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Abstract ─In order to further exploit the sparseness 

of antenna array and speed up the convergence of 

constrained normalized LMS (CNLMS) algorithm, 

maintaining good beam pattern performance and better 

output signal-to-interferences-plus-noise ratio (SINR), 

a new method with approximation 𝑙0 -norm constraint

is proposed to improve CNLMS algorithm, and its 

derivation process is given in detail. In this newly 

proposed algorithm, the correntropy induced metric 

(CIM) is used to approximate the 𝑙0 -norm, which is

considered construct a new cost function to fully exploit 

the sparsity of the antenna array and reduced the number 

of active array elements. Using the CIM penalty, the 

proposed CIM-based CNLMS (CIM-CNLMS) algorithm 

is derived in detail, where the Lagrange multiplier 

method is utilized to solve the cost function of the 

proposed CIM-CNLMS algorithm, and the steepest 

descent principle is considered to obtain the update 

equation. The computer simulation results demonstrate 

that compared with other CLMS algorithms, the new 

algorithm obtains better performance, which greatly 

reduces the proportion of active array elements in the 

thinned antenna array. Simultaneously, the new algorithm 

has excellent beam pattern performance and better SINR 

performance with faster convergence speed and more 

stable mean square error. 

Index Terms ─ adaptive array beamforming, CNLMS 

algorithm, correntropy induced metric, 𝑙0-norm constraint,

sparse arrays. 

I. INTRODUCTION
Adaptive beamforming, an essential and elementary 

problem in array signal processing, has attracted great 

attention in many applications, including sonar, radar, 

wireless and mobile communications, seismic sensing, 

biomedical engineering [1-2]. Moreover, the Linear 

Constrained Minimum Variance (LCMV) algorithm 

proposed by Frost [3] is a well-known algorithm, which 

gives a beam in the desired direction and forms a null in 

the direction of arrival (DOA) of the interfering signal. 
The LCMV algorithm minimizes the energy output in 

order to minimize the interference of the array output and 

the noise signal energy, maintaining a constant gain 

in the desired direction of the viewing direction. The 

adaptive beamforming algorithm adjusts the weight 

vector of the antenna array to match the desired signal as 

well as the interfering signal as a function of time. The 

CNLMS algorithm is considered as the normalization 

form of the LCMV algorithm, in which the array 

elements can be adjusted in real time [4]. 

In some applications, such as radar, sonar, in order 

to achieve the desired performance, we need to use many 

array elements to achieve the goal. However, if the array 

has too many array elements, the array requires a lot of 

operations and huge amounts of energy. Consequently, 

the application of many existing beamforming algorithms 

will cost a large amount of energy consumption in the 

antenna array, and the antenna array needs to provide 

a strong calculate ability, which make the antenna 

array increase the cooling equipment with superior 

performance, resulting in complex antenna equipment 

and high cost.  
Till now, the existing algorithms solve the 

mentioned problems above. With the development of 

sparse signal processing technology, it becomes a new 

exploration direction that the algorithm of sparse signal 

processing is applied to design beamforming algorithms 

to make the weight coefficient of the array element 

toward sparse. In recent years, along with the 

development of Compressed Sensing [5], many works 

have been done in the field of sparse signal processing 
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[6-15]. In these efforts, LASSO [16] and some new 

LMS-based algorithms are developed for sparse system 

identification [6-9]. For example, the zero-attractive 

least mean square (ZA-LMS) and re-weighted ZA-LMS 

(RZA-LMS) algorithms have been proposed for this 

purpose. The ZA-LMS algorithm uses a 𝑙1-norm penalty

on the LMS cost function, which gives a zero attractor  

in the iterations. The RZA-LMS algorithm utilizes a 

re-weighted zero attractor to further improve the ZA-

LMS’s performance.  

Inspired by LASSO and the sparse LMS algorithms, 

the 𝑙1-norm constrained LMS (𝑙1-CLMS) algorithm was

proposed in [17]. After that, the new normalized version 

of 𝑙1 -CLMS ( 𝑙1 -CNLMS) [18] algorithm and its re-

weighted version ( 𝑙1 -WCNLMS) [18] with superior

performance have been proposed to make the antenna 

array element coefficients toward sparse, and the 

algorithm achieved good convergence performance. 

