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Abstract ─ Unmanned aerial vehicle (UAV) used in 

overhead transmission lines (OTLs) inspection are 

required to fly along a preset path to conduct special 

tasks. However, UAVs sometimes deviate from the 

preset path due to positioning error or control error in 

practice, thereby reducing the quality of the inspection 

task or even leading to serious line collision accidents. In 

this study, a method is proposed to evaluate the UAV 

position deviation from the preset path in real time on the 

basis of a measurement and analysis on the electric field 

generated by transmission lines. A new idea is presented 

to solve the obstacle avoidance problem for UAV in 

transmission line inspection. To improve evaluation 

accuracy, the influences of transmission tower and UAV 

body are considered in the theoretical calculation model 

for electric field, and the electric field data are 

preprocessed to diminish the influence of environmental 

noise and measurement inherent error. To improve the 

real-time performance of the evaluation algorithm, the 

dynamic programming and hidden Markov model 

(HMM) are combined to form a dynamic-hidden Markov 

model algorithm, in which the parameters of the HMM 

are determined by the expected maximization parameter 

estimation and corrected in real time. The feasibility and 

accuracy of the proposed method are verified by several 

simulation examples and experiments. 

Index Terms ─ Dynamic-hidden Markov model, flight 

deviation, transmission line inspection, unmanned aerial 

vehicle (UAV). 

I. INTRODUCTION
Using unmanned aerial vehicle (UAV) to inspect 

overhead transmission lines can improve work efficiency, 

save manpower and material resources, and overcome the 

constraints of geographical environment compared with 

traditional manual inspection. Therefore, transmission 

line inspection with UAV has been promoted in recent 

years. To achieve the patrolling objectives and avoid 

collision accidents, UAVs should fly along preset paths as 

far as possible. If flight deviates, warning should be 

provided, and the position should be adjusted in time. 

Several methods, such as GPS [1], machine vision 

ranging [2], ultrasonic ranging, radar ranging [3], optical 

ranging [4], and artificial potential field method [5,6], are 

suitable for measuring the distance between the UAV 

and physical object. However, these methods have limited 

application scenario, and improving their measurement 

accuracy is expensive. For example, numerous signal base 

stations must be built to improve the precision of GPS 

ranging. Therefore, a convenient and effective method 

is necessary to evaluate if the flight positions of UAVs 

deviate from the preset paths. 

Many studies [7,8] have reported that AC overhead 

transmission lines inherently generate power frequency 

electric fields in their surrounding space and that the 

electric field intensity at a space observation point is 

directly related to the distance between the field point and 

line. On this basis, the present study proposes a new idea, 

that is, to use the power frequency electric field of the AV 

overhead transmission lines as the data foundation to 

evaluate whether and how much the current flight position 

of a UAV deviates from the preset path. As the electric 

fields themselves are generated by transmission lines, the 

electric field measuring device is a single-sided structure, 

unlike the laser and ultrasonic ranging devices, which 

requires the producing and transmitting parts of the source 

signal and the receiving part of the reflection signal. 

Moreover, power frequency electric field propagates a 

long distance that the sensor can measure appropriately. 

The electric field strength is not affected by the ambient 

light intensity and environment temperature, which avoids 

the lack of visual and infrared sensing. 

The primary idea of the method proposed in this study 

is to regard the real-time measured electric field at the 

UAV’s positions and the theoretically calculated electric 

field values at the corresponding positions on the preset 

path as the basic data. After preprocessing the basic data, 

the dynamic-hidden Markov probability model (D-HMM) 

is introduced to evaluate the deviation and drift direction 

between the current position and preset path of the UAV. 

To improve the evaluation accuracy, influences of 

the transmission tower and UAV body on the electric 

field are considered in the calculation model. Moreover, 
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the theoretically calculated and measured electric field 

data are preprocessed to eliminate the influence of 

environmental noise and inherent measurement error 

before taking them into D-HMM that is used to improve 

the real-time performance of the evaluation algorithm. 

