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Abstract ─ A numerical method is presented to 
analyze the scattering behavior of large-scale 
stratified rough surfaces. The method improves the 
banded matrix iterative approach / canonical grid 
(BMIA/CAG) by adopting some simple formulas 
to calculate the coupling interactions between 
different surfaces. Such treatment reduces the 
complexity of the method at expense of little 
accuracy when the roughness of surfaces can be 
ignored compared to the distance between surfaces, 
and also reduces the computation time by parallel 
implementation technique. Based on emissivity 
calculation, the one-dimensional method is proven 
to be effective for the analysis of some scattering 
properties. Then the proposed method is compared 
with the method of moments (MoM) by example 
of multilayered lunar regolith. Details of 
numerical results are given and discussed, which 
provide a guide in the application of the improved 
method. 
 
Index Terms ─ Banded matrix iterative approach / 
canonical grid method (BMIA/CAG), method of 
moments (MoM), remote sensing, rough surface 
scattering, stratified rough surfaces. 
 

I. INTRODUCTION 
Electromagnetic characteristics of stratified 

rough surfaces have been studied for many 
applications in remote sensing, such as lunar 
exploration [1, 2], buried objects detection [3, 4], 
ocean observation [5], etc. With the advent of 
modern computers, it is attractive to study 
scattering from rough surfaces with fast numerical 
methods [6]. 

Based on the method of moments (MoM), the 
Maxwell equations are converted into matrix 
equations which can be solved by linear iterative 
solvers [7]. For the case of stratified rough 
surfaces, main numerical methods include 
extended boundary condition method (EBCM) 
with truncated singular value decomposition 
(TSVD) [8], forward-backward spectral 
acceleration (FBSA) [9], the steeped descent fast 
multipole method (SDFMM) [10] and 
propagation-inside-layer expansion (PILE) [11] 
approach. The hybrids of these methods [12] and 
the parallel implementation technique [13] have 
been used in some methods to speed up 
computations. Nevertheless, the computational 
complexity of SVD in [8] increases rapidly with 
the size of the matrix; FBSA may fail to converge 
in lossless cases or for media with large 
permittivity [9]; the SDFMM requires a depth less 
than one free-space wavelength to satisfy the 
quasiplanar structure constraint [10]; the 
derivation of characteristic matrix of the layer [11] 
becomes prohibitively challenging when too many 
interfaces are involved. Besides, there are also 
some researches on scattering problem from 
stratified media with a perfect electric conductor 
(PEC) layer [14]. Their constraints limit the use of 
the methods for lunar regolith. 

The banded matrix iterative approach on a 
canonical grid (BMIA/CAG) [15, 16] is an 
efficient method for one-dimensional (1-D) single 
surface because it requires low dynamic memory 
and computation time. A multilevel expansion 
method [16] has been used to improve the 
BMIA/CAG for surfaces with root mean square 
(rms) heights up to several wavelengths [17]. 
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However, for stratified rough surfaces, the 
expanding of coupling interactions between 
different surfaces is much more complicated than 
similar operations for a single surface case. The 
complexity of programming and calculations 
makes the BMIA/CAG inefficient. 

To overcome this limitation, the BMIA/CAG 
method is improved and generalized to calculate 
the scattering from 1-D stratified rough surfaces in 
this paper. For convenience, the improved method 
is named as generalized BMIA (GBMIA) 
throughout the paper. In Section II, the principle of 
the BMIA/CAG is first investigated, and then 
simplified formulas for the GBMIA are introduced. 
With these simplifications, the solving of the 
linear matrix equation in the iterative approach is 
parallelizable and the computation can be 
accelerated by the parallel implementation 
technique, which is shown in Section III. More 
numerical results and discussion on different 
models are presented to prove the validity of the 
GBMIA in Section IV. Remarks are given in 
Section V. 
 

II. FORMULATION 
A. Integral equations 

The geometry of 1-D stratified rough surfaces 
is illustrated in Fig. 1, with N rough surfaces, 
dividing the space into N + 1 layers. The j-th 
surface Sj is described by the profile z = fj(x), 
where x∈[-L/2, L/2], L is the length of the surface. 
For the j-th layer Vj, the properties are expressed 
by the complex permittivity εj and the complex 
permeability µj, and the total field is denoted by 
ψj. Besides, for the j-th layer (j = 1,…,N-1), let Hj 
denote the average thickness of the layer. 

z = f(x)
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Fig. 1. Schematic diagram of 1-D stratified rough 
surfaces. 

