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Abstract  ̶ The use of coupled integral equations and 

anomalous currents allows us to efficiently remove 

‘background effects’ in either forward or inverse 

modeling. This is especially true when computing the 

change in impedance due to a small flaw in the presence 

of a larger background anomaly. It is more accurate than 

simply computing the response with and without the flaw 

and then subtracting the two nearly equal values to 

obtain the small difference due to the flaw. In this paper, 

we compute the change in impedance of a probe due to a 

flaw in the presence of a much larger background 

anomaly, when the probe, which consists of a coil with a 

ferrite core, lies within the host region, and then apply 

the model and algorithm to the problem of inspecting a 

bolt hole in a plate or other layered medium with a 

‘SplitD’ eddy-current probe. 

 

Index Terms  ̶ Aircraft structures, computational, 

electromagnetics, eddy-current nondestructive evaluation, 

volume-integral equations. 

 

I. INTRODUCTION 
In [1] we developed a systematic procedure for 

analyzing problems in eddy-current nondestructive 

evaluation (NDE) by means of volume-integral 

equations (method of moments), and applied it to 

problems in aerospace, nuclear power, materials 

characterization, and other areas. One problem of 

interest to aerospace, and described in [1], is computing 

the response of a small crack located adjacent to a bolt 

hole. This requires the solution of a ‘multiscale problem’, 

with the bolt hole being the larger scale and the crack a 

much smaller scale. A method for solving this problem 

was developed using coupled integral equations, one for 

the anomalous currents within the bolt hole and the other 

for the anomalous currents within the crack. The 

algorithm was validated using measured data acquired 

by a ‘conventional’ surface coil scanned past the bolt 

hole and crack. By ‘conventional’ we mean that the coil 

was circular, with its axis normal to the surface of the 

host material, and containing no ferritic cores. The 

response of such coils can be computed analytically, as 

shown in [1]. That problem was chosen because of its 

relative simplicity in acquiring the data. 

In this paper, we attack the more complicated, but 

common, problem in which inspections are performed 

by a complex probe positioned within the bolt hole. The 

probes typically used for inspections are complex, often 

of the ‘SplitD’ variety, with a transmit coil exciting the 

system, and two receive coils picking up the response. 

Furthermore, none of the three coils is circular, and they 

all enclose two ferritic cores, split longitudinally to give 

the ‘SplitD’ characteristic. See [1] for a description and 

application of these probes. This model then calls for 

three coupled integral equations, two as above, and the 

third for the probe.   

We develop the ‘probe-in-host’ algorithm in Section 

II, and apply it to the SplitD probe problem in Section III. 

In order to keep the paper of reasonable length, we invite 

the reader to peruse [1] in order to get the background 

for understanding the terminology and concepts that are 

used throughout the paper. The development of the 

circuit response for the probe-in-host algorithm follows 

Chapter 5, ‘Computing Network Immitance Functions 

from Field Calculations’ of [1]. Also for length 

considerations, we have opted to discuss only the 

theoretical underpinnings of the algorithm. We will give 

a thorough presentation of 𝐕𝐈𝐂­𝟑𝐃®  model results, as 

well as experimental validation in a second paper. 

 

II. THE ‘PROBE-IN-HOST’ ALGORITHM 
This algorithm is an extension of our multiscale 

background-removal algorithm. Both algorithms were 

developed to compute the change in impedance of a 

probe due to a flaw in a sample which also contains a 

much larger background anomaly. The background-

removal algorithm addresses problems in which the flaw 

and background lie in one planar region, referred to as 

the ‘host’ region, and the probe, consisting of coil 

elements only, lies in a separate planar region. This 

permits the modeling of a coil scanned across the surface 

of a plate containing a bolt hole (the background) with 

an adjacent flaw. 

The problem of modeling a probe containing a  
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ferrite core, and positioned within a bolt hole is 

addressed by the probe-in-host algorithm, which solves 

the more complex problem of a ferrite-cored probe that 

lies within the host region. The problem is illustrated in 

Fig. 1, but the algorithm is more general than shown, 

since the flaw may lie wholly or partially inside or 

outside the background, and this is true for the probe as 

well.  

 

 
 
Fig. 1. The ‘probe-in-background’ problem. The 

conductivity within the host region is 𝜎(𝐫).  With 

background only (no flaw or probe) the conductivity is 

𝜎𝑏(𝐫).  Outside the flaw (and probe), 𝜎(𝐫) = 𝜎𝑏(𝐫). 
Outside the background 𝜎(𝐫) = 𝜎𝑏(𝐫) = 𝜎ℎ. 

