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Abstract ─ In this paper, the numerical method of non-

polynomial spline approximation is used to solve 2nd 

order Neumann type boundary value problems (bvp’s)  

in electrostatics. This new approach provides more 

accurate results than the polynomial approximations and 

the spectral methods. The literature contains very little 

on the solution of Neumann type bvp’s because of the 

fact that a unique solution does not exist for all problems. 

In electrostatics, Neumann type bvp’s are encountered 

for finding the electrostatic potential inside closed 

surfaces where the normal derivative of the electric 

potential is specified everywhere on the surface. Two 

examples are presented to prove the accuracy of the 

proposed method. In these examples, the governing 

differential equation is solved to find the electrostatic 

potential inside a region bounded by conductors that  

are maintained at constant voltages. The results are 

compared with the analytic solutions. 

 

Index Terms ─ Boundary value problems, electrostatics, 

Neumann boundary conditions, numerical methods. 
 

I. INTRODUCTION 
Many problems in engineering require the solution 

of differential equations. If the initial conditions for the 

solution of the equation are given at the boundaries, these 

problems are called the “boundary value problems” or 

shortly the “bvp’s”. In electrostatics, there are two types 

of bvp's that govern the majority of problems. They are 

known as the “Poisson’s equation” and the “Laplace 

equation”. Both are 2nd order linear differential 

equations having the electric potential as the unknown 

variable that is a function of space coordinates. If the 

derivatives of the electric potential at the boundaries are 

specified, then these problems are named as “Neumann 

type bvp’s” [1]. 

Numerical methods are used to solve bvp’s, 

especially when analytical solutions in closed form are 

difficult to obtain. The finite difference method (FDM) 

and the finite element method (FEM) are the most 

frequently used numerical methods to solve electrostatic 

problems containing partial or ordinary differential 

equations [2,3]. These methods are based on discretization 

of the solution domain and transforming the differential 

equation into a system of linear equations. They are 

applicable to problems with non-homogenous media 

easily. However, one of their disadvantages is that for 

Neumann type bvp’s, the computation matrix of the 

linear system of equations, also called the “stiffness 

matrix”, is singular, and therefore a solution does not 

exist [4,5]. 

In this paper, a new numerical method, called the 

“Non-polynomial Spline Approximation” is introduced 

to solve 2nd order electrostatic bvp’'s having Neumann 

type boundary conditions. In this method, the solution 

domain is sampled by n points, and for each sample, the 

unknown function is approximated by a non-polynomial 

(trigonometric) function. The approximated solution is 

replaced into the differential equation, and the resulting 

linear equation system is solved for the unknown 

function of the problem. The proposed method has the 

advantage of producing an approximate solution for 

Neumann type bvp’s. In literature, there are many 

applications of FDM and FEM in electromagnetics 

specifically for Dirichlet or mixed type bvp’s. For 

example, in [6], several FEM based numerical techniques 

are compared to existing methods in terms of their 

accuracy for solving boundary value problems in 

electromagnetics. In [7], the boundary element method 

(BEM) is used for solving the electromagnetic problems. 

In [8], the FEM is used for the solution of 

electromagnetic problems involving anisotropic media. 

In [9], FDM is analyzed as the numerical technique for 

non-stationary electromagnetic problems. Up to the 

authors’ knowledge, the work in this paper is novel in  

the sense that the method of non-polynomial spline 

approximation has not been applied to electrostatic 

problems having Neumann type bvp’s before. 

Two examples are presented to prove the 

applicability and the accuracy of the proposed method. 

In the first example, the Poisson’s equation is solved for 

the unknown electrostatic potential distribution inside a 

charged homogeneous dielectric medium. In the second 

example, the Laplace equation is solved for the 
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electrostatic potential in a 2-D region enclosed by 

conducting boundaries. 

