
485 ACES JOURNAL, Vol. 37, No. 4, April 2022

Research on EMI of Traction Network Transient Current Pulse on Shielded
Cable Terminal Load

Yingchun Xiao1,2, Feng Zhu1,*, Shengxian Zhuang1, and Yang Yang1

1School of Electrical Engineering
Southwest Jiaotong University, Chengdu, 611756, China

1134748712@qq. com, zhufeng@swjtu.cn, sxzhuang@swjtu.edu.cn, 280899254@qq.com

2Lanzhou City University, Lanzhou, 730070, China

Abstract – The transient current pulse (TCP) caused
by the traction network short-circuit fault (TNSF) will
produce a high-strength transient electromagnetic field
(TEMF). The electromagnetic field will interfere with
nearby weak current equipment through the shielded ca-
ble. In this paper, a transient circuit model (TCM) for
the short-circuit traction network is proposed to calcu-
late the transient current. The short circuit is equivalent
to a ring, and the TEMF transient electromagnetic field
is calculated based on the magnetic dipole. The current
response of the TEMF transient electromagnetic field on
the shielded cable is deduced based on the transmission
line theory and verified by experiments. The electromag-
netic interference (EMI) of a TEMF transient electro-
magnetic field to the shielded cable terminal load were
was studied under various incidence angles, azimuth an-
gles, and polarization angles. The results demonstrate
that the greater the incident angle and azimuth angle, the
greater the EMI on the terminal load. The horizontal
distance between the shielded cable head and the short-
circuit point should be greater than 6 m, and the incident
angle should be greater than 45◦. This method can pro-
vide a theoretical basis for the electromagnetic compati-
bility research of traction power supply systems and their
nearby weak current equipment.

Index Terms – Traction network short-circuit current
pulse, transient electromagnetic field, shielded cable,
current response, electromagnetic interference (EMI).

I. INTRODUCTION
Cables are the medium for the effective transmis-

sion of energy and information between systems. Due
to its special structure, it is easy to couple with exter-
nal electromagnetic signals, causing interference or even
damage to the terminal equipment [1]. Cables are also
the main way to introduce electromagnetic interference
(EMI) [2, 3]. Shielded cables cannot completely shield
external magnetic signals. The induced current on the
shielding layer can be coupled to the inner conductor

through transfer impedance [4, 5]. In the traction net-
work system, the harmonic current of the rail will in-
terfere with the communication system nearby. Gener-
ally, there are multiple grounding branches to avoid the
interference of harmonic currents [6]. However, when
a short-circuit fault occurs in the traction network, or
a short-circuit experiment, the amplitude of the short-
circuit current increases rapidly [7], and transient current
pulses (TCP) will be generated. The large transient cur-
rent propagates along the transmission line (TL), which
will form a strong magnetic field and radio interference,
thereby affecting electrical equipment through the cable
[8–11]. Therefore, it is necessary to study the EMI of
the transient electromagnetic field (TEMF) caused by
the traction network short-circuit fault (TNSF) on the
shielded cable terminal load.

In order to analyze the influence of the TNSF on the
shielded cable terminal load, the traction network tran-
sient current and the coupling to the shielded cable need
to be studied. The circuit model of traction power supply
system mainly includes equivalent circuit model, gener-
alized symmetrical component model, and chain circuit
model. Among them, the chain circuit model is more
suitable for the simulation calculation of the traction net-
work, and the generalized symmetric component model
is more suitable for the theoretical analysis of the multi-
rail traction network [12]. These models are mostly used
to calculate current at 50 Hz. When analyzing transient
processes induced by TNSF, however, the parameters at
50 Hz are insufficient, and transmission TL frequency
characteristics must be studied in depth. The electro-
magnetic transients program (EMTP) is used to simu-
late a short-circuit fault by establishing an equivalent cir-
cuit of a substation in [6]. However, the TEMF caused
by short-circuit current pulse is not discussed. Many
studies investigate the transmission TL”s radiation prob-
lem by treating the contact line as a long wire made
up of an infinite number of unit dipoles. For example,
based on transmission TL theory, [13] established a ra-
diation model under impedance matching. An improved
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approximation method based on Hertzian dipole and a
numerical method based on the finite element method al-
gorithm are proposed to calculate the radiation of a coax-
ial cable [14, 15]. The circuit model for conducted and
radiation interference on an electric railway contact line
under the condition of overvoltage is established in [16],
and the two types of interference are analyzed using the
finite difference time domain method and segmented line
technology, with the induced voltage on the cable cal-
culated. However, when the traction network is short-
circuited, a short-circuit loop will be formed. The elec-
tromagnetic radiation model of the contact wire based on
the long wire has limitations.