 

The conductivity at all points within the host region 

is given by 𝜎(𝐫).  For the corresponding unflawed 

problem with background and probe only, the function is 

𝜎𝑢(𝐫). Thus 𝜎(𝐫) agrees with 𝜎𝑢(𝐫) at all points outside 

the flaw. For the corresponding unflawed problem with 

background only (i.e., probe removed), the function is 

𝜎𝑏(𝐫) . Thus, 𝜎𝑢(𝐫)  agrees with 𝜎𝑏(𝐫) at all points 

outside probe. The conductivity of the host region has  

a uniform value of 𝜎ℎ  outside the background and  

flaw, where 𝜎(𝐫) = 𝜎𝑢(𝐫) = 𝜎𝑏(𝐫) = 𝜎ℎ.  Finally, the 

permeabilities 𝜇(𝐫) , 𝜇𝑢(𝐫) , 𝜇𝑏(𝐫)  and 𝜇ℎ  are defined 

analogously, and hence obey analogous relations. 

Perhaps it would be more clear to think of building 

up to 𝜎(𝐫) and 𝜇(𝐫) as follows: Start with the uniform 

conductivity and permeability, 𝜎ℎ  and 𝜇ℎ  of the host. 

Add the background to get 𝜎𝑏(𝐫) and 𝜇𝑏(𝐫). Add the 

probe to get 𝜎𝑢(𝐫) and 𝜇𝑢(𝐫). Finally, add the flaw to get 

𝜎(𝐫) and 𝜇(𝐫).  

The anomalous current and magnetization,  𝐉𝑎(𝐫) 

and 𝐌𝑎(𝐫) respectively, satisfy the equations: 

𝐉𝑎(𝐫) = (𝜎(𝐫) − 𝜎ℎ)𝐄(𝐫),                     (1) 

𝐌𝑎(𝐫) = (
1

𝜇ℎ

−
1

𝜇(𝐫)
)𝐁(𝐫),                   (2) 

where  

𝐄(𝐫) = 𝐄(𝑖)(𝐫) + 𝐄(𝐫)[𝐽𝑎] + 𝐄(𝐫)[𝑀𝑎],          (3) 

   𝐁(𝐫) = 𝐁(𝑖)(𝐫) + 𝐁(𝐫)[𝐽𝑎] + 𝐁(𝐫)[𝑀𝑎],         (4) 

and 𝐄(𝑖)(𝐫)  and 𝐁(𝑖)(𝐫)  are the incident electric and 

magnetic fields of the probe coil. Functionals, such as 

𝐄(𝐫)[∙] and 𝐁(𝐫)[∙], are volume integrals with Green’s 

function kernels. 

We rewrite the right hand side of (1) and (2) as 

follows: 

                    𝐉𝑎(𝐫) =  (𝜎𝑏(𝐫) − 𝜎ℎ)𝐄(𝐫)  

                                  +(𝜎𝑢(𝐫) − 𝜎𝑏(𝐫))𝐄(𝐫)  

            +(𝜎(𝐫) − 𝜎𝑢(𝐫))𝐄(𝐫),                    (5) 

𝐌𝑎(𝐫) =  (
1

𝜇ℎ

−
1

𝜇𝑏(𝐫)
)𝐁(𝐫)             

                      + (
1

𝜇𝑏(𝐫)
−

1

𝜇𝑢(𝐫)
)𝐁(𝐫)             

                                 + (
1

𝜇𝑢(𝐫)
−

1

𝜇(𝐫)
)𝐁(𝐫).                  (6) 

Now notice that if we find solutions 𝐉𝑏(𝐫), 𝐉𝑐(𝐫), 

𝐉𝑓(𝐫), 𝐌𝑏(𝐫), 𝐌𝑐(𝐫), 𝐌𝑓(𝐫) to the coupled equations,   

𝐉𝑏(𝐫) = (𝜎𝑏(𝐫) − 𝜎ℎ)𝐄(𝐫),                    (7) 

𝐉𝑐(𝐫) = (𝜎𝑢(𝐫) − 𝜎𝑏(𝐫))𝐄(𝐫),                 (8) 

𝐉𝑓(𝐫) = (𝜎(𝐫) − 𝜎𝑢(𝐫))𝐄(𝐫),                 (9) 

𝐌𝑏(𝐫) = (
1

𝜇ℎ

−
1

𝜇𝑏(𝐫)
)𝐁(𝐫),                 (10) 

𝐌𝑐(𝐫) = (
1

𝜇𝑏(𝐫)
−

1

𝜇𝑢(𝐫)
)𝐁(𝐫),             (11) 

𝐌𝑓(𝐫) = (
1

𝜇𝑢(𝐫)
−

1

𝜇(𝐫)
)𝐁(𝐫),             (12) 

where 

𝐄(𝐫) =  𝐄(𝑖)(𝐫) + 𝐄(𝐫)[𝐽𝑏] + 𝐄(𝐫)[𝐽𝑐]              

                   + 𝐄(𝐫)[𝐽𝑓] + 𝐄(𝐫)[𝑀𝑏] + 𝐄(𝐫)[𝑀𝑐]           

+ 𝐄(𝐫)[𝑀𝑓],                                                (13) 