Recently, many re-weighted 𝑙1-norm and 𝑙𝑝-norm penalties

have been proposed and considered in [19-21]. And the 

𝑙0 -CNLMS algorithm, which applies the penalty of

approximate 𝑙0-norm to adaptive beamforming, has been

proposed in [22]. However, its computations are high 

because of the exponentiation operation.  

To better exploit the sparse characteristics of the 

antenna array, and to fully utilize the advantages of CIM 

theory for calculating the number of non-zero entries in 

the array weight vector, a new CNLMS algorithm is 

proposed by utilizing the CIM theory to reduce the 

number of active array elements under the framework of 

adaptive beamforming. In our proposed algorithm, CIM 

theory is to construct a modified CNLMS cost function 

that implements a zero attractor in CNLMS’s iterations 

with the help of Gaussian kernel theory, which is named 

as CIM-CNLMS. As a result, CIM acts as a 𝑙0 -norm

to help to speed up convergence and reduce MSE of 

the CNLMS. The simulation results demonstrate that 

the proposed CIM-CNLMS algorithm can improve the 

sparseness of the antenna array and reduce the MSE 

compared with the 𝑙1-WCNLMS algorithm. That is to

say, the proposed algorithm has better superiority than 

the 𝑙1 -WCNLMS algorithm in terms of sparsity and

MSE characteristics. The algorithms presented in this 

paper have potential applications in radar, sonar, and 5G 

antenna arrays. 

II. THE ARRARY PROCESSING

FUNDAMENTALS 
As portrayed in Fig. 1, a planar antenna array model 

consisting of M omnidirectional antenna elements 

spaced by half-wavelength is utilized to discuss adaptive 

beamforming algorithms, where 𝜆  represents the 

wavelength of the electromagnetic wave actually used. 

Assuming (L+1) narrowband signals are received by the 

antenna elements, with one signal of interest (SOI) and 

L interference signals. We assume that the horizontal 

azimuth of the SOI is 𝜃𝑆𝑂𝐼  and the horizontal azimuth of

the L interference signals is 𝜃𝑝 (p=1, 2, ..., L). Besides,

the zenith of SOI is defined as ∅𝑆𝑂𝐼  and the zeniths of

L interference signals are defined as ∅𝑝 (p=1, 2, …, L).

The received signal at the n-th snapshot is expressed as: 

𝐱(𝑛) = 𝐚𝑐𝐬(𝑛) + ∑ 𝐚𝑙𝐢𝑙(𝑛)
𝐿
𝑙=1 + 𝛈(𝑛), (1)

where 𝐚 , 𝐬(𝑛) , 𝐢𝑙(𝑛)  and 𝛈(𝑛)  are the steering matrix

related to the SOI and interference signal, the complex 

signal envelope vector as well as zero-mean Gaussian 

white noise vector, respectively. We assume that the 

SOI, interfering signals, and noise are statistically 

independent of each other. 

Under these assumptions, the SINR of the 

beamformer is calculated using the following equation: 

𝐒𝐈𝐍𝐑𝑜𝑢𝑡 =
𝐰H𝐑𝑠𝐰

𝐰H𝐑ξ𝐰
 , (2) 

where 𝐰 represents the weight coefficient vector of a 

M×1 dimensional, and 𝐑ξ  represents the covariance

matrix of the interfering signal plus noise, 𝐑s represents

the covariance matrix of the SOI. Then, we have: 

 {
𝐑𝑠 = 𝐚𝑐𝐬(𝑛)𝐬(𝑛)

H𝐚𝑐
H,

𝐑ξ = 𝐀𝑘𝐈(𝑛)𝐈(𝑛)
H𝐀𝑘

H + 𝛈(𝑛)𝛈(𝑛)H,
 (3) 

where 𝐀𝑘 represents the steering matrix of L interfering

signals, and I represents the interfering signal matrix 

composed of L interfering signals. 