The coupling models of electromagnetic field to ca-
bles include the classic Taylor Model [17], Agrawal
Model [18], and Rachidi Model [19]. These three cou-
pling models consider electromagnetic coupling in dif-
ferent ways but predict the same results in terms of to-
tal voltage and total current [20]. In [21], the electro-
magnetic radiation generated by the off-line arc of the
electrified railway pantograph is equivalent to the paral-
lel wave excitation. The induced current distribution on
the contact line is studied based on the TL distributed pa-
rameter circuit. A closed time-domain coupling model
is proposed in [22], which can effectively calculate the
time-domain voltage generated by a pulsed electromag-
netic plane wave on an ideal conductive plane. In [23],
the exposed cable is equivalent to a vertical monopole
antenna and studied the coupling model of nuclear elec-
tromagnetic pulses to the exposed cable. These methods
assume that the shielded cable is parallel to the TL and do
not analyze the EMI of the electromagnetic field on the
cable terminal load when it is under different conditions.

In order to study the EMI of the traction network
TCP on the shielded cable terminal load, a transient cir-
cuit model (TCM) is established and the shielded cable
terminal response is calculated. The main contributions
are summarized as follows:

1) Taking into account the single reignition when the
circuit breaker is opened, a TCM for the short-
circuit traction network is established to calculate
the time-domain transient current;.

2) The short-circuited contact wire loop is equivalent
to a loop antenna, and the TEMF is calculated based
on the magnetic dipole;.

3) Considering the transfer impedance and transfer ad-
mittance between the shielding layer and the in-
ner conductor, calculate the current response of the
shielded cable based on the Agrawal Model, and
analyze the EMI according to the power of the
shielded cable terminal load.

The remainder of the paper is organized as follows.
Section II briefly introduces the transient current and

TEMF after the traction network is short-circuited. The
response of the TEMF to the shielded cable terminal load
is described in Section III. Section IV verifies the meth-
ods proposed in this article through simulation experi-
ments and test experiments, and conclusions are drawn
in Section V.

II. THE TRANSIENT PROCESS OF THE
SHORT-CIRCUIT TRACTION NETWORK

The circuit breaker of the traction substation will
open due to a short-circuit fault in the traction network,
cutting off the contact wire. The electromagnetic field
and electromagnetic energy will change as a result of the
short circuit and the circuit breaker opening. The gen-
erated electromagnetic wave propagates along the line,
causing a transient oscillation process. The frequency
of the oscillation is determined by the transmission TL”s
wave impedance, transmission time, and associated ca-
pacitance and inductance. A TCM for the short-circuit
traction network is established to calculate the transient
current and the TEMF.

A. TCM for short-circuit traction network
In addition to contact wire and rail, there are other

auxiliary wires in the traction network. According to
the Carson theory [24], each wire forms a loop with the
ground, and the self-impedance of each wire and the mu-
tual impedance between them can be calculated. Due
to the admittance between the rail and the ground, part
of the rail current flows into the substation to form a
ground current. A part of the ground current returns
to the substation through the grounding network. Tak-
ing into account the leakage reactance of the rail to the
ground, the simplified double-wire traction network cir-
cuit model is shown in Figure 1. zI and zII are the self-
impedances of the two contact wire-ground loops, and
zI = zII. zIII is the impedance of the rail-ground loop.
zI−III is the mutual impedance between the two loops.
The admittance per unit length between the rail and the
ground is Y . ZE is the grounding resistance of the trac-
tion substation, and Z0 is the characteristic impedance of
the rail.

According to the contact wire I-rail circuit, we
can get,

U̇1−U̇ ′1 = zI İl−
∫ l

0
zI−III İT (x)dx

+
∫ l

0
zIII İT (x)dx− zI−III İl

=

(
zI−

z2
I−III

zIII

)
İl +

(zIII− zI−III)
2

2zIII
√

zIIIy

·
[(

1− e−γl
)
− 2ZE +Z0e−γl

Z0 +2ZE

(
e−γl−1

)]
· İ.