𝐁(𝐫) =  𝐁(𝑖)(𝐫) + 𝐁(𝐫)[𝐽𝑏] + 𝐁(𝐫)[𝐽𝑐]            

               + 𝐁(𝐫)[𝐽𝑓] + 𝐁(𝐫)[𝑀𝑏] + 𝐁(𝐫)[𝑀𝑐]      

+ 𝐁(𝐫)[𝑀𝑓],                                               (14) 

then the sums 𝐉𝑎(𝐫) = 𝐉𝑏(𝐫) + 𝐉𝑐(𝐫) + 𝐉𝑓(𝐫)  and 

𝐌𝑎(𝐫) = 𝐌𝑏(𝐫) + 𝐌c(𝐫) + 𝐌𝑓(𝐫) satisfy (1) and (2). 

Noting from (7-12) that 𝐉𝑏(𝐫) and  𝐌𝑏(𝐫) are zero 

outside the background, 𝐉𝑐(𝐫) and 𝐌c(𝐫) are zero 

outside the probe core, and  𝐉𝑓(𝐫)  and 𝐌𝑓(𝐫)  are zero 

outside the flaw, we identify these anomalous currents 

and magnetizations as those of the background, probe 

core and flaw, respectively. 

Since we will be solving for 𝐉𝑐(𝐫) and 𝐌𝑐(𝐫)  only 

within the space occupied by the probe core, and the flaw 

does not intrude into that space, we can replace 𝜎𝑢(𝐫) 

and 𝜇𝑢(𝐫) by 𝜎(𝐫) and 𝜇(𝐫) in (8) and (11), respectively. 

Similarly, since we will be solving for 𝐉𝑓(𝐫) and 𝐌𝑓(𝐫) 

only within the space occupied by the flaw, and the probe  
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does not intrude into that space, we can replace 

 𝜎𝑢(𝐫)  and  𝜇𝑢(𝐫)  by 𝜎𝑏(𝐫)  and 𝜇𝑏(𝐫) in (9) and (12), 

respectively. 

With these substitutions, and in preparation for 

discretization, we reorder (7-12) as well as their unknowns, 

and rewrite them in the form: 

𝐄(𝑖)(𝐫) =  
1

𝜎𝑏(𝐫) − 𝜎ℎ

𝐉𝑏(𝐫) −  𝐄(𝐫)[𝐽𝑏]   

         − 𝐄(𝐫)[𝑀𝑏] −  𝐄(𝐫)[𝐽𝑐]       

                               − 𝐄(𝐫)[𝑀𝑐] −  𝐄(𝐫)[𝐽𝑓]       

− 𝐄(𝐫)[𝑀𝑓],                                        (15) 

   𝐁(𝑖)(𝐫) = − 𝐁(𝐫)[𝐽𝑏] +
𝜇𝑏(𝐫)𝜇ℎ

𝜇𝑏(𝐫) − 𝜇ℎ

𝐌𝑏(𝐫)     

       − 𝐁(𝐫)[𝑀𝑏] −  𝐁(𝐫)[𝐽𝑐]     

          − 𝐁(𝐫)[𝑀𝑐] − 𝐁(𝐫)[𝐽𝑓]         

− 𝐁(𝐫)[𝑀𝑓],                                        (16) 

𝐄(𝑖)(𝐫) = − 𝐄(𝐫)[𝐽𝑏] − 𝐄(𝐫)[𝑀𝑏]                      

                   +
1

𝜎(𝐫) − 𝜎𝑏(𝐫)
𝐉𝑐(𝐫) − 𝐄(𝐫)[𝐽𝑐]      

  − 𝐄(𝐫)[𝑀𝑐] −  𝐄(𝐫)[𝐽𝑓]     

 − 𝐄(𝐫)[𝑀𝑓],                                          (17) 

𝐁(𝑖)(𝐫) = − 𝐁(𝐫)[𝐽𝑏] − 𝐁(𝐫)[𝑀𝑏]                         

                         − 𝐁(𝐫)[𝐽𝑐] +
𝜇(𝐫)𝜇𝑏(𝐫)

𝜇(𝐫) − 𝜇𝑏(𝐫)
𝐌𝑐(𝐫)            

                           − 𝐁(𝐫)[𝑀𝑐] −  𝐁(𝐫)[𝐽𝑓]     

− 𝐁(𝐫)[𝑀𝑓],                                           (18) 

𝐄(𝑖)(𝐫) = − 𝐄(𝐫)[𝐽𝑏] − 𝐄(𝐫)[𝑀𝑏]                              
  − 𝐄(𝐫)[𝐽𝑐] − 𝐄(𝐫)[𝑀𝑐]              

                   +
1

𝜎(𝐫) − 𝜎𝑏(𝐫)
𝐉𝑓(𝐫) − 𝐄(𝐫)[𝐽𝑓]             

− 𝐄(𝐫)[𝑀𝑓],                                              (19) 