The output signal y(𝑛) of the planar array at the nth 

snapshot can be expressed as: 

y(𝑛) = 𝐰H𝐱(𝑛). (4)

Fig. 1. Beamforming model. 

III. THE CLMS ALGORITHM AND THE

CNLMS ALGORITHM 

A. The CLMS algorithm

The specific results of the LCMV algorithm are

presented in [3], in which the weight vector representation 

of the LCMV algorithm is expressed as: 

𝐰opt = 𝐑−1𝐂(𝐂H𝐑−1𝐂)−1𝐅, (5)

where 𝐑 is the covariance matrix of the array input data 

and is defined as 𝐸(𝐗𝐗H), C is the constraint matrix of
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the array, and F denotes the constraint vector whose 

elements are related to the signal and interference of 

interest, (∙)H is the conjugate transpose operator. 

The CLMS algorithm adopts an adaptive filtering 

technique, which can effectively increase the gain of  

the SOI and at the same time better attenuates the 

interference signals from other directions. 

The following variables are defined as: 𝑒𝑛 ∈ ℂ, ℂ 

represents the set of complex numbers, 𝑒𝑛 represents the 

estimation error of the adaptive filter, 𝐰 ∈ ℂ𝑀 , 𝐰 

represents the vector of the coefficients, 𝐱𝑛 ∈ ℂ
𝑀 , 𝐱𝑛 

represents a vector composed of input signals, 𝑑𝑛 ∈ ℂ, 

𝑑𝑛  represents the desired signal. Using the minimum 

mean square error criterion, the linear constraint minimum 

problem can be expressed mathematically as: 

  𝐸[|𝑒𝑛
2|]𝐰

min    s. t.  𝐂H𝐰 = 𝐅, (6) 

where 𝑒𝑛 = 𝑑𝑛 −𝐰
H𝐱𝑛 . 𝐂  represents an 𝑀 × (𝐿 + 1) 

constraint matrix, and 𝐅  represents a corresponding 

constraint vector containing (L+1) elements. 

To solve this mathematical problem, the Lagrange 

multiplier is used to construct a cost function, which is 

given by: 

 G(𝑛) = 𝐸[|𝑒𝑛|
2] + 𝛄H(𝐂H𝐰− 𝐅), (7) 

where 𝛄 represents a Lagrange multiplier. To solve this 

cost function, the gradient descent principle is utilized 

for getting the optimal solution of the cost function. 

Firstly, the two sides of the equation (7) are derived 

with respect to 𝐰, and the following equation can be 

obtained: 

 𝛁𝐰G(𝑛) = −2𝐸[𝑒𝑛
∗𝐱𝑛] + 𝐂𝛄, (8) 

where 𝛁𝐰G(𝑛) denotes the gradient vector. 

In the real-time estimation, the equation (8) can be 

written as: 

 𝛁𝐰G(𝑛) = −2𝑒𝑛
∗𝐱𝑛 + 𝐂𝛄. (9) 

Using the gradient descent principle, the update 

equation in the objective function is expressed as: 

 𝐰𝑛+1 = 𝐰𝑛 −
μ

2
𝛁𝐰G(𝑛). (10) 

Substituting (8) into (10), we can get the final update 

equation: 

 𝐰𝑛+1 = 𝐰𝑛 + μ𝑒𝑛
∗𝐱𝑛 −

μ

2
𝐂𝛄. (11) 

Multiply both sides of (11) by 𝐂H, and combine (6) 

to find 𝛄: 

 𝛄 = (𝐂H𝐂)−1 (
2

μ
𝐂H𝐰𝑛 + 2e𝑛

∗𝐂H𝐱𝑛 −
2

μ
𝐅). (12) 

Re-substituting the obtained result (12) into (11) 

gives the updated equation: 

 𝐰𝑛+1 = 𝐏(𝐰𝑛 + μe𝑛
∗ 𝐱𝑛) + 𝐅𝐳. (13) 

In equation (13), we have: 

 𝐏 = 𝐈𝑀×𝑀 − 𝐂(𝐂
H𝐂)−1𝐂H, (14) 