(1)
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approximation method based on Hertzian dipole and a 
numerical method based on the finite element method 
algorithm are proposed to calculate the radiation of a 
coaxial cable [14, 15]. The circuit model for conducted 
and radiation interference on an electric railway contact 
line under the condition of overvoltage is established in 
[16], and the two types of interference are analyzed 
using the finite difference time domain method and 
segmented line technology, with the induced voltage on 
the cable calculated. However, when the traction 
network is short-circuited, a short-circuit loop will be 
formed. The electromagnetic radiation model of the 
contact wire based on the long wire has limitations. 

The coupling models of electromagnetic field to 
cables include the classic Taylor Model [17], Agrawal 
Model [18], and Rachidi Model [19]. These three 
coupling models consider electromagnetic coupling in 
different ways but predict the same results in terms of 
total voltage and total current [20]. In [21], the 
electromagnetic radiation generated by the offline arc 
of the electrified railway pantograph is equivalent to the 
parallel wave excitation. The induced current 
distribution on the contact line is studied based on the 
TL distributed parameter circuit. A closed time-domain 
coupling model is proposed in [22], which can 
effectively calculate the time-domain voltage generated 
by a pulsed electromagnetic plane wave on an ideal 
conductive plane. In [23], the exposed cable is 
equivalent to a vertical monopole antenna and studied 
the coupling model of nuclear electromagnetic pulses to 
the exposed cable. These methods assume that the 
shielded cable is parallel to the TL and do not analyze 
the EMI of the electromagnetic field on the cable 
terminal load when it is under different conditions. 

In order to study the EMI of the traction network 
TCP on the shielded cable terminal load, a transient 
circuit model (TCM) is established and the shielded 
cable terminal response is calculated. The main 
contributions are summarized as follows: 

1) Taking into account the single reignition when 
the circuit breaker is opened, a TCM for the short-
circuit traction network is established to calculate the 
time-domain transient current. 

2) The short-circuited contact wire loop is 
equivalent to a loop antenna, and the TEMF is 
calculated based on the magnetic dipole. 

3) Considering the transfer impedance and transfer 
admittance between the shielding layer and the inner 
conductor, calculate the current response of the shielded 
cable based on the Agrawal Model and analyze the EMI 
according to the power of the shielded cable terminal 
load. 

The remainder of the paper is organized as follows. 
Section II briefly introduces the transient current and 
TEMF after the traction network is short-circuited. The 
response of the TEMF to the shielded cable terminal 

load is described in Section III. Section IV verifies the 
methods proposed in this article through simulation 
experiments and test experiments, and conclusions are 
drawn in Section V. 
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Fig. 1. Circuit model of double-wire traction network. 
 

According to the contact wire I-rail circuit, we can 
get 

Fig. 1. Circuit model of double-wire traction network.

( ) ( )

( )

( ) ( )

1 1 I I-III III I-III0 0
22

III I-IIII-III
I

III III III

0

0

'

            
2

2
             1 1 .

2

l l

T T

l
l lE

E

U U z Il z I x dx z I x dx z Il

z zzz Il
z z z y

Z Z e
e e I

Z Z

γ
γ γ

−
− −

− = − + −

− 
= − + 
 

 +
⋅ − − − ⋅ + 

∫ ∫     





        (1) 

Therefore, the impedance per unit length of the 
contact wire is 

( )

( ) ( )

1 1

22
III I-IIII-III

I
III III III

0

0

'' ' '

     
2

2 1      1 1 ,
2

T T T

l
l lE

E

U UZ R j L
Il

z zzz
z z z y

Z Z e
e e

Z Z l

γ
γ γ

ω

−
− −

−
= + =

− 
= − + 
 

 +
⋅ − − − ⋅ + 

 



   (2) 

where γ  is the propagation coefficient of the trail. 

IIIz yγ = , and 0 IIIZ z y= . Traction network 
impedance includes linear components and nonlinear 
components. It can be seen that when l  is large, the 
nonlinear components can be ignored in a sinusoidal 
steady state circuit. However, when the current 
frequency is high, the nonlinear components cannot be 
ignored. Iz , IIz , IIIz , and I-IIz  can all be calculated 
according to the traction network parameters [25]. 