𝐁(𝑖)(𝐫) = − 𝐁(𝐫)[𝐽𝑏] −  𝐁(𝐫)[𝑀𝑏]                              
 − 𝐁(𝐫)[𝐽𝑐] − 𝐁(𝐫)[𝑀𝑐]             

                     − 𝐁(𝐫)[𝐽𝑓] +
𝜇(𝐫)𝜇𝑏(𝐫)

𝜇(𝐫) − 𝜇𝑏(𝐫)
𝐌𝑓(𝐫)             

    − 𝐁(𝐫)[𝑀𝑓].                                              (20) 

Note that 𝜎𝑏(𝐫) = 𝜎ℎ  and  𝜇𝑏(𝐫) = 𝜇ℎ  in (17) and 

(18) for parts of the probe that lie outside the background, 

and in (19) and (20) for parts of the flaw that lie outside 

the background. 

We will discretize these equations using three grids: 

a core grid, a coarse ‘background’ grid, and a fine ‘flaw’ 

grid. First we expand 𝐉𝑏(𝐫) , 𝐉𝑐(𝐫)  and 𝐉𝑓(𝐫)  in tent 

functions, and 𝐌𝑏(𝐫) , 𝐌𝑐(𝐫) and 𝐌𝑓(𝐫)  in edge-

elements, defined on the background, core and flaw grids, 

respectively. Then we use these same functions to test 

our equations. We multiply the equations by these 

functions, which have compact support spanning one or 

two grid cells along each direction, and integrate over  

space. We test (15), (17), and (19) with the tent functions, 

and (16), (18), and (20) with the edge-elements, defined 

on the background, core and flaw grids respectively. This 

gives the discretized matrix equation: 

[
 
 
 
 
 
 
 
   𝐀𝑏𝑏

(𝑒𝑒)
    − 𝐆𝑏𝑏

(𝑒𝑚)
    − 𝐆𝑏𝑐

(𝑒𝑒)
     − 𝐆𝑏𝑐

(𝑒𝑚)

−𝐆𝑏𝑏
(𝑚𝑒)

        𝐀𝑏𝑏
(𝑚𝑚)

   − 𝐆𝑏𝑐
(𝑚𝑒)

   − 𝐆𝑏𝑐
(𝑚𝑚)

−𝐆𝑐𝑏
(𝑒𝑒)

   − 𝐆𝑐𝑏
(𝑒𝑚)

          𝐀𝑐𝑐
(𝑒𝑒)

    − 𝐆𝑐𝑐
(𝑒𝑚)

−𝐆𝑐𝑏
(𝑚𝑒)

   − 𝐆𝑐𝑏
(𝑚𝑚)

   − 𝐆𝑐𝑐
(𝑚𝑒)

       𝐀𝑐𝑐
(𝑚𝑚)

−𝐆𝑓𝑏
(𝑒𝑒)

    − 𝐆𝑓𝑏
(𝑒𝑚)

    − 𝐆𝑓𝑐
(𝑒𝑒)

    − 𝐆𝑓𝑐
(𝑒𝑚)

−𝐆𝑓𝑏
(𝑚𝑒)

   − 𝐆𝑓𝑏
(𝑚𝑚)

   − 𝐆𝑓𝑐
(𝑚𝑒)

   − 𝐆𝑓𝑐
(𝑚𝑚)

       

−𝐆𝑏𝑓
(𝑒𝑒)

   − 𝐆𝑏𝑓
(𝑒𝑚)

−𝐆𝑏𝑓
(𝑚𝑒)

   − 𝐆𝑏𝑓
(𝑚𝑚)

−𝐆𝑐𝑓
(𝑒𝑒)

   − 𝐆𝑐𝑓
(𝑒𝑚)

−𝐆𝑐𝑓
(𝑚𝑒)

   − 𝐆𝑐𝑓
(𝑚𝑚)

 𝐀𝑓𝑓
(𝑒𝑒)

   − 𝐆𝑓𝑓
(𝑒𝑚)

−𝐆𝑓𝑓
(𝑚𝑒)

     𝐀𝑓𝑓
(𝑚𝑚)

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
𝐉𝑏
𝐌𝑏

𝐉𝑐
𝐌𝑐

𝐉𝑓
𝐌𝑓]

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 𝐄𝑏

(𝑖)

𝐁𝑏
(𝑖)

𝐄𝑐
(𝑖)

𝐁𝑐
(𝑖)

𝐄𝑓
(𝑖)

𝐁𝑓
(𝑖)

]
 
 
 
 
 
 
 
 

,                (21) 

which we solve for the vectors 𝐉𝑏 , 𝐉𝑐  and  𝐉𝑓  of 

expansion coefficients for the anomalous currents, and 

the vectors 𝐌𝑏 , 𝐌𝑐  and 𝐌𝑓  of expansion coefficients for 

the anomalous magnetizations, of the background, probe 

core and flaw respectively. Here, 𝐀 = 𝐐 − 𝐆 , where the 

matrix 𝐐  contains the dependence on the anomalous 

electromagnetic material properties of the probe core, 

background and flaw.  