 𝐅𝐳 = 𝐂(𝐂
H𝐂)−1𝐅. (15) 

 

B. The CNLMS algorithm 

In the CLMS algorithm, the value of the step size 𝜇 

is fixed. In order to speed up the convergence of the 

CLMS algorithm, the square of the posterior a posteriori 

error with respect to the step size at the snapshot point n 

can be minimized [4], [23]:  

 
𝜕[|𝑒𝑎𝑝(𝑛)|

2
]

𝜕𝑢𝑛
∗ =

𝜕[𝑒𝑎𝑝(𝑛)𝑒𝑎𝑝
∗ (𝑛)]

𝜕𝜇𝑛
∗ = 0, (16) 

where 𝑒𝑎𝑝(𝑛) = 𝑑𝑛 −𝐰𝑛+1
H 𝐱𝑛 = 𝑒𝑛(1 − 𝑢𝑛𝐱𝑛

H𝐏𝐱𝑛). 

Solving (16), the step-size at the nth snapshot point 

can be obtained: 

 𝜇𝑛 =
𝜇0

𝐱𝑛
H𝐏𝐱𝑛+𝛽

, (17) 

where 𝜇0 is a fixed step size, which is the initial value of 

the algorithm's step size, and 𝛽 is positive that is close to 

zero which is to prevent the denominator from being zero 

in (17). 

After the previous calculations, the update equation 

of the CNLMS algorithm is as: 

 𝐰𝑛+1 = 𝐏 [𝐰𝑛 + 𝜇0
𝑒𝑛
∗𝐱𝑛

𝐱𝑛
H𝐏𝐱𝑛+𝛽

] + 𝐅𝐳. (18) 

 

IV. THE PROPOSED CIM-CNLMS 

ALGORITHM 
In our proposed algorithm, the CIM is considered to 

approximate the 𝑙0-norm to create a new cost function 

based on entropy theory [24-26]. As we know, the 

similarity between two vectors 𝐗  and 𝐘  is measured 

using correntropy theory. The mathematical definition of 

the correlation entropy is presented as: 

 V(𝐗, 𝐘) =
1

𝑀
∑ 𝑘(𝑥𝑖 , 𝑦𝑖)
𝑀
𝑖=1 , (19) 

where 𝐗 = [𝑥1, 𝑥2, … , 𝑥𝑀], 𝐘 = [𝑦1 , 𝑦2, … , 𝑦𝑀],and 𝑘(. ) 
is a regenerative kernel function. In the equation, the 

Gaussian kernel function is given by: 

 𝑘(𝑥, 𝑦) = 𝑘(𝑥 − 𝑦) =
1

√2πσ
exp (−

‖𝑥−𝑦‖2

2σ2
), (20) 

where σ  is the kernel width. The 𝑙0 -norm of an M-

dimensional vector 𝐰 = [w1, w2, … , w𝑀]  is defined 

mathematically as: 

 ‖𝐰‖0 = card{𝑤𝑖: 𝑤𝑖 ≠ 0}, (21) 

where the 𝑙0-norm of the vector 𝐰 is the number of non-

zero entries in 𝐰 and card is set the cardinality [27]. 

As we know, solving 𝑙0-norm is an NP hard problem 

[27]. Hence, continuous function is often utilized to 

approximate 𝑙0 -norm [28]. In our proposed algorithm, 

the CIM theory is used to approximate the 𝑙0-norm to 

further develop the sparsity of the CNLMS algorithm. 