When the traction network is short-circuited, the 
contacts of the circuit breaker will be disconnected, and 
an arc will be generated. The arc will be extinguished 
when the current crosses zero. Circuit breaker arc is the 
main cause of high-frequency transient current and 
TEMF. The frequency of multiple reignitions caused by 
circuit breaker opening can reach 1 MHz [26]. The 
electromagnetic wave wavelength λ  is 300 m. Based 
on the lumped parameter model of the contact wire, we 
established a TCM for traction network short-circuit, as 
shown in Figure 2.  
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Fig. 2. TCM for traction network short-circuit. 
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where a  and h  are the radius and height of the contact 
wire, and 0ε  is the vacuum dielectric constant. 
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where γ is the propagation coefficient of the trail. γ =
√

zIIIy, and Z0 =
√

zIII
/

y. Traction network impedance
includes linear components and nonlinear components.
It can be seen that when l is large, the nonlinear compo-
nents can be ignored in a sinusoidal steady state circuit.
However, when the current frequency is high, the nonlin-
ear components cannot be ignored. zI, zII, zIII, and zI−II
can all be calculated according to the traction network
parameters [25].

When the traction network is short-circuited, the
contacts of the circuit breaker will be disconnected, and
an arc will be generated. The arc will be extinguished
when the current crosses zero. Circuit breaker arc is
the main cause of high-frequency transient current and
TEMF. The frequency of multiple reignitions caused by
circuit breaker opening can reach 1 MHz [26]. The elec-
tromagnetic wave wavelength λ is 300 m. Based on
the lumped parameter model of the contact wire, we es-
tablished a TCM for traction network short-circuit, as
shown in Figure 2.

It includes traction transformers, circuit breakers,
and contact wires. D is the length of a power supply arm,

and the distance between the short-circuit point and the
substation is l. uS is a 27.5 5-kV AC voltage source pro-
vided by the substation for the contact wire. RS and LS
are the equivalent resistance and inductance of the trans-
former in the substation, respectively. They can be calcu-
lated by the electrical parameters of traction transformer.

C′T is the capacitance per unit length of the contact
line to the ground, and it is

C′T =
2πε0

ln
(
2h
/

a
) , (3)

where a and h are the radius and height of the contact
wire, and ε0 is the vacuum dielectric constant.

B. The transient current
Suppose that when t = 0, the traction network is

short-circuited, and when t = t1, the contacts of the cir-
cuit breaker are disconnected. Before the traction net-
work is short-circuited, the traction system works nor-
mally. The voltage on the contact wire is uS (t) =
US sin(ωt +ψ0u), and the frequency is 50 Hz. The
impedance of the train body is X , while the equivalent re-
sistance, equivalent inductance, and ground capacitance
of the short-circuit point to the substation are RT , LT , and
CT , respectively. As a result, the current flowing across
the contact wire is

i(t≤0) (t) =
US sin(ωt +ψ0u−ϕ0)√

(RS +RT )
2 +
(
ωLS +ωLT +ωCT − 1

X

)2
.

(4)
The voltage on the CT is

uc(t≤0) (t)=
US
∣∣ωCT − 1

X

∣∣cos(ωt +ψ0u−ϕ0)√
(RS +RT )

2 +
(
ωLS +ωLT +ωCT − 1

X

)2
,

(5)
where ψ0u is the initial phase of us, and ϕ0 is the phase
difference between the voltage and current before the
contact wire is short-circuited. So,

tanϕ0 =
ω (LS +LT +CT )− 1

X
RS +RT

. (6)

When t = 0, the contact wire is short-circuited. Ac-
cording to Figure 2, the transient circuit can be expressed
as

(LS +LT )CT
d2uc (t)

dt
+(RS +RT )

CT
duc (t)

dt
+uc (t) = uS (t) . (7)

According to the initial values provided by equation
(4) and (5), the current i(t) when 0 < t ≤ t1 can be cal-
culated, as

i(0<t≤t1) (t) =
US cos(ωt +ψ0u−ϕ1)