 

III. THE PROBE-IN-BACKGROUND 

PROBLEM 
Now we consider the simple case in which: 1) The 

permeability of the background, flaw and host are the 

same, and 2) The probe lies within the background and 

has the same conductivity as the background. From  

(10) and (12) we see that the first condition implies  

𝐌𝑏 = 𝐌𝑓 = 0 , and from (8) the second condition 

implies that 𝐉𝑐 = 0 . Then the field equations (15-20) 

reduce to the three equations, 

        𝐄(𝑖)(𝐫) =    
1

𝜎𝑏(𝐫) − 𝜎ℎ

𝐉𝑏(𝐫) −  𝐄(𝐫)[𝐽𝑏] 

   − 𝐄(𝐫)[𝑀𝑐] −  𝐄(𝐫)[𝐽𝑓],                       (22) 

       𝐁(𝑖)(𝐫) =   − 𝐁(𝐫)[𝐽𝑏] +
𝜇(𝐫)𝜇ℎ

𝜇(𝐫) − 𝜇ℎ

𝐌𝑐(𝐫) 

   −𝐁(𝐫)[𝑀𝑐] − 𝐁(𝐫)[𝐽𝑓],                      (23) 

       𝐄(𝑖)(𝐫) =   −𝐄(𝐫)[𝐽𝑏] − 𝐄(𝐫)[𝑀𝑐] 

+
1

𝜎(𝐫) − 𝜎𝑏(𝐫)
𝐉𝑓(𝐫) − 𝐄(𝐫)[𝐽𝑓],        (24) 

and the discretized matrix equation reduces to: 
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[
 
 
 [𝐐𝑏𝑏

(𝑒𝑒)
− 𝐆𝑏𝑏

(𝑒𝑒)
]              − 𝐆𝑏𝑐

(𝑒𝑚)
                

−𝐆𝑐𝑏
(𝑚𝑒)

              [𝐐𝑐𝑐
(𝑚𝑚)

− 𝐆𝑐𝑐
(𝑚𝑚)

]

−𝐆𝑓𝑏
(𝑒𝑒)

                     − 𝐆𝑓𝑐
(𝑒𝑚)

 

−𝐆𝑏𝑓
(𝑒𝑒)

−𝐆𝑐𝑓
(𝑚𝑒)

[𝐐𝑓𝑓
(𝑒𝑒)

− 𝐆𝑓𝑓
(𝑒𝑒)

]]
 
 
 
 

[

𝐉𝑏
𝐌𝑐

𝐉𝑓

] =

[
 
 
 𝐄𝑏

(𝑖)

𝐁𝑐
(𝑖)

𝐄𝑓
(𝑖)

]
 
 
 
.                  (25) 

We recast this matrix equation in the form of the three 

coupled equation: 

  [𝐐𝑐𝑐
(𝑚𝑚)

− 𝐆𝑐𝑐
(𝑚𝑚)

]𝐌𝑐 =  𝐁𝑐
(𝑖) + 𝐆𝑐𝑏

(𝑚𝑒)
𝐉𝑏          

+𝐆𝑐𝑓
(𝑚𝑒)

𝐉𝑓 ,                     (26) 

      [𝐐𝑏𝑏
(𝑒𝑒)

− 𝐆𝑏𝑏
(𝑒𝑒)

]𝐉𝑏 =   𝐄𝑏
(𝑖) + 𝐆𝑏𝑐

(𝑒𝑚)
𝐌𝑐                

+𝐆𝑏𝑓
(𝑒𝑒)

𝐉𝑓 ,                           (27) 

   [𝐐𝑓𝑓
(𝑒𝑒)

− 𝐆𝑓𝑓
(𝑒𝑒)

]𝐉𝑓 =   𝐄𝑓
(𝑖) + 𝐆𝑓𝑏

(𝑒𝑒)
𝐉𝑏             

+𝐆𝑓𝑐
(𝑒𝑚)

𝐌𝑐 .                       (28) 

If the grids for the probe core, background and flaw are 

evenly spaced along the x, y, and z directions, then the 𝐆 

matrices that appear on the left-hand side of these 

equations have a Toeplitz/Hankel structure. This, along 

with the sparse nature of the 𝐐  matrices, allows the 

matrix multiplications on the left-hand side of the 

equations to be performed quickly. Therefore, for a given 

value of the right-hand side, the equations can be solved 

efficiently using a conjugate-gradient matrix equation 

solver. The 𝐆  matrices on the right-hand side of the 

equations lack this structure, so evaluation of the right-

hand side is much more computationally expensive. 

We start with initial values of zero for 𝐌𝑐, 𝐉𝑏, and 

𝐉𝑓 and cycle through the equations, updating the right-

hand sides and solving for updated unknowns until 

changes in the magnetizations and currents are 

insignificant. 