Therefore, our approximation 𝑙0-norm approximation:  

‖𝐰‖0~CIM(𝐰, 0) = √k(0) −
1

M
∑k(w𝑖 , 0)

M

i=1

 

 = √
k(0)

M
∑ {1 − exp (−

w𝑖
2

2σ2
)}M

𝑖=1  . (22) 

To simplify the expression in (22), the square  

root operation in (22) is removed, resulting in the 

approximation:  

‖𝐰‖0~CIM
2(𝐰, 0) =

k(0)

M
∑ {1 − exp (−

w𝑖
2

2σ2
)}M

𝑖=1 , (23) 

with 𝑘(0) =
1

√2𝜋𝜎
. 
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Then, a 𝑙0-norm penalty on the filter coefficients is

integrated in the cost function of the LMS algorithm 

to accelerate coefficient convergence. In our proposed 

algorithm, a new 𝑙0-CNLMS algorithm is developed for

adaptive beamforming control to make the coefficients 

toward sparseness: 

𝐸[|e𝑛|
2]  s. t. {

𝐂H𝐰 = 𝐅,
‖𝐰‖0 = 𝑡,𝐰

min  (24)

where ‖𝐰‖0 represents the number of non-zero entries

in  𝐰, and t represents the constraint value of the 𝑙0-norm

of 𝐰. 

The cost function with 𝑙0-norm penalty is defined as:

G𝑛
𝑙0 = E[|e𝑛|

2] + 𝛄H(𝐂H𝐰− 𝐅) + γ1(‖𝐰‖0 − t). (25)

According to (23), we can rewrite (25) as: 

G𝑛
𝑙0 = E[|e𝑛|

2] + 𝛄H(𝐂H𝐰− 𝐅)

+γ1 {
1

M√2πσ
∑ [1 − exp (−

w𝑖
2

2σ2
)]M

𝑖=1 − 𝑡  }. (26) 

Then, we have: 

{

𝛁𝐰G𝑛
𝑙0 = −2e𝑛

∗ 𝐱𝑛 + 𝐂𝛄 + γ1𝐉n,

𝐉𝑛 =
1

M√2πσ3
[w1exp(

−w1
2

2σ2
) ,… ,w𝑀exp(

−w𝑀
2

2σ2
)]

H

.

  (27) 

According to the gradient descent principle, the 

weight coefficient update equation of the CIM-CNLMS 

algorithm can be obtained: 

𝐰𝑛+1 = 𝐰𝑛 −
μ

2
{−2e𝑛

∗ 𝐱𝑛 + 𝐂𝛄 + γ1𝐉𝑛}. (28)

Next, the coefficient 𝛄  is gotten by multiplying 

𝐂H  at both sides of (28). According to the constraint

condition, 𝐂H𝐰𝑛 = 𝐂
H𝐰𝑛+1 = 𝐅, we get,

𝛄 = (𝐂H𝐂)−1𝐂H(2e𝑛
∗ 𝐱𝑛 − γ1𝐉𝑛). (29)

Here, we assume that the update equation in the 

algorithm has tended to converge, i.e., 𝐰𝑛 = 𝐰𝑛+1. The

approximation condition 𝐉𝑛
H𝐰𝑛+1 = t is proposed in [8]

because 𝐰𝑛 and 𝐰𝑛+1 are in the same quadrant. So, we

have the constraints: 

𝐉𝑛
H𝐰𝑛+1 = t,    𝐉𝑛

H𝐰𝑛 = t𝑛. (30) 

By multiplying the left and right sides of the 

equation in (28) by 𝐉n
H,  the equation is obtained:

t = t𝑛 −
𝜇

2
{−2𝑒𝑛

∗𝐉𝑛
H𝐱𝑛 + 𝐉𝑛

H𝐂𝛄 + γ1𝐉𝑛
H𝐉𝑛}. (31)

Substituting the results in (29) into equation (31) 

and separating 𝛾1, we have:

γ1 = −
2

𝜇r
𝑒0(𝑛) +

2𝑒𝑛
∗ 𝐉𝑛
H𝐏𝐱𝑛

r
 , (32) 

where r = 𝐉𝑛
H𝐏𝐉𝑛 is a scalar, and 𝑒0(𝑛) = t − t𝑛.

Substituting (29) and (32) into (28), the final update 

equation is obtained: 

𝐰𝑛+1 = 𝐰𝑛 +
𝑒0(𝑛)

r
𝐏𝐉𝑛 + 𝜇𝑒𝑛

∗ (𝐏𝐱𝑛 −
𝐉𝑛
H𝐏𝐱𝑛𝐏𝐉𝑛

r
). (33) 

We set: 

{

r = 𝐉𝑛
H𝐏𝐉𝑛,

𝑒0(𝑛) = t −    𝐉𝑛
H𝐰𝑛 ,

𝐅0(𝑛)=
e0(𝑛)

r
𝐏𝐉𝑛  ,

c=
𝐉𝑛
H𝐏𝐱𝑛
r

  .

