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Abstract ─ In this paper, a novel periodic spectral 

alternating direction implicit multi-resolution time 

domain (PS-ADI-MRTD) method is proposed for 

solving periodic structures. The algorithm for inversion 

of the block periodic tri-diagonal matrices is presented. 

A typical example is given to validate the effectiveness 

of the proposed algorithm, and the numerical results also 

show that the proposed algorithm can save more 

computation time than the traditional MRTD method. 

Furthermore, the PS-ADI-MRTD method is applied to 

analyze the electromagnetic scattering characteristics of 

two types frequency selective surface (FSS) structures. 

Index Terms ─ Alternating Direction Implicit (ADI), 

Frequency Selective Surface (FSS), Multi-Resolution 

Time Domain (MRTD), spectral technique. 

I. INTRODUCTION
The Multi-Resolution Time-Domain (MRTD) 

technique was first proposed by Krumpholz and 

Katehi [1-2]. Although with a high linear dispersion 

performance [3-5], the MRTD method has a major 

disadvantage that the time stability condition is stricter 

than FDTD [2], which limits the computational 

efficiency of the MRTD method. In 2001, Chen [6] 

proposed the ADI-MRTD method, which is 

unconditionally stable, that is, the choice of time step is 

not limited to the size of space interval. 

In computational electromagnetics, there are various 

periodic structures, such as gratings, photonic bandgaps 

(PBG), frequency selective surfaces (FSS) and phased 

antenna arrays. And notable progress on the engineering 

applications of periodic structures has been achieved at 

the same time [7-13]. In this paper, the spectral technique 

[11-13] is applied to ADI-MRTD method, resulting in 

the periodic spectrum ADI-MRTD (PS-ADI-MRTD) 

algorithm. With the advantages of highly-linear dispersion 

performance and the CTW wave, it is suitable for 

calculating the periodic structures with high efficiency 

and oblique incidence. Moreover, a block periodic 

tridiagonal matrix inversion algorithm is presented. The 

scattering analysis of square thin plate arrays verifies the 

effectiveness and effectiveness of this method, and the 

numerical simulation shows that PS-ADI-MRTD has a 

good performance in saving computing time. 

At the end, the PS-ADI-MRTD method is used to 

analyze the frequency scattering characteristics of a 

patch-type frequency selective surface and an aperture-

type frequency selective surface, and the influence of 

incident angle and array arrangement on their dispersion 

characteristics is also discussed. 

II. THE PROPOSED PS-ADI-MRTD

ALGORITHM 

The basic equations form of the PS-ADI-MRTD is 

similar to that of the ADI-MRTD [6]. In the PS-ADI-

MRTD method, the Maxwell’s equations are divided 

into two sub-steps,  1 2n th and  1n  th step. 

Taking xE  and zH  as example, in the  1 2n th sub-

step, the following difference updating equations can be 

obtained as: 
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(2) 

In the  1n  th sub-step, the difference updating

equations can be obtained as: 
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The coefficients  a l  for 0 2l   have been tabulated

in [3], and the coefficients  a l  for 0l   are given by

the symmetry relation    1a l a l    :
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(6) 

Observing Eq. (1), we can see that Eq. (1) cannot be 

solved directly because both sides of Eq. (1) contain 

unknown components. It needs the unknown 1 2n

zH 

component to compute the 
1 2n

xE 
 component, so we can 

substitute Eq. (2) into Eq. (1), and the equation for 
1 2n

xE 

can be obtained as Eq. (6) by proper rearrangement. 

In free space, the above formula can be simplified 

as: 
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Similarly, we can obtain the equation for electric 

fields at the (n+1)th step: 
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Taking Eq. (6) as example, the left side of Eq. (6) 

can be expressed as: 
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The Eq. (9) can be written in a matrix form as 

follows: 

 AX = Y , (11) 

where the coefficients matrix is as follows: 
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Matrix A  is a block periodic tri-diagonal matrix, 

and ia , ib , ic , t , s  are all m order square matrices. And 

the form of coefficient matrix A  in Eq. (11) can be 

written as Eq. (12). In this work, the PS-ADI-MRTD 

equations are obtained based on the D2 wavelet [14]-[16], 

and 5m  . The elements of matrices ia , ib , ic , t  and 

s  are as follows: 
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And ijc is calculated as follows. For the given 

invertible matrices 
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1q , where 
1

1n

q p t , 

1

1n

p sq , one can have:

1 1 1 1 u a p q

1

1 1i i i



 l c u ,  1 1 2,3, , 1i i i i i n    u a l b

1 1n n n n n n   u a p q l b

 
n n n n α a p q , 

1

1 1i i i



 β α c ,  

 1, 2, ,1i i i i i n n    α a b β . 

