/2. 
The sums over l1 and l2 in eq. (A2) require the 

computation of standard 2D, FFTs. Furthermore, 

they can be effectively evaluated provided that Φ̂  
is small outside some interval [-K,K], so that it is 
required that Φ has compact support in [-α,α] and 

Φ̂  is concentrated, as much as possible, in [-K,K]. 
To this end, a Kaiser-Bessel window Φ is used 
[17]. 

The computation of eq. (A2) can be divided 
into three stages (see also [17]).  

 
Stage 1 
For each (xm,ym), the nearest equispaced spatial 

frequencies l1/c and l2/c are determined. The 
samples of the windowing/interpolating functions 

Φ and Φ̂ , respectively, are computed. The inner 
m summation in eq. (A2), that is, the U(l1,l2) 
function, is calculated.  

 
Stage 2 
A standard, 2D FFT routine is performed on U. 

The output matrix Û has size cM×cM. 
 
Stage 3 

Û is reduced to an N1×N2 matrix and then 
scaled with the windowing function 

 

(2π )−1 /Φ(p∆u /c)Φ(q∆v /c). 
 

APPENDIX B: C-STYLE LISTING OF THE 
SEQUENTIAL NUFFT ALGORITHM 

 
// ********* 
// * STEP 1 * 
// ********* 
 
for(p=-N1/2;p<N1/2;p++) { 
   for(q=-N2/2;q<N2/2;q++) { 
 
   Φpq=Φ(2πp/(cN1))Φ(2πq/(cN2)); 
        } 
           } 
 
   for (m=0;m<M;m++) { 
    
      µx,m=round(c*xm); 
      µy,m=round(c*ym); 
    
      for (l1=-K;l1<=K;l1++) {    
       
         ix=mod(µx,m +l1+c*N1/2,c*N1); 
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         wxm= Φ̂ (c*xm-(µx,m+l1)); 
       
         for(l2=-K;l2<=K;l2++){ 
          
            iy=mod(µy,m+l2+c*N2/2,c*N2); 

            wym= Φ̂ (c* ym-(µy,m+l2)); 
            U[ix,iy]=U[ix,iy]+wxm*wym*bm; 
          } 
               } 
               } 
   
// ********* 
// * STEP 2 * 
// ********* 
 

Û =fft(U); // 2D fft routine provided by MKL 
 
 
// ********* 
// * STEP 3 * 
// ********* 
 
for (p=0;p<N1;p++){ 
   for(q=0;q<N2;q++) { 
       
      nufft[p,q]=div(u[(c-
1)*N1/2*c*N2+p*c*N2+(c-1)*N2/2+q],Φpq); 
               } 
            } 

 
APPENDIX C: CUDA-STYLE LISTING OF 

THE PARALLEL NUFFT ALGORITHM 
 

// ********* 
// * STEP 1 * 
// ********* 
 
/* Generates a 1D grid of threads to evaluate 
µx,m and µy,m. NUM_THREADS = # threads per block 
*/ 
dim3 dimGrid_mu(M/NUM_THREADS,1); 
dim3 dimBlock_mu(NUM_THREADS,1); 
 
// Parallel evaluation of µx,m and µy,m 
data_round<<<dimGrid_mu,dimBlock_mu>>>(xm,ym,µx,

m,µy,m); 
 
// Generates a 2D grid of threads to evaluate 
Φpq 
dim3 dimGrid_phi(N1/BLOCK_SIZE, N2/BLOCK_SIZE); 
 
// Parallel evaluation of Φpq 

  
dim3 dimBlock_phi(BLOCK_SIZE,BLOCK_SIZE); 
Φ<<<dimGrid_phi,dimBlock_phi>>>(Φpq,N1,N2);  
 
/* Generates a 2D grid of threads to evaluate 
wxm and wym and evaluates those quantities */ 
 
dim3 dimGrid_phi_hat(M,1); 
dim3 dimBlock_phi_hat(2*K+1,1); 

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wxm,xm
,µx,m,M); 

Φ̂ <<<dimGrid_phi_hat,dimBlock_phi_hat>>>(wym,ym
,µy,m,M); 

    
// Generates a 1D grid of threads and 
evaluates U 
dim3 dimBlock_u(2*K+1,2*K+1); 
dim3 dimGrid_u(M,1); 
U_matrix_evaluation<<<dimGrid_u, 
dimBlock_u>>>(bm,M,µx,m,µy,m,U,wxm,wym,N1,N2); 
   
// ********* 
// * STEP 2 * 
// ********* 

Û =cuFFT(U); 
 
// ********* 
// * STEP 3 * 
// ********* 
 
dim3 dimGrid_scaling(N1/BLOCK_SIZE,N2 
/BLOCK_SIZE); 
dim3 dimBlock_scaling(BLOCK_SIZE,BLOCK_SIZE); 
scaling<<<dimGrid_scaling,dimBlock_scaling>>>(
Φpq);  

   
APPENDIX D: COMPUTATIONAL 

BURDENS OF THE p-SERIES AND SUB-
ARRAY PARTITIONING APPROACHES 
 
In the un-partitioned case, according to eq. 

(13), the number of operations needed to 
determine the FFP, say No, is (neglecting 
summation operations as compared to 
multiplications) 

  

 

No = M P 4.5c 2 log2(c 2M) + 20K 2 + 3[ ]+ 2{ },  (D1) 

 
where K and c are the NUFFT oversampling 

factor and interpolation length, respectively, and 
the complexity for the evaluation of a single 
NUFFT has been determined according to [17]. 

When the surface is partitioned into Nsub• M 
sub-arrays, the computational complexity becomes 
(neglecting again summation operations as 
compared to multiplications) 

 

 

No
sub = M ⋅ P ' ⋅{ N sub[ ⋅ (4.5c 2 log2(c 2M) +

20K 2 + 2)+1]+ Nsub +1}
 (D2) 

 
where P’• P is the number of p-series terms 

needed in eq. (17) to achieve the same accuracy as 
for the un-partitioned case. Dividing (D2) by (D1) 
and enforcing that the ratio is less than one, we 
have: 
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No
sub

No
≤1⇒

⇒ Nsub ≤
9c 2P log2 c + 20K 2P + ∆P +1

1+ (20K 2 + 9c 2 log2 c)(P − ∆P)

(D3) 

 
where P’=P-• P. Eq. (D3) provides a necessary 

(but not sufficient) condition, in terms of number 
of sub-arrays Nsub, for the sub-array partitioning 
approach to be computationally convenient as 
compared to the un-partitioned case, for a fixed 
accuracy. Obviously, in eq. (D3), 0• • P<P since 
the partitioning can reduce the number of p-series 
terms at most to P’=1. Generally speaking, • P is a 
function of Nsub and it increases with the number 
of sub-array partitions.  

To be more specific we observe that, typically, 
the values of the NUFFT oversampling factor and 
interpolation length are 2 and 6, respectively. 
Substituting these values in eq. (D3), we get: 

 

 

Nsub ≤
756P + ∆P +1

1+ 756(P − ∆P)
≅

P
(P − ∆P)

≤ P .(D4) 
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