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Abstract ─ The 60 GHz band is capable of providing 

high speed communication. In this paper a substrate 

integrated waveguide (SIW) fed high gain antipodal 

linear tapered slot antenna (ALTSA) is presented. In 

order obtain high gain the dielectric loading is applied to 

the ALTSA in addition to the corrugation structure. 

Using SIW technology, a highly efficient, compact and 

low cost planar design is realized. An electromagnetic 

field simulation tool is used for design and simulation of 

the antenna. SIW power divider is used for designing 1x4 

ALTSA array. To validate the proposed design, prototype 

is fabricated and measured. The simulated results agree 

well with the measured values which validates the 

proposed design. The measured return loss of 1x4 

ALTSA array is better than 12 dB over the entire 60 GHz 

band (57 GHz - 64 GHz). The measured gain of 1x4 

ALTSA array is 23.1 ± 0.5 dBi over the 60 GHz band. 

 

Index Terms ─ ALTSA, dielectric loading, high gain, 

millimeter wave, SIW, 60 GHz. 
 

I. INTRODUCTION 
In recent years the demand of large bandwidth for 

high speed communication is growing at a faster pace. 

The 60 GHz band (57 GHz - 64 GHz) is capable of 

providing high speed wireless communication permitting 

transfer of high volumes of uncompressed data at the 

speed of multi-gigabit per second [1-2]. The losses 

associated with the microstrip circuit are quite high in  

the millimeter wave frequency band. Therefore, more 

efficient technology like the substrate integrated 

waveguide (SIW) is needed. SIW has the positive traits 

of the traditional rectangular waveguide such as low loss, 

high quality factor, complete shielding and capability of 

handling high power along with the advantage of low 

cost and planar circuit design [3-4]. Numerous research 

works involving SIW have been reported for many years 

[3-6]. The 60 GHz band suffers from attenuation due to 

atmospheric absorption. This requires the use of high 

gain antennas to overcome the losses. Tapered slot 

antennas (TSA) are popular for their wide bandwidth, 

good return loss and high gain. Antipodal linear tapered 

slot antenna (ALTSA) is a type of TSA which uses 

antipodal geometry in its design where the top and 

bottom metallized parts on a substrate are tapered in 

opposite direction. Researchers have designed antipodal 

Vivaldi antenna with wide bandwidth ranging from  

4-50 GHz in [7]. The antenna gain varies from 3-12 dBi 

over the bandwidth. In [8], a high gain antipodal Fermi 

tapered slot antenna with gain of 18.75 dBi at 60 GHz 

has been proposed. In [9], Hao et al. introduced a novel 

technique for feeding ALTSA with SIW where the top 

and bottom tapered edges are overlapped to overcome 

the impedance mismatch between the ALTSA and SIW 

feed. TSA with corrugation structure have been used for 

reducing the width of the antenna while minimizing any 

significant degradation in radiation pattern [10-11].  

This helps in making the antenna array of compact  

size. Further, corrugation is also known for increasing 

antenna gain, reducing side lobe level and reducing cross 

polarization, thus improving the overall performance of 

antenna. In [11], Djerafi et al. have developed rectangular 

corrugated ALTSA array with quasi triangular power 

divider. The gain of the 1x12 array is 19.25 dBi. In [12], 

Shrivastava et al. have presented corrugated ALTSA  

for 60 GHz band. In [13], Dae-Myoung et al. have 

developed ALTSA with half circular slots as corrugation 

structure. The gain at 7 GHz is 12.4 dBi. Dielectric 

loading also helps in enhancement of antenna gain. By 

placing the dielectric slab in front of the antenna its gain 

can be increased. The dielectric slab in this case acts as 

a guiding structure [14] and enhances the gain of the 

antenna [15]. In [16], dielectric loading is applied to a 

planar SIW horn antenna to narrow down the E-plane 

beamwidth and increase the gain. In [14] Ghassemi et al. 

have developed a high gain ALTSA array with SIW horn 

structure and rectangular dielectric loading for E and W 

band. The gain of 1x4 ALTSA array is 19±1 dBi.  

In this paper, ALTSAs having rectangle with semi-

circular top shaped dielectric loading structures are used 

to obtain a high gain antenna array in the 60 GHz band. 

The antenna array is designed and simulated in Ansys 

HFSS software. It is fabricated on Rogers RT/Duroid 

5880 substrate which has dielectric constant of 2.2 and  
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thickness of 0.254 mm.  
 

II. ANTENNA DESIGN 

A. Design of SIW 

SIW structure is shown in Fig. 1. In SIW there are 

two rows of metallic vias embedded in the dielectric 

substrate which act as waveguide by connecting the two 

parallel metal plates on the top and bottom. The two rows 

of vias act as the walls of the rectangular waveguide 

along with the top and bottom metal plates. Nevertheless, 

though SIW has electrical similarities to rectangular 

waveguide and provides advantages similar to the 

rectangular waveguide, it is also prone to leakage 

problem if the design rules are not followed properly. 