W1

+A1P1CT eP1t +A2P2CT eP2t , (8)
where ϕ1, W1, P1, P2, A1, and A2 are,

ϕ1 = arctan
ω (LS +LT )− 1

ωCT

RS +RT
, (9)
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√
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+
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When t = t1, the contact of the circuit breaker is
disconnected and an arc is generated. When the current
crosses zero, the arc is extinguished, and the contact wire
is truly disconnected. According to Figure 2, we can get,
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electromagnetic field theory, when the shielded cable is 
in the near field of the radiation field, the 
electromagnetic field at P can be expressed as 
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where I and f are the effective value and frequency of 
the transient current, and c  is the speed of the wave in 
free space. 377 η ≈ Ω  for wave impedance in free 
space, 2k f cπ=  for propagation constant. Q small 
circles are represented in the form of a matrix. The 
distance between the small circle in m row and n 
column to P can be expressed as 

( )( ) ( ) 22 22 1 2n 1 ,mn y xr m da D D da= − + + − −
     

(29) 

where 1 2m h da≤ ≤ , 1 2n l da≤ ≤ . 
 Let ( )2n 1xx xD D da= − − ; the TEMF at P can be 

expressed as 
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(31) 
It can be seen that the TEMF generated by the 

TNSF on the shielded cable is related to the height of 

the contact wire, the distance from the short-circuit 
point, the amplitude and frequency of the transient 
current, and the location of the shielded cable. 
 

III. THE RESPONSE ON THE SHIELDED 
CABLE  

If the cables of weak-current equipment are 
exposed, they are easily coupled by electromagnetic 
fields. Disturbance voltage and disturbance current are 
induced and enter the equipment along the inner 
conductor to cause EMI. We calculated the response 
of the TEMF on the shielded cable based on the TL 
theory. A shielded cable includes a shielding layer and 
an inner conductor, which is defined as two 
independent TLs. The electromagnetic field generates 
current and voltage on the shielding layer. The voltage 
and current on the shielding layer generate current and 
voltage on the inner conductor through transfer 
impedance and transfer admittance. 

 
A. The Voltage and Current on the Shielding Layer 

 Let the incident angle, the azimuth angle, and the 
polarization angle of the electromagnetic field be ϕ , 
ψ , and α , respectively. The Agrawal model 
decomposes the incident field into the excitation field 
component that does not depend on the shielding 
structure and the scattered field component due to the 
induced charge and induced current on the shielding 
layer. Treating the shielding layer as an external 
transmission line (ETL), the equivalent circuit coupled 
to the shielding layer is shown in Figure 4. Cable length 
is L. ch  is the height from the ground. 1V  and 2V  are 
the lumped voltage sources at the ETL’s two ends, and 

( )'SV x  is the excitation voltage source along the 
direction of the ETL. Load impedances at both ends of 
the ETL are 1eZ  and 1eZ , respectively. 'eZ  and 'eY  are 
the ETL’s unit impedance and unit admittance, which 
can be calculated using the shielded cable’s parameters. 
The scattering field voltage is ( )scV x , the incident field 

is inE , and the ground reflection field is reE . k̂  
represents the direction of the plane wave generated by 
the electromagnetic field. 
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Fig. 4. The equivalent circuit of the shielding layer. 
 

Fig. 3. Segmentation calculation of the electromagnetic
field in a loop circuit.

After the arc is extinguished, the current quickly de-
cays to zero. Through Fast Fourier Transform (FFT)
transformation, the frequency spectrum of transient cur-
rent can be obtained.

C. The transient electromagnetic field
The oscillating wave generated by the transient cur-

rent becomes the disturbance source, radiating the TEMF
energy to the surrounding space. When the distance be-
tween the short-circuit point and the substation is less
than λ

/
4, and the height between the circuit point and

the ground is less than λ
/

4, the current direction at all
points on the line can be considered to be same. There-
fore, we take the closed loop as a loop antenna and di-
vide it into Q small circles, as shown in Figure 3. The
radius of the small circle is da and meets da << λ . The
shielded cable head is P. The horizontal distance from
the substation is Dx. rq is the distance from the q-th
small circle to P. Dy is the vertical distance between the
shielded cable and the rail.