For small flaws, 𝐉𝑓 will have little effect on 𝐌𝑐 and 

𝐉𝑏. In this case, we can set 𝐉𝑓 = 0 in (26) and (27), and 

cycle through these equations to solve for 𝐌𝑐  and 𝐉𝑏 , 

which amounts to solving the unflawed problem. Then, 

we insert these values into (28) and solve for 𝐉𝑓 . 

Experimental evidence supports this ‘small flaw’ 

approximation for flaws typical in nondestructive 

evaluation. 

 

IV. BOLT-HOLE INSPECTION WITH THE 

SPLITD PROBE 
We now consider the problem of inspecting a bolt 

hole in a plate or other layered planar medium with the 

‘SplitD’ probe that is depicted in Fig. 2. 

The probe is pulled along the direction of the bolt 

hole axis while it is spinning in the circumferential 

direction, thereby generating a two-dimensional raster 

scan. This is an important problem in the aircraft industry, 

and led to the development of this probe. The probe 

comprises a racetrack driver coil in combination with a 

pickup coil wound in a differential configuration around 

a ‘SplitD’ ferrite core. See pages 81-91 of [1] for a 

description of such a probe, with examples of its use in 

characterizing surface cracks within bolt holes in a 

benchmark test case. 

 

 
 
Fig. 2. Illustrating the SplitD probe within the bolt hole. 

The probe is spun about the axis of the bolt hole (out of 

page). 

 

We compute the change in the pickup impedance 

due to the flaw. The corresponding circuit diagram is 

shown in Fig. 3. The ferrite core has the effect of 

increasing the inductances, 𝐿𝑑 and 𝐿𝑝, of the driver and 

pickup coils. We model this effect with additional coil 

turns represented in the figure by 𝐿𝜇 and 𝐿𝜇, respectively. 

Setting the sum of the voltage drops around each of the 

circuits for driver coil with core, pickup coil with core, 

background and flaw to zero gives: 

𝑉1(𝛼) =   (𝑍𝑑𝑑 + 𝑍𝑑𝜇 + 𝑍𝜇𝑑 + 𝑍𝜇𝜇)𝐼1                       

        + (𝑍𝑑𝑝 + 𝑍𝑑𝜇′ + 𝑍𝜇𝑝 + 𝑍𝜇𝜇′)𝐼2(𝛼)      

+ (𝑍𝑑3 + 𝑍𝜇3)𝐼3(𝛼)                          

+ 𝛼(𝑍𝑑4 + 𝑍𝜇4)𝐼4,                                       (29) 

𝑉2(𝛼) =   (𝑍𝑝𝑑 + 𝑍𝑝𝜇 + 𝑍𝜇′𝑑 + 𝑍𝜇′𝜇)𝐼1                       

            + (𝑍𝑝𝑝 + 𝑍𝑝𝜇′ + 𝑍𝜇′𝑝 + 𝑍𝜇′𝜇′)𝐼2(𝛼)         

+ (𝑍𝑝3 + 𝑍𝜇′3)𝐼3(𝛼)                          

+ 𝛼(𝑍𝑝4 + 𝑍𝜇′4)𝐼4,                                      (30) 

        0 =   (𝑍3𝑑 + 𝑍3𝜇)𝐼1 + (𝑍3𝑝 + 𝑍3𝜇′)𝐼2(𝛼)              

  + 𝑍33𝐼3(𝛼) + 𝛼𝑍34𝐼4,                                   (31) 

        0 =   (𝑍4𝑑 + 𝑍4𝜇)𝐼1 + (𝑍4𝑝 + 𝑍4𝜇′)𝐼2(1)             

+ 𝑍43𝐼3(1) + 𝑍44𝐼4.                                      (32) 

The equations are parameterized by 𝛼, which has a value 

of unity for the problem we are solving, which includes 

a flaw, and a value of zero for the corresponding 

unflawed problem. Since the flaw current, 𝐼4 , is zero 

when 𝛼 = 0, we write it as 𝛼𝐼4. 
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Fig. 3. Equivalent circuit diagram for the probe-in-

background problem with the SplitD probe. 𝐿𝑑  and 𝐿𝑝 

are the inductances of the driver and pickup coils. 𝐿𝜇 and 

𝐿𝜇, model the increased inductance due to the ferrite core. 