Defining that 
1 mg I , 

1 mx I , one can have: 

1

1 i

h α ,  1

1 1 2,3, ,i i i i i n

   h b h α

 
1

n n n


g u h ,  1

1 1, 2, ,2i i i i i n n

    g b g u

1

1 1

y α ,  1 1 2,3, ,i i i i n   y β y

 
1

n n n


x u h ,  1 1, 2, ,2i i i i n n    x l x

   1 1 1 1 1 1 1m n n n n n n n    ξ I q g h q y x p q g h q y x p

 1

1 1 n n

 ψ ξ p x y p y g , 
T T

1 1 n n ζ q g h q y x

,

,

i j i j

ij

i j i j

i j

i j

 
 

 

g h ψ ζ
c

x y ψ ζ
. 

The TF/SF boundary and the absorbing boundary 

condition (ABC) of the PS-ADI-MRTD algorithm are 

similar to that of the traditional MRTD algorithm. 

III. HANDLIING OF THE PERIODIC

BOUNDARY CONDITION
For a better understanding of this paper, Fig. 2 

shows a top view of a unit in a periodic structure, where 

xT and yT are the cycle lengths along the x- and y-

direction, respectively, FNx , LNx and FNy , LNy are the

first and last grid points along the x- and y-direction in 

the computational domain, respectively. 
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Fig. 2. Schematic diagram of the periodic structure unit. 

Taking the electric fields as example, the periodic 

boundary condition of the MRTD can be expressed as 

follows: 

     1 1
F L2 2

, , , , exp jn n

x x y yE i Ny l k E i Ny l k k T     , 

(21) 

     1 1
F L2 2

, , , , exp jn n

y y x xE Nx l j k E Nx l j k k T     , 

(22) 

     1 1
F L2 2

, , , , exp jn n

z z y yE i Ny l k E i Ny l k k T     , 

(23) 

     1 1
F L2 2

, , , , exp jn n

z z x xE Nx l j k E Nx l j k k T     . 

(24) 

The other set of equations for H can be obtained by 

duality. Where 0, 1 ,  2l  , it should be noted that the 

l is an effective support size for the MRTD basis function.

IV. NUMERICAL RESULTS

A. Scattering analysis of thin metal square array

In this section, a thin square metal plate array is

calculated. As shown in Fig. 1, the edge length of a 

square metal plate is 0.5 cm, and the periodic unit 

size is 1cm 1cm . The space is discretized by a 

mesh 0.05x y z        cm, the time step is 

CFL / 3t c   , and
CFLCFLN t t   , where 

CFLt  is 

the time step limit defined by the stability condition of 

the traditional MRTD. CFLN 3 is used for the PS-

ADI-MRTD method. The computational domain along 

the z-axis is truncated with absorbing boundary. The 

excitation is a TE wave with constant transverse wave-

number (CTW) and the wave vector is on the x-z plane 

with 0yk  . Therefore, the time domain expressions of 

the incident electric and magnetic fields can be expressed 

as follows: 

2

1 0

0 0 02

exp( )

exp( ( ))exp( )exp( )

CTW

y x

z

E jk x

k
F jk z z jt k c





 

 
    

 

, (25) 

0

2

1 0

0 0 02

0

1
exp( )

exp( ( )) exp( )exp( )

CTW

x x

z

z

H jk x

kk
F jk z z jt k c

k







 

 
    

 

, (26) 

where xk denotes transverse wave-numbers, which 

are assumed to be constant numbers (independent of 

frequency). zk  is the normal wave-number, 0 2k f c . 

0 is the impedance of free space. The term 

2 2

0exp( )k  corresponds to a Gaussian pulse used to 

limit the bandwidth of the incident wave, and 950  . 
1F  denotes the inverse Fourier transform. The frequency 

range here is from 1.0 GHz to 40GHz, then the xk range 

is from 0.0 to 838rad/m. 
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Fig. 2. The reflection coefficients with different incident 

angles. 

Figure 2 shows the calculated reflection coefficients 

versus frequencies at different incident angles. As can be 

seen from Fig. 2, the numerical results of the proposed 

method are in good agreement with that of the MRTD 

and SFDTD, which verifies the accuracy of the PS-ADI-

MRTD method. In addition, as shown in Table 1, 

numerical results also validate that although the PS-ADI-

MRTD method uses more memory, it can save 

computing time by more than 26% compared with the 

traditional SFDTD and MRTD. 