With an incident field ψinc impinging on S0, the 
double integral equations for the j-th surface Sj can 
be written as 
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where r′  is the position vector of the observation 
point on Sj and r  is that of the source point on the 
corresponding integral surface. Gj denotes the 
Green’s function in Vj. P.V. represents the 
principal value integral. ( )( ) ( )( )21ˆˆˆ xfxf jjj ′++′−= zxn , 

is the normal vector at (x, fj(x)). rj+1,j = µj+1/µj for 
transverse electric (TE) wave and rj+1,j = εj+1/εj for 
transverse magnetic (TM) wave. 

Specially, for the top surface S1, i.e., j = 1, 
integrations on surface Sj-1 in (1) become the 
incident field ψinc. For the bottom surface SN, i.e., j 
= N, integrations on surface Sj+1 in (2) go to zero. 
Thus, the scattering problem from stratified rough 
surfaces can be described by (1) and (2). 
 
B. MoM implementation 

According to the principle of MoM [18], each 
surface is divided equally into M segments of 
width ∆x = L/M. Then the integral equations (1) 
and (2) can be discretized and converted to a linear 
matrix equation with the form bXZ =⋅ , where Z  
is the coefficient matrix with 2MN × 2MN 
elements, representing coupling interactions 
between observation and source points on surfaces; 
b  is a 2MN × 1 vector, representing incident fields 
on surfaces; and X  is a 2MN × 1 vector, denoting 
the surface unknowns to be solved. 

For a scattering model with N rough surfaces, 
the coefficient matrix has the form of 
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where block matrices are 

MM
iiiiii

iiii
i

22
,,1,

,1,1

×−

−−












=

BA
BAZ

r
,      i = 1, 2, ..., N, 

MMiiii

ii

22,1,1

,1

×++

+












=

DC
00Z , 

MM

iiiiii
ii

22

1,1,1,
1,

×

++−
+












=

00
DCZ r ,  i = 1, 2, ..., N-1. 

ji,A , ji,B , ji ,C , ji,D  are M × M block matrices. 
Elements in ji,A  and ji ,C  have the similar form of 
(4), while those in ji ,B  and ji,D  are in the form of 
(5). The details of expressions for these block 
matrices can be found in [11]. 
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where k is the wave number in the corresponding 
layer. )1(

0H  and )1(
1H  are the zero-order and first-

order Hankel functions of the first kind, respectively. 
An essential difference should be noticed that 
observation and source points are on the same 
surface for ji,A  and ji ,B  while they are on different 
surfaces for ji ,C  and ji,D . 

 
C. BMIA/CAG method 

The MoM solution is rigorous [19]. However, 
the memory requirements and computational 
complexity increase rapidly with the size of Z . To 
this problem, the BMIA/CAG solves the matrix 
equation in an iterative approach, by decomposing 
each block matrix into two parts. For example, the 
matrix A  is decomposed into 
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where 1 ≤ m, n ≤ M, and bw is an adjustable 
parameter and set to be M/10 in most cases [15]. 

Then 
( )s

A  is a banded matrix which represents 
strong interaction and the remainder 

( )w
A  

represents the weak interaction part. B , C , D  are 
decomposed in the same way. Then 

( )s
A , 
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B , 
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C , 
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D  are grouped to be 
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Z , and others are 

separated into 
( )w

Z . 
The matrix equation becomes ( ) ( )
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which can be solved by the following iteration [18] 
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In the BMIA/CAG, the solution to (8) can be 
solved by taking advantage of the sparsity of 

)(s
Z , 

without inversing the full matrix Z . 
)(w

Z  is 
decomposed so that )()( pw

XZ  product can be 
computed by the fast Fourier transform (FFT), 
which can avoid the storage of 

)(w
Z , besides 

saving the CPU time [18].  
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where 
( )w
iZ  has the form of ndm TZT . mT  is a 

function of m, and nT  is a function of n. dZ  is a 
translationally invariant matrix [18]. NZ is the 
number of such matrix. 