 

II. NON-POLYNOMIAL SPLINE 

APPROXIMATION 

A. Formulations 

The solution of the following linear 2nd order 

boundary value problem is considered [4]: 

 𝑦2 + 𝑓(𝑥)𝑦 = 𝑔(𝑥),     𝑥 ∈ [𝑎, 𝑏], (1) 

subjected to the Neumann boundary conditions: 

 𝑦(1)(𝑎) − 𝐴1 = 𝑦(1)(𝑏) − 𝐴2 = 0, (2) 

where 𝐴1 and 𝐴2 are the real constants. The functions 

𝑓(𝑥) and 𝑔(𝑥) in (1) are assumed to be continuous in 

[𝑎, 𝑏]. 
The solution domain 𝑥 ∈ [𝑎, 𝑏] is sampled by 

equally spaced n points as: 

 𝑥𝑖 = 𝑎 + 𝑖ℎ,     𝑖 = 0,1, … , 𝑛, (3) 

where 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏, and ℎ = (𝑏 − 𝑎)/𝑛. 

Now, the notation 𝑦(𝑥) is used as the exact solution 

of (1), and 𝑆𝑖 as the approximate solution to 𝑦𝑖 = 𝑦(𝑥𝑖) 

acquired by the spline function 𝑄𝑖(𝑥) that fits in the 

points (𝑥𝑖 , 𝑆𝑖) and (𝑥𝑖+1, 𝑆𝑖+1). 

A non-polynomial spline 𝑄𝑖(𝑥) is defined in the 

following form: 

 𝑄𝑖(𝑥) = 𝑎𝑖 cos k(𝑥 − 𝑥𝑖) + 𝑏𝑖sin k(𝑥 − 𝑥𝑖) + 𝑐𝑖 ,      
 𝑖 = 0, 1, … , 𝑛 − 1, (4) 

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are constant coefficients, and 𝑘 is the 

frequency of the trigonometric functions. Thus, the non-

polynomial spline function 𝑆(𝑥) that approximates to the 

exact solution can be written as: 

𝑆(𝑥) = 𝑄𝑖(𝑥),     𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 
 𝑖 = 0, 1, … , 𝑛 − 1. (5) 

The spline function 𝑄𝑖(𝑥) and its derivatives are 

defined as: 

𝑄𝑖(𝑥𝑖+1/2) = 𝑆𝑖(𝑥𝑖+1/2), 

𝑄𝑖
(1)(𝑥𝑖) = 𝐷𝑖 , 

 𝑄𝑖
(2)

(𝑥𝑖+1/2) = 𝐹𝑖+1/2, (6) 

where the notation 𝑥𝑖+1/2 denotes the midpoint of the 

interval [𝑥𝑖 , 𝑥𝑖+1]. By using (4) and (6), one can obtain 

the following relations for the constant coefficients: 

 𝑎𝑖 =
−1

𝑘2 𝐹𝑖+1/2 sec(𝜃/2) −
1

𝑘
𝐷𝑖 tan(𝜃/2)  

 𝑏𝑖 =
1

𝑘
𝐷𝑖 ,  

 𝑐𝑖 = 𝑆𝑖+1/2 −
1

𝑘2 𝐹𝑖+1/2, (7) 

where 𝜃 = 𝑘ℎ and 𝑖 = 0, 1, … , 𝑛 − 1. 

By using the continuity of the spline function 𝑄𝑖(𝑥) 

at the joining nodes: 

 𝑄𝑖−1
(𝑚)(𝑥) = 𝑄𝑖

(𝑚)(𝑥),     𝑚 = 0, 1, (8) 

together with (4) and (7), we obtain the following 

relation: 

(𝑆𝑖+1/2 − 2𝑆𝑖−1/2 + 𝑆𝑖−3/2) = ℎ2(𝛼𝐹𝑖+1/2 + 

 𝜔𝐹𝑖−1/2 + 𝛼𝐹𝑖−3/2),    𝑖 = 2, 3, … , 𝑛 − 1, (9) 

where 

 𝛼 =
sec(𝜃/2)−1

𝜃2 , (10) 

and 

 𝜔 =
4 sec(𝜃/2) sin2(𝜃/2)+2(1−sec(𝜃/2))

𝜃2 . (11) 