The electromagnetic field at P is the superposition of
the electromagnetic fields generated by each small ring.
rs is the distance from P to the short-circuit point, which
can be expressed as

rs =
√

h2 +D2
y + |l−Dx|2. (26)

Let φq be the angle between the x x-axis and the pro-
jection of rq on the xoy plane, and θq be the angle be-
tween rq and the z z-axis. According to the electromag-
netic field theory, when the shielded cable is in the near
field of the radiation field, the electromagnetic field at P
can be expressed as

E =
Q

∑
q=1

dEφq =
Q

∑
q=1
− jkη

Ida2

4r2
q

sinθqe− jkrq , (27)
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√
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1
4
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(28)

where I and f are the effective value and frequency of the
transient current, and c is the speed of the wave in free
space. η ≈ 377 Ω for wave impedance in free space,
k = 2π f

/
c for propagation constant. Q small circles are

represented in the form of a matrix. The distance be-
tween the small circle in m row and n column to P can
be expressed as,

rmn =
√
((2m−1)da)2 +D2

y + |Dx− (2n−1)da|2,
(29)

where 1≤ m≤ h
/

2da, 1≤ n≤ l
/

2da.
Let Dxx = |Dx− (2n−1)da|, Dxx =

|Dx− (2n−1)da|; the TEMF at P can be expressed as

E =
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∑
m=1
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∑
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− j60π2 f · Ida2

cr3
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It can be seen that the TEMF generated by the TNSF
on the shielded cable is related to the height of the con-
tact wire, the distance from the short-circuit point, the
amplitude and frequency of the transient current, and the
location of the shielded cable.

III. THE RESPONSE ON THE SHIELDED
CABLE

If the cables of weak-current equipment are ex-
posed, they are easily coupled by electromagnetic fields.
Disturbance voltage and disturbance current are induced
and enter the equipment along the inner conductor to
cause EMI. We calculated the response of the TEMF on
the shielded cable based on the transmission TL theory.
A shielded cable includes a shielding layer and an inner
conductor, which is defined as two independent trans-
mission TLs. The electromagnetic field generates cur-
rent and voltage on the shielding layer. The voltage and
current on the shielding layer generate current and volt-
age on the inner conductor through transfer impedance
and transfer admittance.

A. The voltage and current on the shielding layer
Let the incident angle, the azimuth angle, and the

polarization angle of the electromagnetic field be ϕ , ψ ,
and α , respectively. The Agrawal model decomposes
the incident field into the excitation field component that
does not depend on the shielding structure and the scat-

i

x

h

P
y

l
Shielded 

cableDx
Dy

z

sr

qr
da

m

n Short circuit 
point

 
Fig. 3. Segmentation calculation of the electromagnetic 
field in a loop circuit. 

 
The electromagnetic field at P is the superposition 

of the electromagnetic fields generated by each small 
ring. sr  is the distance from P to the short-circuit point, 
which can be expressed as 

22 2 .s y xr h D l D= + + −
                       

(26) 

Let qφ  be the angle between the x-axis and the 
projection of qr  on the xoy  plane, and qθ  be the angle 
between qr  and the z-axis. According to the 
electromagnetic field theory, when the shielded cable is 
in the near field of the radiation field, the 
electromagnetic field at P can be expressed as 

2

2
1 1

sin ,
4

q

q

Q Q
jkr

q
q q q

IdaE dE jk e
rφ η θ −

= =

= = −∑ ∑
            

(27)
    

 

( ) ( )

2 2

1

2 2 2

3
1

1   cos sin ,
42

q q

q

Q

r
q

Q
jkr

q q
q q

H dH dH

Ida e
r

θ

θ θ

=

−

=

= +

= + ⋅

∑

∑      
(28) 

where I and f are the effective value and frequency of 
the transient current, and c  is the speed of the wave in 
free space. 377 η ≈ Ω  for wave impedance in free 
space, 2k f cπ=  for propagation constant. Q small 
circles are represented in the form of a matrix. The 
distance between the small circle in m row and n 
column to P can be expressed as 

( )( ) ( ) 22 22 1 2 n 1 ,mn y xr m da D D da= − + + − −
     

(29) 

where 1 2m h da≤ ≤ , 1 2n l da≤ ≤ . 
 Let ( )2n 1xx xD D da= − − ; the TEMF at P can be 

expressed as 
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(31) 
It can be seen that the TEMF generated by the 

TNSF on the shielded cable is related to the height of 

the contact wire, the distance from the short-circuit 
point, the amplitude and frequency of the transient 
current, and the location of the shielded cable. 
 