The decomposition in (11) is equivalent to 
expand the Hankel functions in (4) and (5) in 
Taylor series at zd = z0. For elements in 
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where xd = |m-n|∆x is the horizontal distance 
between the observation and source points, and zd 
is the vertical component. NT is the number of 
Taylor terms truncated in numerical calculations. 
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For A , all the observation and source points 
are on the same surface, and zd is only affected by 
roughness of the surface. In this case, z0 = 0. By 
substituting zd with fm(x) – fn(x), the second Taylor 
term (t = 1) in (12), for example, can be written as 
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Now, each item on the right side of (13) has the 
form of TmZdTn, where Tm and Tn are functions of 
m and n, respectively, and Zd is only related to |m-
n|. Let N(t) denote the number of items with the 
form of FmZdFn from the t-th Taylor term, then 
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The decomposition of 
( )w

B  is similar to that of 
( )w

A . However, in case of stratified rough surfaces, 
The decompositions of 

( )w
C  and 

( )w
D  are quite 

more complex for that the observation and source 
points are on different surfaces and the Hankel 
functions should be expanded at z0 = Hi which is 
the distance between two surfaces. If the first three 
Taylor terms are used in numerical calculation, NZ 
for 

( )w
A , 

( )w
B , 

( )w
C  and 

( )w
D  is 9, 27, 21, and 63, 

respectively. In single surface case, the total 
number NZ in BMIA/CAG is 36, while the number 
will reach to 120 for stratified rough surfaces; and 
the complexity will grow with more Taylor terms. 

 
E. Generalized BMIA 

To reduce the complexity in decomposition of 
( )w

C  and 
( )w

D , some simpler formulas for 
( )w

C  and 
( )w

D  are introduced for special applications, which 
generalizes the BMIA/CAG method so as to study 
the scattering behavior of stratified rough surfaces. 

The vertical component zd for C  and D  can be 
written as 
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where δf(xm) and δf(xn) represent the distances of 
the observation point and source point to their 
mean surfaces, respectively.  

In many applications, values of δf(xm) and δf(xn) 
can be ignored compared to Hi. For example, at 

the Mare Serenitatis on the Moon, the depth of 
lunar subsurface can reach several kilometers, 
while the rms height of the surface is only about 
one meter [20]. Let zd ≈ Hi, then 
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Now, the Hankel function in (16) only depends 
on xd, so elements in the matrix on the same 
diagonal are the same. Then C  and D  are known 
as Toeplitz matrices.  

In the GBMIA, the decomposing to A  and B  is 
the same as that done in the BMIA/CAG. For C  
and D , observation and source points are on 
different surfaces. Taking the thickness of layers 
into account, the whole matrices C  and D  are 
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In GBMIA, the strong part 
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From the form of 
)(s

Z  in (17), the solving to (8) 
can be divided into N linear equations with 
coefficient matrices 

)(s
iZ , which are sparse banded 

matrices with small scale. What’s more, these 
equations are independent with each other, so 
solving to them can be implemented in parallel, 
which is helpful to save the computation time. 
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III. EFFICIENCY EVALUATION 
Memory requirement and computation time are 

two important criterions to assess a numerical 
method. The memory requirement depends on the 
number of non-zero elements in Z . For the MoM, 
Z  is a full matrix containing 4(2N-1)M 2 elements, 
which will all be calculated and stored. In the 
BMIA/CAG, only non-zero elements in 

)(s
Z  is 

necessary, the number of which is equal to 4(2N-
1)[M+(bw-1)(2M-bw)]. In the GBMIA, the number 
of non-zero elements in 

)(s
Z  decreases to 

4N[M+(bw-1)(2M-bw)]. For the sake of illustration, 
the comparison of these three methods for 
different surface number N is listed in Table 1, 
with M = 1000, bw = M/10. 

 
Table 1: Number of non-zero elements (in million) 

N MoM BMIA/CAG GBMIA 
1 4 0.7564 0.7564 
2 12 2.2692 1.5128 
3 20 3.782 2.2692 
4 28 5.2948 3.0256 
5 36 6.8076 3.782 
6 44 8.3204 4.5384 
7 52 9.8332 5.2948 
8 60 11.346 6.0512 
9 68 12.8588 6.8076 

10 76 14.3716 7.564 
 

From Table 1, the number of non-zero elements 
in GBMIA need to be calculated and stored is the 
least. When N = 3, the number to be stored in the 
GBMIA is only about 11% of that in the MoM, 
and 60% of that in the BMIA/CAG, which is a 
considerable saving in memory requirement and 
matrix filling time. This advantage becomes more 
obvious as N increases. The same conclusion can 
be obtained for different values of M. 

To avoid the complexity of implementing 
BMIA/CAG for stratified rough surfaces, we 
evaluate the computation time of GBMIA and 
BMIA/CAG by two parameters: asymptotic 
convergence rate (R) [21] and time per iteration 
(T). For ( ) ( )

bXZZ =⋅



 +

ws , the iteration matrix is 

defined as  
 ( ) ( )ws

ZΖQ ⋅





=

−1
. (22) 

For the iterative approach to converge, the 
spectral radius of Q  must be less than 1, i.e. 