 

The current 𝐼2 in the pickup coil will be very small 

(theoretically zero), so we will ignore the terms in (29-

32) that involve  𝐼2. And we will combine 𝐿𝑑 and 𝐿𝜇 into 

a single inductance, 𝐿1 , and 𝐿𝑝  and 𝐿𝜇 , into a single 

inductance, 𝐿2. The circuit equations then become: 

𝑉1(𝛼) = 𝑍11𝐼1 + 𝑍13𝐼3(𝛼) + 𝛼𝑍14𝐼4,           (33) 

𝑉2(𝛼) = 𝑍21𝐼1 + 𝑍23𝐼3(𝛼) + 𝛼𝑍24𝐼4,           (34) 

0 = 𝑍31𝐼1 + 𝑍33𝐼3(𝛼) + 𝛼𝑍34𝐼4,               (35) 

  0 = 𝑍41𝐼1 + 𝑍43𝐼3(1) + 𝑍44𝐼4,                 (36) 
where 

                   𝑍11 = 𝑍𝑑𝑑 + 𝑍𝑑𝜇 + 𝑍𝜇𝑑 + 𝑍𝜇𝜇      

                   𝑍21 = 𝑍𝑝𝑑 + 𝑍𝑝𝜇 + 𝑍𝜇′𝑑 + 𝑍𝜇′𝜇  

𝑍1𝑗 = 𝑍𝑑𝑗 + 𝑍𝜇𝑗                                            (37) 

𝑍𝑖1 = 𝑍𝑖𝑑 + 𝑍𝑖𝜇                                    

𝑍2𝑗 = 𝑍𝑝𝑗 + 𝑍𝜇′𝑗.                                

Solving (35) for 𝐼3 when 𝛼 = 0 (no flaw) gives: 

𝐼3(0) = −
𝑍31

𝑍33

𝐼1,                             (38) 

and solving (35) and (36) for 𝛼 = 1 (with flaw) gives 

𝐼3(1) = −
|
𝑍31    𝑍34

𝑍41    𝑍44
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
𝐼1,                       (39) 

 𝐼4 = −
|
𝑍33    𝑍31

𝑍43    𝑍41
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
𝐼1.                          (40) 

Equations (38-40) give the distributed currents for the 

background and flaw in terms of the driver current 𝐼1. 

Putting these into (34) gives the pickup voltage without 

and with the flaw: 

𝑉2(0) = (𝑍21 − 𝑍23

𝑍31

𝑍33

) 𝐼1,                    (41) 

𝑉2(1) = (𝑍21 − 𝑍23

|
𝑍31    𝑍34

𝑍41    𝑍44
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
                   

−𝑍24

|
𝑍33    𝑍31

𝑍43    𝑍44
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
) 𝐼1 .              (42) 

The change in the transfer impedance due to the flaw is 

thus, 

𝑑𝑍21 =
𝑉2(1)

𝐼1
−

𝑉2(0) 

𝐼1
                                      

= −(𝑍23

|
𝑍31    𝑍34

𝑍41    𝑍44
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
                    

+𝑍24

|
𝑍33    𝑍31

𝑍43    𝑍44
|

|
𝑍33    𝑍34

𝑍43    𝑍44
|
− 𝑍23

𝑍31

𝑍33

).        (43) 

We now re-solve the equations in a form more 

useful for the calculation of 𝑑𝑍21 . From (35) the 

background current is: 

𝐼3(𝛼) = −(
𝑍31

𝑍33

𝐼1 + 𝛼
𝑍34

𝑍33

𝐼4),               (44) 

and putting this result into (34) we get: 

𝑉2(𝛼) =  𝑍21𝐼1 −
𝑍23

𝑍33

(𝑍31𝐼1 + 𝛼𝑍34𝐼4) + 𝛼𝑍24𝐼4   

= (𝑍21 −
𝑍23𝑍31

𝑍33

) 𝐼1                              

+𝛼 (𝑍24 −
𝑍23𝑍34

𝑍33

) 𝐼4.                                (45) 

The first terms in the two parentheses represent the direct 

coupling of the pickup to the driver and the flaw. The 

second terms represent the coupling, through the 

background, of the pickup to the driver and the flaw. The 

background produces a field that opposes that due to the 

direct coupling, thus reducing the impedance. 

To find the voltage produced at the flaw by a current 

flowing through the pickup coil, we need to add the 

terms from 𝐼2 to (35) and (36), which we rewrite as: 

0 = 𝑍31𝐼1 + 𝑍32𝐼2(1) + 𝑍33𝐼3(1) + 𝑍34𝐼4,        (46) 

0 = 𝑍41𝐼1 + 𝑍42𝐼2(1) + 𝑍43𝐼3(1) + 𝑍44𝐼4.        (47) 

Solving (46) for 𝐼3 gives: 

𝐼3(1) = −
1

𝑍33

(𝑍31𝐼1 + 𝑍32𝐼2(1) + 𝑍34𝐼4),        (48) 

and putting this into (47) gives: 

    0 =  (𝑍41 −
𝑍43𝑍31

𝑍33

) 𝐼1 + (𝑍42 −
𝑍43𝑍32

𝑍33

) 𝐼2          

+(𝑍44 −
𝑍43𝑍34

𝑍33

) 𝐼4.                                        (49) 