 

II. IMPROVED CALCULATION MODEL OF 

ELECTRIC FIELD AND DATA 

PREPROCESSING 
The accuracy of evaluating the flight position 

deviation of UAV with the proposed method considerably 

depends on the accurate calculation of the space electric 

field generated by AC OTLs. 

 

A. 3D electric field calculation model considering 

actual states of OTL 

The charge simulation method (CSM) is 

recommended to calculate the power frequency electric 

field generated by AC OTLs in a large space. An 

improved 3D model is presented in this study to enhance 

the calculation accuracy. 

Figure 1 shows the constituents and layout structure 

of OTLs with towers. The two ends of a span fixed at 

Tower A and Tower B can be not at the same height. The 

origin of coordinate O is set at the projection on the ground 

of the lowest point of the span. The mathematical model 

of the catenary conductors can be described as [9,10]: 
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where D is the length of span, α is the horizontal stress 

coefficient of conductor, and H is the lower height of 

conductor from the ground. Then, 

0D/   ,                               (2) 

where γ and σ0 are the specific load and horizontal stress 

of the conductor, respectively. 
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Fig. 1. Constituents and layout structure of the AC OTLs 

with towers. 

 

If the height of both ends at Tower A and Tower B 

are equal, then xA = −xB = −D/2. Meanwhile, if the height 

difference between two ends is h, then, 
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The tower comprises abundant steel bars, which  

will affect the electric field near them because of 

electromagnetic induction. A simplified model of the 

tower is divided into M sections [11]. In the i-th segment, 

the space coordinates of its head and end are (xi1, yi1, zi1) 

and (xi2, yi2, zi2), respectively. The coordinates of any point 

in the middle of this segment is (xi0, yi0, zi0), as shown Fig. 

2.  
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Fig. 2. Model of the tower. 
 

A span of each overhead conductor is divided into N 

segments, and the coordinate setting for the endpoints of 

each segment is similar to that shown in Fig. 2. Then, the 

calculation method is unified for the overhead conductor 

and tower. Assuming that the length of the i-th analog line 

charge is li and the density of analog line charge is 
i , the 

potential generated by the analog line charge at the spatial 

observation point (x, y, z) is denoted by: 
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where ε0 is the vacuum dielectric constant; r and r' 

represent the distance from the source point and its mirror 

point to the field point, respectively, which are denoted by: 
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where t is the normalized parameter of the distance 

between points (xi0, yi0, zi0) and (xi1, yi1, zi1), which can be 

shown as: 
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The simulated charge density can be calculated after 

setting the known conductor potential φil = U and tower 

potential φit = 0 as boundary conditions. Then, the 3D 

electric field components at the spatial observation point 

can be obtained: 

, ,i i i
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. (7) 

Furthermore, numerical calculations are applied to 

integral Equation (4) and differential Equation (7). Then, 

the 3D electric field components are given by: 
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Finally, the 3D electric field components at the spatial 

observation point are superimposed the effect of all the 

simulated charges: 

, ,x ix y iy z izE E E E E E     .     (10) 

 The electric field strength can be obtained 

2 2 2
x y zE E E E   . (11) 

B. Effect of UAV on the space electric field

The shell material of the UAV used in transmission

line patrol and inspection is a composite material with 

carbon-fiber reinforced resin matrix, which has high 

electrical conductivity [12,13]. Therefore, the effect of the 

UAV’s body on the space electric field cannot be ignored. 

Because the UAV body’s shape is complicated and 

the surface potential is unknown, the electric field analysis 

cannot be performed with the CSM. The finite element 

method is suitable for solving partial differential equations 

on complex regions. Therefore, it is used here. 

The simulation model of the UAV is built in the 

power frequency electric field of transmission lines, and 

the free tetrahedron element is used to divide the model 

[14,15]. The boundary conditions of the entire model are 

initially set. Then, the boundary potential distribution and 

electric field of each grid element of the UAV model can 

be calculated with Maxwell equations. In addition, the 

influence of UAV on electric field distribution can be 

observed by comparing the electric field distribution in 

the calculation domain with and without the UAV. The 

installation position of the electric field measurement 

sensor on the UAV can be determined as well. In addition, 

the regularity of UAV’s influence also can be used to 

correct the measured electric field data. 