( ) 1<Qr . Then the asymptotic convergence rate is 
( )( )Qr10log−=R , and the speedup (G) in 

computation time is evaluated by the ratio of the 
product of 1/R and T in BMIA/CAG over that in 
GBMIA. For several pairs of N and M, GBMIA 
and BMIA/CAG are compared on a standard 
personal computer with MATLAB, and values of 
R and T are shown in Table 2. 

 
Table 2: Computation time evaluation 

N M 
BMIA/CAG GBMIA 

G R T (sec.) R T (sec.) 

2 
600 0.35 0.7430 0.34 0.3958 1.82 
900 0.51 3.9665 0.47 0.7310 5.00 
1200 0.57 6.3811 0.47 1.2227 4.30 

3 
600 0.34 1.5818 0.31 0.5051 2.86 
900 0.49 5.4874 0.33 0.8420 4.39 
1200 0.50 17.055 0.30 1.5145 6.76 

4 
600 0.37 2.5300 0.31 0.6739 3.15 
900 0.33 10.488 0.30 1.1253 8.47 
1200 -- 93.196 -- 1.7155 -- 

 
From Table 2, due to the simplifications in 

)(s
Z , 

the convergence rate decreases a little in GBMIA. 
However, there is a significant reduce in the time 
per iteration. As a result, the computation time in 
GBMIA is improved, and the overall speedup 
increases with N and M. When N = 4 and M = 900, 
the speedup reaches about 8.47. 

For the case of N = 4 and M = 1200, although 
the convergence rate cannot be calculated with our 
computer, there is a surprising improvement on the 
time per iteration. Besides the utility of the parallel 
calculation in GBMIA, immoderate memory 
consuming in BMIA/CAG is also an important 
factor affecting the computation time. 

These results show that GBMIA is more 
efficient and suitable for studying scattering 
problem of large-scale stratified surfaces. 

 
IV. NUMERICAL RESULTS 

The solution of surface integral equations 
obtained by using the MoM has been the standard 
for checking the validity of other numerical 
approaches [22]. In this section, the multilayered 
lunar regolith is taken as an example of stratified 
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rough surfaces. Before the verification of the 
GBMIA with MoM, it is necessary to verify that 
surface emissivity calculated by MoM with 1-D 
surface model is reliable. 
 
A. Validation of MoM 

In [1], the reflectivity for Monte Carle (MC) 
realized two-dimensional (2-D) lunar surface is 
calculated with the observation direction of 0°, and 
the average reflectivity of ten MC realizations in 
total is 0.0619 in TE case. To validate the MoM 
solutions, a simple two-layer model composed of 
free space and lunar soil, with µ1 = µ0, and ε1 = 
2.7+0.01i in [1] is used here. 

In this simulation, L = 200λ, where λ is the 
wavelength. A Thorsos tapered wave [23] is 
chosen as the incident wave, with g = L/8. The 
interface between free space and lunar soil is a 
Gaussian rough surface, with a small rms height of 
h = 0.04λ and the correlation length of l = 0.4λ, in 
order that the surface emissivity obtained by the 
MoM can also be compared with the analytical 
small perturbation method (SPM) solution. 
Emissivities of the 1-D lunar model obtained at 
different incident angles are plotted in Fig. 2. The 
MoM has a good agreement with SPM solutions 
on a wide range of incident angles, in both TE and 
TM case. 

As indicated in Fig. 2, the emissivity at the 
direction of 0° in TE case is 0.9331, which is 
corresponding to the reflectivity of 0.0669, very 
close to 0.0619 in [1]. Although some phenomena, 
such as depolarization are inherently for 2-D 
rough surface and cannot be observed using 1-D 
methods [19], the comparison indicates that 1-D 
method is still efficient to analyze scattering 
behavior, such as emissivity. 

 
B. GBMIA comparison with MoM 

Different models are now considered to 
compare the GBMIA method with the MoM. The 
emissivity calculated by GBMIA is denoted by 
eGBMIA, and that obtained from the MoM is eMoM.  
The relative error |eGBMIA - eMoM|/eMoM is used to 
assess the accuracy of the proposed method. In 
this paper, attentions are given to the efficiency of 

the GBMIA on multilayered medium, and the 
improvement by the multilevel expansion method 
for large rms heights will not be addressed here. 