(9) gives 𝑛 − 2 linear equations with 𝑛 unknowns 

𝑆𝑖+1/2, 𝑖 = 0, 1, … , 𝑛 − 1. Two more equations come 

from the boundary nodes as: 

(−ℎ𝑆0
(1)

− 𝑆1/2 + 𝑆3/2) =
ℎ2

24
(23𝐹1/2 + 𝐹3/2), 

 𝑎𝑡 𝑖 = 1, (12) 

and 

(𝑆𝑛−3/2 − 𝑆𝑛−1/2 + ℎ𝑆𝑛
(1)

) =
ℎ2

24
23𝐹𝑛−3/2 + 

 23𝐹𝑛−1/2,     𝑎𝑡 𝑖 = 𝑛. (13) 

As a result, the linear equation solution of (9)  

gives the approximate solution 𝑆𝑖 to 𝑦𝑖 = 𝑦(𝑥𝑖), 𝑖 =
0, 1, … , 𝑛 − 1. 

For 𝜶 = 𝟏/𝟏𝟐 and 𝝎 = 𝟏𝟎/𝟏𝟐, the algorithm 

produces the most accurate numerical results [4], thus all 

of the computations in this paper are carried out using 

these values. 
 

B. Error analysis 

The local truncation error 𝑡𝑖 for 𝑖 = 1,2, … , 𝑛 

corresponding to (9)-(13) is given as [4]: 

𝑡𝑖 =
−ℎ4

24
𝑦0

(4)
+ 𝑂(ℎ5), 𝑖 = 1,  

𝑡𝑖 = ℎ2(1 − 2𝛼 − 𝜔)𝑦𝑖
(2)

+ ℎ3 (𝛼 +
𝜔

2
−

1

2
) 𝑦𝑖

(3)
+ 

ℎ4 (
5

24
−

5

4
𝛼 −

𝜔

8
) 𝑦𝑖

(4)
− ℎ5 (

1

16
−

26

48
𝛼 −

𝜔

48
) 𝑦𝑖

(5)
+ 

+𝑂(ℎ6), 𝑖 = 2,3, … , 𝑛 − 1 

 𝑡𝑖 =
−ℎ4

24
𝑦𝑛

(4)
+ 𝑂(ℎ5), 𝑖 = 𝑛. (14) 

Thus, for the boundary nodes and interior nodes, the 

error is of the order of 5 and 6 respectively.  

The truncation error associated with the algorithm 

can be defined as: 

 𝑒𝑖+1/2 = 𝑦𝑖+1/2 − 𝑆𝑖+1/2 ,  (15) 

where 𝑦𝑖+1/2 = 𝑦(𝑥𝑖+1/2) and 𝑆𝑖+1/2, 𝑖 = 0,1, … , 𝑛 − 1, 

are the exact, and the approximated solutions respectively 

at the (𝑖 + 1/2)𝑡ℎ nodes. The total truncation error is 

given by [4]: 

 ‖𝐸‖∞ ≤ 𝑂(ℎ2),  (16) 

where ‖𝐸‖∞ is the maximum norm of the global error 

vector: 

 𝑒𝑖+1/2 = 𝑦𝑖+1/2 − 𝑆
𝑖+

1

2

,       𝑖 = 0,1,2, . . , 𝑛 . (17) 

Thus, the error is bounded by 𝑶(𝒉𝟐) which implies 

that the method is quadratically convergent. Also, all 

round-off errors in this analysis are neglected assuming 

high digit computations by Matlab. 
 

III. EXAMPLES 

A. Solution of 1D electrostatic potential 

Finding the electrostatic potential inside a parallel  
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plate capacitor is considered. The governing equation for 

this problem is the “Poisson’s equation”. To ensure that 

the equation satisfies the Neumann boundary conditions, 

we specify the normal derivatives of the potential at the 

boundaries. All numeric computations are carried out 

with the software program Matlab.  

 

 
 

Fig. 1. Cross sectional figure of the capacitor problem. 