Table 1: CPU time and memory for different schemes 

Schemes 
CPU 

Time/s 

CPU 

Memory/MB 

SFDTD 3563.25 8.10 

MRTD 1347.56 2.94 

PS-ADI-MRTD 973.53 4.31 

B. Application in frequency selective surface analysis

Frequency selective surface (FSS) is a kind of

periodic structure which is widely used. It is generally 

composed of a certain number of passive resonant 

elements arranged in a specific way. Its main feature is 

that it can filter electromagnetic waves at different 

frequencies, incidence angles and polarization states. 

Two kinds of common FSS structures are periodically 

arranged sheet metal (patch type) and periodically 

opened sheet metal (aperture type). Generally speaking, 

in a certain frequency band near the resonance frequency, 

the former exhibits total reflection, while the latter 

exhibits total transmission [18]. In this section, the 

scattering characteristics in frequency domain are 

analyzed for the two types of FSS structures. 

1
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m
m

3mm

1
2

m
m

6mm

2.2r 



(a) 

      (b)  (c) 

Fig. 3. Patch FSS structure and two array modes. 

Figure 3 (a) is a periodic unit of a patch-type FSS 

structure and its placement on the substrate medium 

(black part is metal). The relative conductivity of the 

medium is 2.2r   and the thickness is 6 mm. Figure 3 

(b) and Fig. 3 (c) are two kinds of array modes of FSS.

The thickened wireframes in the figure are periodic units

in two cases respectively. The setting of the constant

transverse incident wave is also the same as that in

Section III.A.
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Figure 4 is the calculation result of two arrays under 

vertical incidence. It can be seen that the translation of 

the structure results in a slight shift of the reflection 

characteristic curve to the high frequency. The resonance 

frequencies before and after the translation are 9.5 GHz 

and 9.7 GHz respectively, and the second resonance 

frequency point appears in the array arrangement mode 

(b) at about 16.5 GHz. 
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Fig. 4. Frequency characteristics of two array modes in 

vertical incidence. 
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Fig. 5. Frequency characteristics of array mode (b) at 

different incidence angles. 
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Fig. 6. Frequency characteristics of array mode (c) at 

different incidence angles.  
 

Figure 5 and Fig. 6 show the results of two array 

modes when the incidence angle is 0 , 15  and 30 ,  

respectively. It can be seen that the variation law of the 

two graphs is the same, and the reflection characteristic 

curve moves to the low frequency end with the increase 

of the incident angle. The first resonance frequency  

point appearing under the three incident angles has  

little difference, and the characteristic curve before the 

frequency point is also similar. As shown in Fig. 5, the 

second resonance frequencies of the array arrangement 

(b) at 15 and 30 degrees are 14.4 GHz and 13 GHz, 

respectively. From Fig. 6, it can be seen that the second 

and third resonance frequencies appear in the calculated 

frequency band after the array translation, such as the 

two consecutive resonance frequencies of 14 GHz  

and 14.6 GHz at the incident angle of 30 degrees, 

respectively. 

Using the same method, we also calculated the 

frequency domain scattering characteristics of the 

aperture-type FSS structure shown in Fig. 7. 
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Fig. 7. Periodic cell of aperture-type FSS. 

 

The calculated results at incident angles 0 degrees 

and 30 degrees are shown in Fig. 8 (a) and Fig. 8 (b) 

respectively. It can be seen that the resonant frequency 

point appears at about 13.8 GHz at vertical incidence, 

when the reflectivity is near zero and the corresponding 

transmittance is 1, which is consistent with the full 

transmission characteristics of the aperture FSS discussed 

above. When the incident angle increases, the resonant 

frequency is about 14.3GHz, and the reflectivity is about 

0.48. It can also be seen from the figure that with the 

further increase of frequency, the frequency reflection 

characteristics of the structure are more complex. 
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Fig. 8. Frequency characteristics of the aperture-type 

FSS. 

V. CONCLUSION
In this paper, the spectral technique is applied to 

ADI-MRTD method for periodic structure calculation, 

and the PS-ADI-MRTD method is obtained. The inverse 

process of block periodic tridiagonal matrix is introduced 

and the numerical results verify the effectiveness and 

efficiency of the proposed PS-ADI-MRTD method. In 

the calculation case, the CPU time saveing is about 26%. 

Moreover, we apply this algorithm to analyze the 

frequency domain scattering characteristics of FSS and 

obtain the expected results, which further confirms the 

effectiveness of PS-ADI-MRTD algorithm. 
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