Some design rules and equations have been formulated 

by researchers in the past for proper design of SIW. The 

via diameter and the space between the vias should be 

selected as per Equations (1) and (2) respectively [17]: 

 𝐷𝑣𝑖𝑎 <
𝜆𝑔

5
, (1) 

 𝑆 ≤ 2𝐷𝑣𝑖𝑎, (2) 

where 𝜆𝑔 is the guided wavelength, 𝐷𝑣𝑖𝑎 is the diameter 

of the via and 𝑆 is the space between the vias. The 

effective width of the waveguide is given by Equation 

(3) [18]: 

 𝑊𝑒𝑓𝑓 = 𝑊𝑠𝑖𝑤 − 1.08
𝐷𝑣𝑖𝑎

2

𝑆
+ 0.1

𝐷𝑣𝑖𝑎
2

𝑊𝑠𝑖𝑤
 , (3) 

where  𝑊𝑒𝑓𝑓 is the effective width, 𝑊𝑠𝑖𝑤 is the width of 

the SIW which is 2.69 mm, 𝐷𝑣𝑖𝑎  is the diameter of the 

via which is 0.4 mm and 𝑆 is the space between the vias 

which is 0.7 mm. The cut off frequency for the SIW in 

TE mode is given by Equation (4): 

 𝑓𝑐,𝑚𝑛 =
𝑐

2√𝜀𝑟

√(
𝑚

𝑎
)

2

+ (
𝑛

𝑏
)

2

, (4) 

where  𝑓𝑐 is the cutoff frequency, 𝑚 and 𝑛 are the mode 

numbers, 𝜀𝑟 is the dielectric constant, 𝑎 is the width of 

the waveguide and 𝑏 is the height. For a given waveguide 

the dominant mode is the mode having lowest cut-off 

frequency. In rectangular waveguide TE10 is the 

fundamental mode and same is also true for SIW. Figure 

2 shows the E-field distribution in the SIW.  
 

 
 

Fig. 1. SIW structure. 
 

 
 

Fig. 2. E-field distribution in SIW. 

B. Dielectric loaded ALTSA array 

An ALTSA is a type of TSA. Yngvesson et al. have 

reported that the performance of TSA is sensitive to the 

thickness 𝑡 and the dielectric constant 𝜀𝑟 in [19]. Hence, 

a factor 𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  for efficient performance of TSA has 

been defined as: 

 𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 =
𝑡(√𝜀𝑟−1)

𝜆0
. (5) 

For good performance of tapered slot antenna the 

substrate thickness should satisfy Equation (6). Here, 

with substrate thickness of 0.254 mm  𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 is 0.024, 

which satisfies Equation (6): 

 0.005 ≤  𝑓𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒  ≤  0.03. (6) 

The authors have presented a dielectric loaded 

ALTSA in [20]. Four such ALTSAs are placed adjacent 

to each other to form 1x4 ALTSA array. Figure 3 shows 

the 1x4 array configuration. The dimension of the antenna 

array is listed in Table 1. The inter-element spacing for 

the ALTSA array is 11.25 mm.  
 

 
 

Fig. 3. ALTSA array configuration. 

 

Table 1: Dimension of ALTSA array 

Parameter Value (Unit: mm) 

L1 12 

L2 21.38 

L3 25 

L4 15 

L5 0.4 

W1 10 

W2 0.2 

W3 0.2 

r 5 

 

SIW power divider is used for the design of 1x4 

ALTSA array. The SIW power divider feeds each of the 

four ALTSA with power of same amplitude and phase. 

Figure 4 shows the design of SIW power divider with E-
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field distribution. Proper placements of the inductive 

posts are essential for proper division of the power. In 

Fig. 4, Da = 0.3, Db = 0.3, Dc = 0.6, Dd = 0.4, La = 0.95, 

Lb = 0.15, Lc = 0.2, Ld = 0.32, Le = 0.25, Lf = 21.38, 

Wr = 19.81 and Ws = 8.56. Figure 5 shows the simulated 

S-parameters of the SIW power divider. From Fig. 5,  

it is observed that S11 is below -10 dB from 57 GHz  

to 64 GHz. Also, S21, S31, S41 and S51 have similar 

magnitudes over the 60 GHz band. The simulated phase 

at the output of the SIW power divider is shown in Fig. 

6. From Fig. 6, it is seen that the phases of S21, S31, S41 

and S51 are similar. 

 

 
 

Fig. 4. SIW power divider schematic and E-field 

distribution 

 

 
 

Fig. 5. Simulated S-parameters of SIW power divider. 