The second term of (49) gives the voltage across the flaw 

due to the pickup current, and includes the coupling 

through the background as well as the direct coupling. 
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Now we evaluate the voltage across the pickup coil 

due to the flaw in terms of field quantities, for the 

purpose of computation. From (45) we have: 

𝑉2(1) − 𝑉2(0) = (𝑍24 −
𝑍23𝑍34

𝑍33

) 𝐼4.            (50) 

This is equal to the line integral around the pickup coil, 

𝑑𝑉2 = −∫ 𝐄(4)(𝐫) ∙ 𝐝𝐥,                       (51)
𝑐𝑜𝑖l

 

where 𝐄(4)(𝐫) is the field produced at the pickup coil by 

the flaw current 𝐼4. We rewrite this as: 

𝑑𝑉2 =
−∫ 𝐄(4)(𝐫) ∙ 𝐼2(1)𝐝𝐥

𝑐𝑜𝑖𝑙

𝐼2(1)
          

=
−∫ 𝐄(4)(𝐫) ∙ 𝐉(2)(𝐫)𝑑𝑉

𝑐𝑜𝑖𝑙

𝐼2(1)
,             (52) 

where the volume integral in the last expression is the 

integral over the coil volume of the dot product of the 

field, 𝐄(4)(𝐫), at the pickup coil due to the flaw with the 

current density,  𝐉(2)(𝐫), of the pickup current. 

Now by the reciprocity theorem we have the 

symmetry: 

∫ 𝐄(4)(𝐫) ∙ 𝐉(2)(𝐫)𝑑𝑉
𝑐𝑜𝑖𝑙

    

= ∫ 𝐄(2)(𝐫) ∙ 𝐉(4)(𝐫)𝑑𝑉,
𝑓𝑙𝑎𝑤

                   (53) 

where the right hand side of (53) is the integral over the 

flaw of the dot product of the field, 𝐄(2)(𝐫), at the flaw 

due to the pickup current with the current density, 𝐉(4)(𝐫), 

of the flaw current. This symmetry is reflected in the 

coefficients of 𝐼4  and 𝐼2  in (45) and (49) respectively, 

which are equal as are the 𝑍𝑖𝑗 under the interchange of 𝑖 

and 𝑗. 
With this equality we can now write the change in 

the transfer impedance due to the flaw as: 

𝑑𝑍21 =
𝑑𝑉2

𝐼1
                                                  

=
−∫ 𝐄(2)(𝐫) ∙ 𝐉(4)(𝐫)𝑑𝑉

𝑓𝑙𝑎𝑤

𝐼2(1)𝐼1
.            (54) 

The current 𝐉(4)(𝐫) is the flaw current due to the driver 

current, and is therefore proportional to 𝐼1 . The field 

𝐄(2)(𝐫)is the field at the flaw due to the pickup current, 

and is therefore proportional to 𝐼2(1). From the second 

term of (49), it’s clear that 𝐄(2)(𝐫) includes the field at 

the flaw generated by the action of the pickup current on 

the background. And from (37) it’s clear that it’s 

computation includes the contributions of the ferrite core 

as well. 

Thus, we can write the change in impedance due to 

the flaw as: 

𝑑𝑍21 = − ∫ 𝐄(2)(𝐫) ∙ 𝐉(4)(𝐫)𝑑𝑉
𝑓𝑙𝑎𝑤

            

                = ∑ 𝐸𝐾𝐿𝑀
(𝑥)

𝐽𝐾𝐿𝑀
(𝑥)

+ 𝐸𝐾𝐿𝑀
(𝑦)

𝐽𝐾𝐿𝑀
(𝑦)

𝐾𝐿𝑀   

+𝐸𝐾𝐿𝑀
(𝑧)

𝐽𝐾𝐿𝑀
(𝑧)

,                                            (55) 

where in the last expression the sum is over the 𝑥, 𝑦, and 

𝑧 indices, 𝐾, 𝐿, and 𝑀 of the flaw grid, 𝐽 is the solution 

𝐉𝑓 obtained in solving (28) for a driver coil current of 

unity, and 𝐸  is given by the right-hand side of that 

equation, where 𝐌𝑐 and 𝐉𝑏 are the solutions obtained in 

solving (26) and (27) for a pickup coil current of unity. 

 

V. COMMENTS AND CONCLUSIONS 
We have developed a model for computing solutions 

to multiscale problems based on coupled integral 

equations, and have reduced the equations to matrix form 

using the usual techniques of the method of moments. 

We have shown, further, that the development of the 

model equations and the interpretation of the model 

results is facilitated by the use of classical electrical 

equivalent circuits. This is one of the advantages in 

choosing electrical impedance to be the observable in the 

solution of the field equations. 

The algorithm developed in this paper is being 

coded into the commercial product, 𝐕𝐈𝐂­𝟑𝐃®. In future 

papers, we will describe its application to a number of 

problems in aircraft inspection, as well as discuss our 

success with such coding concerns as parallelization and 

the use of GPU hardware. 
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