(34) 

Then (33) can be written as: 

𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑒𝑛
∗𝐏(𝐱𝑛 − c𝐉𝑛) + 𝐅0(𝑛). (35)

The previously derived normalized version of the 

CLMS algorithm is utilized in the 𝑙0-CLMS algorithm

and l0-norm is approximated using CIM. Substituting (35) 

into 𝑒𝑎𝑝(𝑛) = 𝑑𝑛 −𝐰𝑛+1
H 𝐱𝑛 gives the equation:

 𝑒𝑎𝑝(𝑛) = 𝑒𝑛[1 − 𝜇𝑛(𝐱𝑛
H − c∗𝐉𝑛

H)𝐏𝐱𝑛] − 𝐅0
H(𝑛)𝐱𝑛. (36)

Based on the previous derivation of the CNLMS 

algorithm, the step size of the new CIM -CNLMS 

algorithm is realized and given by: 

𝜇𝑛 =
μ0[𝑒𝑛−𝐅0

H(𝑛)𝐱𝑛]

𝑒𝑛(𝐱𝑛
H−c∗𝐉𝑛

H)𝐏𝐱𝑛+𝛼
 . (37) 

A fixed convergence control factor 𝜇0 is introduced

to control the offset, and 𝛼 is a positive parameter that 

is close to 0 to prevent the denominator from being 0 

in the equation (37). By substituting (37) into (35), the 

updating equation of the new CIM-CNLMS is obtained 

and presented as: 

𝐰𝑛+1 = 𝐰𝑛 + 𝜇𝑛e𝑛
∗𝐏(𝐱𝑛 − c𝐉𝑛) + 𝐅0(𝑛), (38) 

where  

{

𝐏 = 𝐈𝑀×𝑀 − 𝐂(𝐂
H𝐂)−1𝐂H,

c =
𝐉𝑛
H𝐏𝐱𝑛

r
 ,

𝑒𝑛 = 𝑑𝑛 −𝐰
H𝐱𝑛 ,

𝜇𝑛 =
𝜇0[e𝑛−𝐅0

H(𝑛)𝐱𝑛]

𝑒𝑛(𝐱𝑛
H−c∗𝐉𝑛

H)𝐏𝐱𝑛+𝛼
 ,

r = 𝐉𝑛
H𝐏𝐉𝑛 ,

𝐅0(𝑛) =
𝑒0(𝑛)

r
𝐏𝐉𝑛 .

(39) 

V. SIMULATION RESULTS
In this section, we constructed several simulation 

experiments to test the performance of the proposed 

algorithm, whose performance is compared with the 

algorithms mentioned in the previous references [18]. 

The signals used in the simulation experiment are QPSK 

signals, four interference signals and one SOI signal. The 

horizontal azimuth of the SOI signal is 90° , and the

horizontal azimuth of the four interference signals are 

respectively 80° , 22° , 52° , 147° . The zeniths of all the

signals are 45°. The signal-to-noise ratio (SNR) is set to

20 dB, and the interference-to-noise ratio (INR) is set to 

40 dB. The frequency for all the experiments is 2 GHz. 

These signals are received by a regular hexagonal array 

(HA) with 91 elements. In the simulation, the initial 

steps 𝜇0  for the CIM-CNLMS algorithm, the CNLMS

algorithm, and the 𝑙1-WCNLMS algorithm are 8 × 10−2,

5 × 10−3 , 5 × 10−2 , respectively. In the simulation

experiment, the constraint factor t of the CIM-CNLMS 

algorithm is 0.4, and the constraint factor t of the  

𝑙1 -WCNLMS algorithm is 1.07. In the simulation

experiment, the number of iterations of the data is 12000. 