C. Preprocessing of electric field data

To eliminate the influence on electric field

measurement from environmental noise and the inherent 

error of the measuring device, the proposed evaluation 

method should be made suitable for OTLs with different 

voltage levels and arrangements. A parameter, namely, 

electric field ring ratio change rate K (%), is defined to 

preprocess the electric field data:

  1 +1/ max{ } 100n n n n nK E E E E  ， , (12) 

where En is the electric field at the n-th measurement 

point, n = 1, 2, 3…. Considering the requirement of the 

subsequent D-HMM discriminant model, the measured 

and theoretical electric field data are processed similarly. 

III. DEVIATION EVALUATION MODEL
By comparing the measured electric field data with

the theoretical electric field data at the same observation 

points on the preset path, the UAV position deviation 

from the preset path can be judged to a certain extent. 

However, the actual physical conditions are difficult to 

simulate accurately with theoretical models, and random 

errors exist in the electric field measurement due to 

the diversity of the geographical environment and 

meteorological conditions. Therefore, the measured data 

should be further analyzed and processed, and a practical 

position matching algorithm with high robustness and 

good generalization should be studied for the UAV. 

A. Background and introduction of D-HMM

The matching model based on probability can

effectively overcome these problems and improve 

evaluation credibility. Therefore, this study uses a non-

supervised probability statistical learning model based on 

time series data, namely, HMM [16,17]. The HMM can 

be used to determine the implicit parameters of the time 

series from the observable data sequences. Then, these 

parameters are used for further analyses, such as pattern 

recognition and fault diagnosis. 

The change process of position and electric field 

measurement data during UAV patrol and inspection are 

time-series processes. Furthermore, the current position 

of the UAV is only related to the previous moment, 

which satisfies the Markov property [18]. Therefore, the 

position of UAV can be described by Markov chain. 

The hidden here refers to the real position of 

the UAV, which cannot be obtained directly due to 

measurement error and must be inferred by the HMM 

model. 
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The electric field data are measured in real time 

during UAV flying. To improve the real-time 

performance of the model algorithm, this study combines 

the dynamic programming and HMM to form the D-

HMM algorithm. The parameters of the D-HMM are 

determined with the expectation maximization parameter 

estimation method and corrected with the dynamic 

programming method in real time, where the dynamic 

programming algorithm is used to infer the position 

sequence of the UAV during flight. Figure 3 shows the 

main program flow chart of the D-HMM algorithm, in 

which the observation sequence O and EM parameter 

estimation and the Viterbi algorithm are three subroutines. 

start

Time sequence length T

i=1

Input sequence [O(i)]T

Input HMM Parameter

λ (i) ={A(i)，B(i)，Π(i)} 

The most probable State 

sequence [I*
(i)]T and current 

flight status I*
(i)T+i-1

Terminate the  predict  

program？

End

i=i+1

Y

N

EM Parameter estimation

Get the observation 

sequence O

Viterbi algorithm

Fig. 3. Flow chart of the D-HMM algorithm. 

B. Method of obtaining the observation sequence

Before running the D-HMM algorithm, to simplify

the data structure of the algorithm program and improve 

the running speed of the program, normalizing the 

measured electric field data with noise is necessary. 

The observation sequence [O(i)]T corresponding to the 

measured electric field sequence is obtained by comparing 

the theoretical and measured electric field data after 

being computed and normalized, where O(i) represents the 

observation sequence of the i-th iteration. 

Initially, the theoretical electric field of the eight-

direction offset path around the preset path is shown in 

Fig. 4. Then, nine theoretical electric field sequences are 

obtained, where, d = 0,1,2···8. They are converted into 

theoretical K-value sequence [KC] d following the method 

described in Section C of the first part. Furthermore, the 

time series of measured electric field is also transformed 

with the same method, and the time series of measured 

K-value [KM] is obtained. Then, the initial observation

sequence [O(i)]T is obtained by comparing sequence [KM]

and sequence [KC] d with the flight velocity v and electric

field measurement time interval Δt of the UAV.