 

Figure 1 shows the physical description of the 

problem. The parallel plate capacitor is assumed to be 

filled by a charged medium with the uniform charge 

density 𝜌 and the electric permittivity 𝜖. The capacitor 

has a plate separation length 𝑑, and maintained at 

potential 𝑉0 volts across its plates. The fringe fields at the 

plate edges are assumed to be negligible, thus the voltage 

inside the capacitor varies only along the y direction. The 

Poisson’s equation for this problem can be written as 

[10]: 

 
𝑑2𝑉(𝑦)

𝑑𝑦2 =
−𝜌

𝜖
, (18) 

whose solution can be obtained by taking the integral  

of both sides with respect to 𝑦 twice. This gives the 

following result: 

 𝑉(𝑦) =
−𝜌

2𝜖
𝑦2 + 𝐶1𝑦 + 𝐶2, (19) 

where 𝐶1 and 𝐶2 are the constants to be determine by the 

boundary conditions. Given the following Neumann 

boundary conditions: 

 
𝑑𝑉(0)

𝑑𝑦
=

𝜌𝑑

2𝜖
+

𝑉0

𝑑
, (20) 

and 

 
𝑑𝑉(𝑑)

𝑑𝑦
=

−𝜌𝑑

2𝜖
+

𝑉0

𝑑
, (21) 

the solution of the problem exists up to a constant.   

The constant 𝐶1 can be obtained by imposing (20) to 

the derivative of the solution in (19) as: 

 𝐶1 =
𝜌𝑑

2𝜖
+

𝑉0

𝑑
. (22) 

Thus, the solution becomes: 

 𝑉(𝑦) =
−𝜌

2𝜖
𝑦2 + (

𝜌𝑑

2𝜖
+

𝑉0

𝑑
) 𝑦 + 𝐶2. (23) 

Now, we consider the numeric solution of the problem 

using the proposed approximation. Figure 2 shows the 

results for the following simulation parameters: 𝑑 =
1(𝑚), 𝑉0 = 1(𝑉), 𝜌 = 10−9(𝐶/𝑚3), 𝜖𝑟 = 1, 𝐶2 = 0. 

The results show good accuracy especially for greater 

number of samples being used. 

 
 

Fig. 2. Simulation results for the voltage distribution 

inside a parallel plate capacitor for sampling number 

n=10 and n=50. 

 

The numerical stability of the proposed method is 

analyzed in terms of the condition number, k(A), of the 

solution matrix in (9). Figure 3 shows the results with 

respect to the number of sample points. The proportional 

relation between the condition number and the size of the 

matrix is expected [11]. In general, if the condition 

number 𝑘(𝐴) = 10𝑘, then “k” digits of accuracy are lost 

(at most) during computation in addition to round off 

errors [12]. Thus, neglecting the round off errors, from 

Fig. 3 the method is bounded approximately by 5 digits 

of inaccuracy at about n=50 sampling points, and since 

the Matlab simulation uses 16 digits of precision, this 

does not disrupt convergence. 

 

 
 
Fig. 3. Stability analysis of the proposed method. 

 
B. Solution of 2D electrostatic potential 

Finding the electrostatic potential inside a 2D charge 

free area is considered. The region is bounded by three 

conducting rods maintained at constant voltages. Figure  

SENER: A NOVEL METHOD TO SOLVE 2ND ORDER NEUMANN BOUNDARY VALUE PROBLEMS 291



4 shows the physical arrangement of the problem. 

 

 
 
Fig. 4. Cross sectional figure of 2D electrostatic potential 

example. 

 

The governing equation for this problem is the 

“Laplace equation”, given in rectangular coordinates as: 

 
𝜕2𝑉(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝑉(𝑥,𝑦)

𝜕𝑦2 = 0. (24) 

The analytic solution of the problem is obtained by 

separating the solution into the product of functions that 

are only dependent on a single coordinate variable; this 

procedure is known as the “separation of variables”. 

Thus, we write the solution as: 

 𝑉(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦), (25) 

where 𝑋(𝑥) and 𝑌(𝑦) are the solutions of the following 

ordinary differential equations: 

 
𝑑2𝑋(𝑥)

𝑑𝑥2 + 𝑘𝑥
2𝑋(𝑥) = 0, (26) 

and 

 
𝑑2𝑌(𝑦)

𝑑𝑦2 + 𝑘𝑦
2𝑌(𝑦) = 0, (27) 

where 𝑘𝑥 and 𝑘𝑦 are so called the separation constants. 

