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Abstract ─ In this paper, an accurate and 
numerically robust singularity correction 
technique for the transmission line matrix method 
(TLM) algorithm is proposed. The impedance of 
the adjacent cells to the singularity is corrected by 
a scalar correction factor, which amounts to a 
quasi-static correction of the electric and magnetic 
energy stored in the TLM cells at the singularity. 
The effectiveness of this method in accurate 
modeling of structures with metallic strips (sharp 
edges) and 90 degree edge corners has been 
clearly validated against published measurement 
and common TLM simulation data. 
 
Index Terms ─ Dispersion error, singularity, 
TLM.  
 

I. INTRODUCTION 
Like all other numerical techniques the 

transmission line matrix method (TLM) is subject 
to various sources of error and must be treated 
with caution to obtain reliable and accurate results. 
Regarding the discrete nature of the TLM method, 
there are two error sources, velocity or dispersion 
error and coarseness error.  

In most of the simulations, the wavelength of 
the TLM network is large enough compared with 
the cell size; therefore, it can be assumed that the 
fields propagate with the same frequency- 
independent velocity in all directions and the TLM 
network shows the behavior of a continuous 
medium. However when the frequency or the cell 
size is increased, the network velocity becomes 
dispersive and depends on the frequency and the 
direction of propagation. Hence, the assumption of 
the continuous medium for the TLM network is 

not valid and leads to an error that is referred to as 
velocity or dispersion error. 

The coarseness error occurs when the TLM 
mesh is too coarse to resolve the highly non-
uniform fields at corners and edges. On the other 
hand, due to the singularity of some components 
of the electromagnetic field at corners and edges, 
the coarseness error occurs.  

Both of the dispersion and coarseness errors 
cause a shift in the frequency response of the 
structures under investigation as the shift is 
usually towards low frequencies. However, 
positive shift in some particular combinations of 
dielectric and magnetic materials is possible too.  

Since the effect of field singularities is 
significant, many approaches have been proposed 
for dealing with the field singularities in the 
vicinity of metal edges in FDTD and TLM  [1] . A 
possible solution could be to choose a very fine 
mesh [2,3, 4]. Another approach is to use 
appropriate boundary conditions  [5] . The lower 
memory requirements and computation time are 
the advantages of this approach. A better approach 
is to use basis functions at the discontinuities that 
resemble the singular fields at metallic edges and 
corners  [5] . The idea used in this approach is that 
the singular field distribution is quasi-static since 
the time derivative of the fields is insignificant 
compared with their space derivative. Therefore, 
the properties of the quasi-static field sub-region 
can be modified so that the stored energy is correct 
even though the field itself is poorly resolved. For 
example, modifying the update equations in a 
FDTD algorithm or the scattering matrix of cells 
in the vicinity of singularity in TLM is one 
possible correction method  [6]. 
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 Using an additional modeling element is 
another approach that is used for the singularity 
correction  [7, 8]. Discontinuity modeling with 
material properties is another approach used for 
modeling singularities. The main idea in this 
approach is based on the quasi-static distribution 
of the singular field. It means some of the field 
components become infinite at sharp edges and 
corners, whereas the stored energy remains finite. 
Although this technique is used in perfectly 
matched layer boundary conditions (PML)  [9] , the 
local character of singularity fields implies that 
they are independent of boundary conditions 
several mesh cells away.  

 
II. LOCAL MODIFICATION 

OF TLM CELLS 
This method is based on the local modification 

of the impedance in the TLM cells directly 
surrounding the discontinuity. It is robust and 
independent of the type of singularity from the 
numerical standpoint. Furthermore, it can be easily 
implemented to function automatically and has a 
negligible computational cost compared to the 
other methods. Modification of TLM cell 
impedance in the vicinity of discontinuities is 
implemented by changing the dielectric 
permittivity and magnetic permeability. The 
constitutive parameters are the only structural 
parameters presented in the 3D-TLM dispersion 
equation [10]. In other words, modification of these 
parameters resulted in modification of the 
dispersion relation in the 3D-TLM network.  

Maxwell's equation for a symmetric 
anisotropic media are given by 
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Following as  [10], the dispersion relation is 
obtained as the combination of wave vector k


and 

constitutive parameters and . A significant 
simplification of the dispersion relation is obtained 
for isotropic media leading to  

 22 2 2 2 2 0. (3)x y zk k k      
 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 1. Four types of singularities (a) knife edge, 
(b) 90 degree edge, (c) knife edge corner, (d) 90 
degree edge corner. 
 

The dispersion analysis for the symmetrical 
condensed node (SCN) of 3D-TLM yields a direct 
relationship between the relative permittivity and 
relative permeability as seen in the equation (3) 
 [10]. In this paper, we used the above relation to 
compensate the locally structural dispersions 
created by discontinuities of electromagnetic 
structures. To further explain the capability of the 
proposed technique in this paper, some common 
structural discontinuities such as knife edge, 90 
degree edge, knife edge corner, and 90 degree 
edge corner are investigated. 

For modeling these structures, both 
constitutive parameters of the cells' surrounded by 
discontinuities are reduced by the same relative 
amount in order to preserve the local intrinsic 
wave impedance of the field space. For example in 
the knife edge structure, the and of the edge 
cells are modified such that the resonant 
frequencies of a resonator that contains the edge 
singularity become virtually independent of the 
cell size.  

The required change in and can be 
computed approximately using the known 
expressions for the quasi-static fields. This is 
illustrated in Fig. 2 where the dominant resonant 
frequency of a cavity with a knife edge singularity 
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has been drawn as a function of mesh parameter
 l used to compute that frequency. Note that the 
mesh parameter is small enough for the dispersion 
error to be negligible  1 20l   .  