Presupposed 

path

Offset 

direction 1
Offset 

direction 2

Offset 

direction 3

Offset 

direction 4

Offset direction 5

Offset 

direction 6

Offset 

direction 7

Offset 

direction 8

Fig. 4. Schematic of the preset path and offset direction. 

C. Model training

After obtaining the input observation sequence,

the model should be trained in accordance with the 

observation sequence to obtain the model parameters. 

In practical applications, the data storage of the UAV 

electric field measurement is limited, the training sample 

capacity is small, and the data update speed is fast. To 

realize the rapid training of small sample statistical 

model, this study uses EM parameter estimation iterative 

algorithm to obtain HMM parameter set λ = {A, B, Π}. 

λ contains three types of parameters, where A = [aij] is 

the probability transfer matrix of the real state and aij` 

represents the probability that the real state changes from 

i to j. B = [bik] is the probability matrix of the observed 

state, and bik represents the probability of the observed 

state being k when the real state is i. Π = [πi] is the 

probability vector of the initial state, and πi represents the 

probability of the real state being i. 

The core steps of the EM algorithm include the 

two parts of the problem expectation expression and 

the expectation maximization calculation [19]. In the 

proposed algorithm model, the expected Q expression is 

denoted by: 
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The three elements of HMM appear in the three parts 

of Equation (13). Therefore, only the three parts of the 

Q function should be maximized to obtain the model 

parameters: 
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By substituting Equation (15) into Equation (14), the 

model parameter λx calculated by the x-th iteration can 

be obtained. For one input observation sequence O, x 

iterations are performed. If λx converges to λ or reaches 

the maximum number of iterations, then λ is the output 

parameter of the model.  

D. Dynamic update of HMM parameter

With the movement of the UAV, the track of the

UAV will change constantly, and the measured electric 

field data will be updated constantly. To improve the real-

time and accuracy of the algorithm further, the parameters 

of the algorithm model are continuously corrected with the 

updating of the input data. In this study, a parameter 

dynamic update module is added to the HMM algorithm 

to form the D-HMM algorithm. 

The value of the algorithm parameter set λ is affected 

by the observation sequence. Hence, a well-designed 

dynamic update scheme of the observation sequence 

can simultaneously realize the dynamic update of the λ 

parameter. 

When the algorithm runs for the first time, the 

observation sequence is recorded as O(1), and the sequence 

length is T. When the data at time t = T+1 is measured, the 

data at time t = 1 is discarded to form a new observation 

sequence O(2). In this manner, the real-time input sequence 

group of D-HMM can be obtained. Figure 5 shows the 

dynamic selection of the input observation sequence. 

Round 1

Round 2

Round i

t 1 2

1 …

…

T

2 … T+1

…

i …
T+i-1

Fig. 5. Dynamic selection of the input observation 

sequence.  

This dynamic selection method of the propulsion 

input sequence not only preserves the contribution of each 

measurement data to the calculation of the algorithm 

parameters during flight but also effectively reduces the 

sensitivity of the algorithm to the initial parameters. 

Moreover, this method controls the length of the input 

sequence, improves the running speed of the algorithm, 

and enhances the accuracy and timeliness of the 

discriminant results.  

E. Position deviation evaluation

On the basis of the model parameters, the subsequent

step is to evaluate whether the UAV deviates from the 

preset path, particularly the direction and distance of 

the deviation in a continuous period of time. UAV offset 

measurement is essentially an optimization analysis 

problem for a multi-step multi-state process. In this study, 

the dynamic programming Viterbi algorithm is used 

to solve the D-HMM model of the known observation 

sequence O and parameter λ. At this time, the optimal 

hidden sequence corresponding to the observation 

sequence is obtained, that is, the true migration of UAV. 

The core idea of the Viterbi algorithm is that, in the multi-

step and multi-choice problem, each step retains the 

optimal solution of the previous step and finds the optimal 

path of the transition between multiple steps through 

the backtracking method [20,21]. Figure 6 shows the 

algorithm flow. 