Let us assume that the following boundary conditions 

are given. In the 𝑦-direction: 

 
𝜕𝑌(0)

𝜕𝑦
=

𝜋

𝑏
,     

𝜕𝑌(𝑏)

𝜕𝑦
= −

𝜋

𝑏
, (28) 

and in the x-direction: 

 
𝜕𝑋(0)

𝜕𝑥
=

−𝑗𝜋

𝑏
,     

𝜕𝑋(∞)

𝜕𝑥
= 0. (29) 

The analytic solutions of (26) and (27) subjected to 

Neumann boundary conditions (28) and (29) are given as 

[10]: 

 𝑋(𝑥) = 𝐷2𝑒−𝑘𝑥𝑥, (30) 

and 

 𝑌(𝑦) = 𝐴1sin (𝑘𝑦𝑦), (31) 

where 𝑘𝑥 = 𝑗𝑘, 𝑘𝑦 = 𝑘, and 𝑘 =
𝑚𝜋

𝑏
 for 𝑚 = 1. 

The solution of the problem is given by: 

 𝑉(𝑥, 𝑦) =
4𝑉0

𝜋
𝑒−

𝜋𝑥

𝑏 sin (
𝜋

𝑏
𝑦), 

 𝑥 > 0,     0 < 𝑦 < 𝑏,     𝑎𝑛𝑑 𝑚 = 1, (32) 

where 𝐴1𝐷2 =
4𝑉0

𝑚𝜋
. 

The general solution of the problem includes all the 

values for the constant m, and is given by: 

 𝑉(𝑥, 𝑦) = ∑ 𝐶𝑚𝑒−
𝑚𝜋𝑥

𝑏∞
𝑚=1 sin (

𝑚𝜋

𝑏
𝑦) , 

 𝑚 = 1, 3, 5, … ,     𝑥 > 0  𝑎𝑛𝑑 0 < 𝑦 < 𝑏, (33) 

where 𝐶𝑚 = 𝐴1𝐷2 =
4𝑉0

𝑚𝜋
. 

Figure 5 and Fig. 6 show the solutions of (26) and 

(27) subjected to (28) and (29) obtained by the proposed 

algorithm for the variables 𝑋(𝑥) and 𝑌(𝑦) respectively. 

The following parameters are used in the simulation:  

𝑎 = 2(𝑚), 𝑏 = 1(𝑚), 𝑉0 =
𝜋

4
(𝑉), and 𝑚 = 1. The 

results are in good agreement with the exact solution 

especially for greater number of samples. 

 

 
 

Fig. 5. Simulation results for the partial solution 𝑋(𝑥) of 

the voltage distribution inside a 2D area bounded by 

electrodes. 

 

 
 

Fig. 6. Simulation results for the partial solution 𝑌(𝑦) of 

the voltage distribution inside a 2D area bounded by 

electrodes. 

 

Figure 7 shows the total numeric solution as in (33) 

obtained by the proposed algorithm for the truncated 

summation of the first 100 terms. 

The stability analysis for the problem in (26) is 

given in Fig. 8. The results show that this problem can 

be considered to be well-posed especially for lower  
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number of samples. 

 

 
 

Fig. 7. Simulation results for the voltage distribution 

inside a 2D area bounded by electrodes. 

 

 
 

Fig. 8. Stability analysis of the proposed method. 

 

IV. CONCLUSION 
The non-polynomial spline approximation has been 

used to solve 2nd order Neumann type bvp’s in 

electrostatic problems. The method is applicable to linear 

2nd order bvp’s given by (1), and has proven to give 

accurate results even for ill-conditioned problems such 

as the capacitor problem in Section III. The proposed 

method has been applied specifically to electrostatic 

problems, although it can also be used to solve any 

electromagnetic bvp’s governed by 2nd order Neumann 

type differential equations. 
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