In the experiment,  𝜎 = 0.0032  is used in the CIM-

CNLMS algorithm. 

Figure 2 shows the beam pattern performance of 
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the proposed algorithm, and compares the beam pattern 

performance of the proposed algorithm with other existing 

algorithms. Our proposed CIM-CNLMS algorithm forms 

a null at the horizontal incident angle of the interfering 

signal, providing almost identical main lobe at the 

incident direction of the SOI. In addition, we can clearly 

see in the figure that the proposed algorithm has 

lower side lobe level (SLL) compared to 𝑙1-WCNLMS. 
Therefore, the proposed algorithm has better beam 

performance than the 𝑙1-WCNLMS algorithm.

Fig. 2. Beam patterns comparison of CIM-CNLMS 

algorithm with the LCMV, CNLMS and 𝑙1-WCNLMS

algorithms. The pink dot lines represent the interferences, 

and the black dot line represents the SOI. 

Figure 3 (a) is a sparse array generated by proposed 

CIM-CNLMS algorithm. The number of active array 

elements is 44 in an array with 91 elements, resulting in 

the sparsity of our proposed algorithm of 48.4%. Figure 

3 (b) is a sparse array generated by the 𝑙1 -WCNLMS

algorithm. The number of active array elements is 64, 

leading to the sparseness of the sparse array of 70.3%. 

Comparing the two previous algorithms, we can clearly 

see that our proposed CIM-CNLMS algorithm is far 

superior to the 𝑙1-WCNLMS algorithm in terms of the

finalized sparsity and the performance. 
Figure 4 shows the MSE of the three algorithms, 

where the blue line represents the MSE of the CNLMS 

algorithm, the red line represents the MSE of the 

proposed CIM-CNLMS algorithm, and the yellow line 

denotes the MSE  of the 𝑙1-WCNLMS algorithm. From

the figure, the proposed algorithm has the same MSE 

value as the 𝑙1-WCNLMS algorithm after convergence,

but our proposed algorithm converges at 1000th iteration, 

while the 𝑙1-WCNLMS algorithm converges at 4000th

iteration, and the CNLMS algorithm converges at the 

8000th iteration. Therefore, the proposed algorithm 

converges the fastest. It is not difficult to conclude that 

the proposed algorithm has the best MSE performance 

among these algorithms. 

(a) Sparse array thinned by CIM-CNLMS algorithm

(b) Sparse array thinned by 𝑙1-WCNLMS algorithm

Fig. 3. The thinned sparse arrays with black dots of active 

array elements and white dots of inactive array elements. 

Fig. 4. Convergence of the proposed CIM-CNLMS 

algorithm. 

The SINR results of the CIM-CNLMS are presented 

in Fig.5. From Fig.5, we can see that the SINR of the 
proposed CIM-CNLMS algorithm is better than the 𝑙1-

WCNLMS algorithm. However, it should be further 
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improved to get a nearly same SINR with the optimal 

one. The proposed algorithm can also be used for sparse 

DOA applications like [29] and uses the block norm in 

[30-33]. In addition, the proposed techniques can also be 

used in MIMO arrays [34-36] and UAV systems [37]. 

Fig. 5. SINR of the proposed CIM-CNLMS algorithm. 

VI. CONCLUSION
In this paper, an improved adaptive beamforming 

algorithm, which is named as correntropy induced 

metric based constrained normalized least mean square 

(CIM-CNLMS), has been proposed and investigated 

for thinning arrays to reduce the computations and 

exploiting the sparsity. The CIM-CNLMS algorithm 

remained main lobe in the direction of SOI, and 

suppressed the interferences using nulls in the direction 

of the interferences. The simulation results demonstrated 

that the proposed CIM-CNLMS algorithm reduces 

the number of active array elements for achieving the 

desired performance like the 𝑙1 -WCNLMS algorithm.

Additionally, the proposed algorithm has good beam 

pattern performance and better MSE performance in 

comparison with the popular algorithms mentioned in 

this paper. In addition, the output SINR of the proposed 

algorithm is better than the 𝑙1-WCNLMS algorithm.
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