Variable initialization δ1 and ξ1  

According to Eq.(16) (17) 

calculate δt and ξt 

Input sequence [O(i)]T and λ(i)

End 

t=1

t>T-1

Record the end of the 

optimal path iT* 

According to Eq.(18) 

calculate  it-1*

t=t+1

Y

N

t=2

Y

N

t=t-1

Output the optimal path I*

Viterbi algorithm 

start

Fig. 6. Flow chart of the Viterbi algorithm. 

The variable δt (i) represents the probability of the 

optimal path in all paths leading to state i at a certain time 

t. The variable Ψt (i) represents the state of the optimal path

starting point to state i at time t, the recursive expressions

of δt (i) and Ψt (i) are as follows:
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By the forward recursive calculation, the probability 

P* corresponding to the last node of the time series and 

the state IT* of the node are obtained. On the basis of the 

formula, 

 * *
1 1( )t t ti i   . (18) 

The last node is inversely backtracked to obtain the 

entire optimal path I* = [i1*, i2*, … , iT*], that is, the UAV 

deviates from the preset path evaluation result for a period. 

 

IV. EXAMPLE AND EXPERIMENT 
To verify the feasibility and validity of the proposed 

method, a numerical example and experimental scheme 

are shown here. In the numerical example, assuming that 

the UAV flight control system is in perfect condition,  

the real flight path of the UAV coincides with the preset 

path, but the electric field measurement device has 

measurement errors. This scheme is designed to verify the 

effectiveness of the path discrimination algorithm in  

the case of limited accuracy of the airborne measuring 

device. The experimental conditions of the experimental 

verification are set as follows: set up a test site to simulate 

an experimental platform, set an experimental path that 

deviates from the preset path, measure the electric field  

on the path, and input the algorithm model to simulate  

the discriminant experiment. This scheme is close to the 

actual situation and aims to verify the feasibility of the 

algorithm. 

 

A. Numerical verification 

The preset path and offset range are set as shown in 

Fig. 7, and the preset path is numbered as state 0. The four 

offset states shown in the figure correspond to state 

numbers 1–4. Figure 8 shows the corresponding K values 

of the preset paths and offset states. 

If the flight plan of UAV is to fly straight from one 

base tower to the next at a uniform speed, then the flight 

path is at a horizontal distance of 5 m from the side phase, 

the height is the same as the ground line suspension, and 

the total length of the path is 300 m. The electric field is 

measured every meter of flight. When the UAV reaches 

the end of the preset path, 301 electric field measurement 

data are obtained. Then, the corresponding 300 K-values 

can be calculated. Ideally, the flight state observation 

sequence of the UAV on the preset path is

0

[0,0,0, ,0,0,0]EO 

300*

……
. 

The length of the sequence selected by one 

calculation is set to T=10. To show the UAV flight without 

offset, the vector representing the probability of actual 

flight state should be set to Π = [1, 0, 0, 0, 0]. The length  

of the sequence selected by one calculation is set to T=10. 

 

Horizontally approach to 

presupposed path (state1)

conductors

Tower

Presupposed path

Horizontally away from 

presupposed path (state 2)

Vertically upward from the 

presupposed path (state 3)

Vertically downward from the 

presupposed path (state 4)  
 

Fig. 7. Schematic of the preset path and offset range (top 

view and left view). 
 

 
 

Fig. 8. Preset path and offset value corresponding to the K 

value. 

 

To show the UAV flight without offset, the vector 

representing the probability of actual flight state should be 

set to Π = [1, 0, 0, 0, 0]. The random errors of 5%, 10%, 

15%, and 20% are superimposed on the electric field value 

of the preset path to calculate the corresponding K-value. 

As shown in Fig. 9, the state closest to the K-value is found 

and forms the observation sequence O. The path state I* is 

determined by the D-HMM algorithm. Taking the first 10 

m of the flight as an example, in one calculation, the 

measurement error is set to 5%. The input observation 

sequence is O5% = [1, 2, 0, 3, 4, 1, 2, 1, 2, 1], and the output 

path state sequence is I*5% = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. 

Therefore, the flight state of UAV is along the preset path 

without offset in the course of 10 m uniform straight flight 

from one base tower to the next. 