In this example, a three-layer model is used,  
composed of free space, lunar soil, and lunar rock, 
with µ1 = µ2 = µ0, and ε1 = 2.42*(1+0.00486i), ε2 = 
7.8*(1+0.056i) [24]. L = 40λ, and the incident 
angle is 30°. Two interfaces are both Gaussian 
rough surfaces with the same roughness 
parameters. The correlation length l = λ, and 
different rms heights h (0, 0.1λ, 0.2λ, 0.3λ) are 
considered. The layer thickness H varies from λ to 
30λ, and 20 realizations are generated for each 
thickness. The first three Taylor expansion terms 
are used and the residual error is set at 0.01.  

The emissivity errors of GBMIA are shown in 
Fig. 3 for the TM case. From these curves, the 
emissivities of GBMIA are exactly the same as 
that of MoM for flat surfaces. For rough surfaces, 
the error diminishes as a whole, with H increasing, 
despite some small undulations; and the error 
decreases more quickly for surfaces with smaller 
rms height. For this three-layer model, the relative 
emissivity error by the GBMIA can be controlled 
below 1% when the thickness of lunar soil reaches 
12λ. 
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Fig. 2. Comparison of emissivity between MoM 
and SPM. 
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Ice deposits at the Lunar South Pole is an issue of 
diversity [2]. To estimate effects of possible ice 
deposit on scattering from lunar regolith, a lunar 
model containing ice is necessary. As an example 
to validate the GBMIA for a four-layer model, a 
layer of ice, with the permittivity of 
3.2*(1+0.0035i) [24], is added between the lunar 
soil and rock layers. For different thicknesses of 
lunar soil (H1 = 5λ, 10λ, 15λ, 20λ, 25λ, 30λ), the 
thickness of ice (H2) changes from λ to 30λ. The 
rms height of surfaces is chosen as 0.1λ, and other 
parameters are the same as before. The errors for 
TM case are plotted in Fig. 4. In general, the error 
decreases with the increasing of H1 and H2, and 
the thickness of upper layer are more important on 
accuracy than that of lower layer. When the 
thickness of lunar soil is larger than 10λ, the error 
will not exceed 1% even with a thin ice layer. 

 
V. CONCLUSION 

The BMIA/CAG method is improved and 
generalized to investigate the electromagnetic 
scattering from large-scale stratified rough 
surfaces in case that the distance between two 
surfaces is very large compared to the roughness. 

Comparing to the original BMIA/CAG, the 
GBMIA method reduces the complexity of 
decomposing coupling interactions between points 
on different surfaces. With the reduction, there is a 
good memory saving in the GBMIA. What’s more 
important, the coefficient matrix in the GBMIA is 
a block diagonal matrix, and the solving to the 
matrix equation can be parallelizable. With the 
parallel implementation technique, the GBMIA 
has a significant speedup in computation time. 

These advantages make the GBMIA be suitable 
for applications in large-scale problems of 
stratified rough surfaces scattering. 

With simplified formulas, the computational 
error is unavoidable. In numerical simulations, the 
MoM solution is first shown to be reliable on 
emissivity calculation. Then, the accuracy of the 
GBMIA is estimated by comparisons with the 
MoM, taking the multilayered lunar regolith as an 
example. The calculated relative emissivity error 
is below 1%, when the thickness of lunar soil is 
larger than about twelve free-space wavelengths. 

Although only lunar models are used in 
numerical simulations, the proposed method can 
be used for other applications with similar 
structures. 

 
ACKNOWLEDGMENT 

This work was supported in part by the 
National High Technology Research and 
Development Program of China (863 Program) 
under Grant 2010AA122204, and in part by the 
National Natural Science Foundation of China 
under Grant 41001195. 

5 10 15 20 25 30

0

2

4

6

8

Thickness H (λ)

R
el

at
iv

e 
Em

is
si

vi
ty

 E
rr

or
 (%

)

 

 
Flat surface
h = 0.1λ
h = 0.2λ
h = 0.3λ

 
Fig. 3. Relative emissivity error between 
GBMIA and MoM for three-layer model versus 
the thickness of layer. 
 

5 10 15 20 25 30
0

1

2

3

Thickness of ice H2 (λ)

R
el

at
iv

e 
Em

is
si

vi
ty

 E
rr

or
 (%

)

 

 
H1=5λ

H1=10λ

H1=15λ

 
(a) 

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Thickness of ice H2 (λ)

R
el

at
iv

e 
Em

is
si

vi
ty

 E
rr

or
 (%

)
 

 
H1=20λ

H1=25λ

H1=30λ

 
(b) 

Fig. 4. Relative emissivity error between GBMIA 
and MoM for four-layer model versus different 
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