If the structural singularity is not corrected, 
the frequency varies linearly with the mesh 
parameter. After the modification, the computed 
resonant frequency is practically independent of 
the mesh parameter. The correction region is along 
the edge but contains only the immediately 
adjacent cells. Figure 3 shows the location of the 
modified cells. 

 

Fig. 2. Resonant frequency of cavity containing a 
knife edge singularity with a=20 mm, b=15 mm, 
c=10 mm, and r = r =2. 
 

As can be seen in Fig. 2, the frequency shift 
phenomenon is dropped after modification. The 
frequency shift between simulation with l =1 
mm and l =0.125 mm before modification is 
about 135 MHz and after modification this shift is 
reduced to 5 MHz which means 90% error 
correction by the corrected algorithm. 

This modification can be repeated for other 
types of singularities like 90 degree edge. Fig. 4 
shows the location of cell correction for this type 
of singularity. The cavity dimensions are a=14 
mm, b=10 mm, c=6 mm, d=5 mm, and s=3 mm 
with parameters of = =2.  
 
 

 
Fig. 3. Location of the cell correction for knife 
edge singularity. 
 

 
Fig. 4. Location of the cell correction for 90 
degree edge singularities. 

 
Figure 5 shows the simulation results of the 90 

degree edge singularity. Elimination of the 
frequency shift is evident which led to 
independence of the resonant frequency to the 
mesh parameter. In this type of singularity, the 
corrected cells are located adjacent to the 90 
degree edge singularity. With respect to the above 
results, it is clear that the physical modeling of 
discontinuities by changing the cell impedance in 
the location of singularity is accurate and efficient. 
In addition, this approach not only increases the 
accuracy of the applied numerical methods but 
also decreases the computing cost and the 
simulation time of modeled structures. 
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Fig. 5. Resonant frequency of cavity containing 90 
degree edge singularities. 
 

In order to experimentally validate the 
accuracy and efficiency of the correction method 
proposed in this paper, this approach has been 
used to analyze microstrip structures such as 
antenna and filter. 
 

III. SIMULATION 
 
A. Patch antenna 

The geometry of the antenna is exactly the 
same as in  [11] so that the results can be compared 
(Fig. 6). The feed line of the antenna is 50  
microstrip with r =2.2 and h=0.794 mm.  

In simulation of this antenna, the 
computational domain with 1207025 cells is 
used and the patch is modeled by 40 x 32 y
where x = 0.4 mm, y = 0.389 mm, and z = 
0.265 mm. The width and length of this feed line 
and the height of substrate are modeled by 6, 50 
and 3 nodes, respectively.  
 

 
Fig. 6. Patch antenna. 

 

Fig. 7. Result of patch antenna simulation. 
 

The time step is t  0.43 ps and simulation 
is performed for 10000 time steps because of the 
highly resonant behavior of the antenna. Note that 
this structure has two types of singularities in form 
of edge and corner and both of them should be 
corrected. 

The results of the simulation by modified 
algorithm are listed in Table 1. In Fig. 7, the 
reflection coefficient of the patch antenna is also 
compared with corrected TLM result.  

By considering measurement frequencies, the 
applied modification is about 80% and the whole 
of the frequency response is not corrupted by this 
modification in the frequency range of response. 

 
Table 1: Resonant frequency of the patch antenna 

Frequency (GHz) 1st 2nd 
TLM Without correction 7.51 18.07 
Corrected TLM 7.61 18.29 
Measurement  [12]  7.60 18.37 
Without correction Error(%) 1.31 1.63 
Corrected Error(%) 0.13 0.44 

 
B. Low pass filter 

Figure 8 shows the geometry of a low pass 
microstrip filter which fabricated by RT/Duroid 
5880 ( r = 2.2, h= 0.794 mm) and the substrate is 
on the y-z plane. Dimension of the simulation cell 
is x = 0.4233 mm, y = 0.1985 mm, and z = 
0.4064 mm and the computational domain with 20
7486 cells is used for simulation of this filter.  
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Fig. 8. Geometry of low pass filter. 

 

 
Fig. 9. Insertion loss of low pass filter. 

 

 
Fig. 10. Corrected TLM filter result compared 
with CST microwave studio simulation and 
measurement result. 

 
The distance from the source plane to the edge 

of the long patch is 30 x and the reference planes 
for ports 1 and 2 are 10 x  from the edges of the 
patch. The time step is t  0.3176 ps. The 
simulation is performed for 10000 time steps to 
allow the response on both ports to become nearly 
zero. 

In Fig. 9, the simulation results of the filter are 
shown in comparison with measurement results 
 [11] . With respect to the filter geometry, the 
impedance of the edge discontinuities and adjacent 
cells has been changed in the corrected algorithm.  

In comparison with measurement results, the 
proposed modification in the TLM algorithm 
could compensate shift in the frequency response 
of the filter, as the cut-off frequency of the low 
pass filter improved approximately 90% in 
comparison with the common TLM algorithm. In 
general, a good agreement of the corrected 
algorithm results and CST Microwave Studio 
simulation result is seen in Fig. 10. 

 
CONCLUSION 

In this paper, an accurate and numerically 
robust singularity correction technique for the 
TLM algorithm has been proposed. The 
impedance of the cell adjacent to the singularities 
are modified by a scalar correction factor, which 
amounts to a quasi-static correction of the electric 
and magnetic energy stored in the TLM cells at the 
singularities. The correction factor also affected 
the dispersion equation because of the constitutive 
parameter dependency of this equation. Numerical 
validation shows that this correction method 
reduces the coarseness error due to singularity 
without any penalty in terms of computational 
burden.  
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