 

 
 

Fig. 6. Simulated phase at output of SIW power divider. 

 

Figure 7 shows the simulated radiation patterns at 

58, 60, 62 and 64 GHz. It is seen that the side lobe levels 

for both E-plane and H-plane are below -12 dB. Further, 

the cross polarization levels are also below -18 dB. Front 

to back ratio is a useful parameter used in describing the 

performance of directive antennas. In highly directive 

antennas, it is desirable to focus all radiated energy in the 

front direction and keep the energy radiated in unwanted 

direction (i.e., back side) to the minimum. In Fig. 8,  

the simulated front to back ratio of the antenna array 

shown. The front to back ratio is observed to be between  

28-34 dB in the 60 GHz band. 

 

 
 

Fig. 7. Simulated radiation patterns. 
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Fig. 8. Simulated front to back ratio. 

 

III. MEASUREMENT 
Figure 9 shows the fabricated antenna array. The 

dimension of the ALTSA array is 78.38 mm x 43.75 mm 

x 0.254 mm. Figure 10 shows the simulated and measured 

return loss and gain of the proposed 1x4 ALTSA array. 

The S11 parameters and gain of the antenna array are 

measured utilizing MVNA 8-350 with probe station. The 

measurement of radiation pattern is performed in far 

field anechoic chamber. From Fig. 10, it is observed that 

the simulated and measured return losses are better than 

12 dB over the 60 GHz band. At 60 GHz the measured 

return loss is better than 24 dB. It is observed that there 

is good agreement between the measured and simulated 

results. Some slight differences between the simulated 

and measured results can be attributed to fabrication and 

calibration related tolerances. Further it is seen that the 

gain is almost flat over the 60 GHz band. Similarly, from 

Fig. 10 the simulated gain is observed to be 23 ± 0.4 dBi 

and the measured gain is seen to be 23.1 ± 0.5 dBi over 

the 60 GHz band.  

 

 
 

Fig. 9. Fabricated 1x4 ALTSA array.  

 

 
 

Fig. 10. Measured gain and return loss of ALTSA array. 

 

Further, simulated and measured E-plane radiation 

pattern is shown in Fig. 11. The simulated E-plane 

beamwidth is seen to be 7° and the measured E-plane 

beamwidth is observed to be 8°. The measured and 

simulated side lobe levels in E-plane are at -15 dB. 

Similarly, from Fig. 12 the simulated H-plane beamwidth 

is observed to be 25° and the measured H-plane 

beamwidth is observed to be 27°. The simulated and 

measured side lobe levels in H-plane are at -14 dB. 

However, overall it is observed that there is a good 

agreement between the simulated and measured results.  

 

 
 

Fig. 11. Measured E-plane radiation pattern of ALTSA 

array at 60 GHz. 
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Fig. 12. Measured H-plane radiation pattern of ALTSA 

array at 60 GHz. 
 

The comparison of other antenna arrays with this 

work is listed in Table 2. Numerous antenna arrays have 

been reported over the years for applications related  

to millimeter wave band. The general trend has been 

moving towards low cost, light weight and high gain 

antenna arrays. ALTSA with SIW feed can cater to those 

requirements. SIW fed ALTSA are known for high gain 

and wide bandwidth.  

 

Table 2: Comparison with other antennas 

Parameters [21] [14] This Work 

Antenna 

type 

L-probe 

patch 
ALTSA ALTSA 

Impedance 

bandwidth 
29% 41% 11.6% 

Operating 

frequency 
60 GHz 80 GHz 60 GHz 

No. of 

elements 
16 4 4 

Peak gain 

(dBi) 
17.5 20 23.6 

 

From the above table, it is observed that in [14] the 

peak gain of 20 dBi has been achieved with 4 ALTSA 

elements. Similarly, in [21] peak gain of 17.5 dBi has 

been reported but the number of elements used in the 

array is 16. In this work, peak gain of 23.6 dBi is 

achieved with four ALTSA elements. Though the 

impedance bandwidth of the antenna in this work is 

smaller than other antennas in the table, it should be 

noted that 11.6% covers 57-64 GHz and it is enough for 

multi-Gbps speed communication in 60 GHz band. 
 

IV. CONCLUSION 
In this paper, a high gain corrugated ALTSA array 

with dielectric loading for wireless communication 

application in the 60 GHz band is presented. The 

proposed design is validated with measurement of the 

fabricated prototype. Good agreement is seen between 

the simulated and measured results. The proposed 

antenna design has good return loss and high gain over 

the 60 GHz band. Overall, the proposed 1x4 ALTSA 

array has large bandwidth, high gain, compact size, light 

weight and is easy to fabricate using the low cost PCB 

technology. The single layer SIW design also suits mass 

fabrication. Hence, it is a suitable candidate for high 

speed communication in 60 GHz band. 
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