For each of these error ranges, discriminant 

calculations are performed 30 times using the algorithm 

model without adding a dynamic parameter update 

module, and 10 discriminant points are calculated each 

time. The discriminant error rate of the proposed 

algorithm is recorded in each error range. Then, the 

algorithm model of the dynamic parameter update module 

is used to discriminate the same point. Table 1 shows the 

results. 
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Table 1: Accuracy of different error range algorithms 

Error Range Discriminant Point 

No Dynamic Parameter Updating 

Module 

Dynamic Parameter Updating 

Module 

Number of Errors Error Rate Number of Errors Error Rate 

5% 300 25 8.33% 7 2.33% 

10% 300 28 9.33% 8 2.67% 

15% 300 30 10% 9 3% 

20% 300 33 11% 11 3.67% 

The D-HMM algorithm with dynamic parameter 

update module effectively reduces the error rate and 

improves the effectiveness of the UAV offset state 

discrimination algorithm when a certain error exists in the 

electric field measurement. 

B. Experimental verification

In the laboratory environment, an experimental

platform is simulated. Three copper rods with length of 3 

m and diameter of 1 cm are used to simulate the single-

return three-phase transmission lines. Wooden supports 

with height of 2 m are used at both ends of each conductor. 

The three-phase conductors are arranged horizontally, 

and the phase spacing is set at 1.5 m. Three wires are 

connected to 1 kV three-phase transformer through lead 

wire. The three wires from left to right are A, B, and C 

phases, respectively. Figure 9 presents the schematic of 

the simulated experimental platform, and Fig. 10 displays 

the real object.  

2
m

1.5m

A B C

1
.5

m

1.5m

1
.8

m

1  2  3  4  5  6

2.5m

1'  2'   3'  4'   5'   6' 

l

l 

Fig. 9. Schematic of the simulated experimental 

platform. 

Electric field 

sensor

Three phase 

transmission line

Three-phase 

voltage regulator

Three-phase 

transformer
o

y
x

z

Fig. 10. Physical chart of the simulated experimental 

platform. 

Starting from the midpoint of the side phase 

conductor, the straight-line l in Fig. 9 is set as the preset 

path of the UAV with a height of 1.5 m. The flight 

direction is 6→1. An offset straight-line l’ is set directly 

above the straight-line l, and the height is 1.8 m. The actual 

flight path of UAV is set to be 6’→5’→4→3→2’→1. 

Table 2 shows the measured electric field, calculated  

K value, and discriminant results. Except for the first 

measurement data without output and the last point has 

low confidence in discrimination, the remaining points 

can correctly determine the path offset state. The validity 

of the proposed algorithm in the laboratory environment 

is verified. 

Table 2: Experimental data and results 

Sequence 
Electric 

Field (V/m) 

Value 

of K 

Discriminant 

Result 

1 43.9 

2 63.7 31.1 5 

3 111.6 42.9 4 

4 195.2 42.8 3 

5 377.5 48.3 2 

6 607.2 37.8 1 

V. CONCLUSION
This study proposes a method to evaluate the position 

deviation of UAV from the preset path in real time by 

using electric field information. Initially, considering 

the influences of transmission tower and UAV body, a 

calculation method of spatial electric field distribution is 

introduced. Then, dynamic programming and HMM are 

combined to form the D-HMM algorithm for evaluating 

the deviation of UAV from the preset path. This algorithm 

can dynamically update model parameters and meet the 

real-time and accuracy requirements of the deviation 

evaluation when the UAV is flying with high speed. 

Finally, the feasibility and effectiveness of the proposed 

method are verified through numerical calculation and 

experiments. The application of electric field information 

in the flight control of line patrol UAV is discussed in 

depth. This study provides a new thinking of auxiliary 

UAV flight control and ensures the quality of the 

inspection task and avoids collision by evaluating the 

position deviates. 
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In the future, the work space of multi-functional civil 

UAVs, such as logistics, photography, and exploration 

UAVs, and transmission line corridors can have inevitable 

intersections. The method proposed in this study also 

provides a new idea for the autonomous obstacle 

avoidance of generally using UAV. 
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