III. THE RESPONSE ON THE SHIELDED 
CABLE  

If the cables of weak-current equipment are 
exposed, they are easily coupled by electromagnetic 
fields. Disturbance voltage and disturbance current are 
induced and enter the equipment along the inner 
conductor to cause EMI. We calculated the response 
of the TEMF on the shielded cable based on the TL 
theory. A shielded cable includes a shielding layer and 
an inner conductor, which is defined as two 
independent TLs. The electromagnetic field generates 
current and voltage on the shielding layer. The voltage 
and current on the shielding layer generate current and 
voltage on the inner conductor through transfer 
impedance and transfer admittance. 

 
A. The Voltage and Current on the Shielding Layer 

 Let the incident angle, the azimuth angle, and the 
polarization angle of the electromagnetic field be ϕ , 
ψ , and α , respectively. The Agrawal model 
decomposes the incident field into the excitation field 
component that does not depend on the shielding 
structure and the scattered field component due to the 
induced charge and induced current on the shielding 
layer. Treating the shielding layer as an external 
transmission line (ETL), the equivalent circuit coupled 
to the shielding layer is shown in Figure 4. Cable length 
is L. ch  is the height from the ground. 1V  and 2V  are 
the lumped voltage sources at the ETL’s two ends, and 

( )'SV x  is the excitation voltage source along the 
direction of the ETL. Load impedances at both ends of 
the ETL are 1eZ  and 1eZ , respectively. 'eZ  and 'eY  are 
the ETL’s unit impedance and unit admittance, which 
can be calculated using the shielded cable’s parameters. 
The scattering field voltage is ( )scV x , the incident field 

is inE , and the ground reflection field is reE . k̂  
represents the direction of the plane wave generated by 
the electromagnetic field. 
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Fig. 4. The equivalent circuit of the shielding layer. 
 Fig. 4. The equivalent circuit of the shielding layer.

tered field component due to the induced charge and in-
duced current on the shielding layer. Treating the shield-
ing layer as an external transmission line (ETL), the
equivalent circuit coupled to the shielding layer is shown
in Figure 4. Cable length is L. hc is the height from
the ground. V1 and V2 are the lumped voltage sources at
the ETL’s two ends, and V ′S (x) is the excitation voltage
source along the direction of the ETL. Load impedances
at both ends of the ETL are Ze1 and Ze1, respectively.
Z′e and Y ′e are the ETL’s unit impedance and unit admit-
tance, which can be calculated using the shielded cable’s
parameters. The scattering field voltage is Vsc (x), the in-
cident field is Ein, and the ground reflection field is Ere.
k̂ represents the direction of the plane wave generated by
the electromagnetic field.

Assume that the incident field spectrum is E0 (ω).
According to the components of Ein and Ere along the
ETL, V ′S (x), V1, and V2 can be deduced.

V ′S (x) = jk2hcE0 (ω)sinϕ ·
(

cosα sinϕ cosψ

+sinα sinψ

)
e− jkxx,

(32)

V1 ≈−2hcE0 (ω)cosα cosϕ, (33)

V2 ≈V1e− j cosϕ cosψkL, (34)

where k = 2π
/

λ , k = 2π
/

λ and kx = k cosϕ cosψ . From
Figure 4, we can get

d
dx

[
Vsc (x)
Ie (x)

]
+

[
0 Z′e
Y ′e 0

][
Vsc (x)
Ie (x)

]
=

[
V ′S (x)

0

]
. (35)

Referring to [27], the current Ie (x) and scattered
voltage Vsc (x) at the x of the TL can be expressed in the
form of Green’s function. Therefore, Ie (x) and Vsc (x)
can be expressed as

Ie (x) = K1erex +K2e−rex +K3e− j cosϕ cosψkx, (36)

Vsc (x) =−
1
Y ′e

[
K1reerex−K2ree−rex

− jk cosϕ cosφK3e− j cosϕ cosψkx

]
,

(37)
where re =

√
Z′eY ′e is the propagation constant of the

ETL. K1, K2, and K3 are
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Assume that the incident field spectrum is ( )0E ω . 
According to the components of inE  and reE  along the 
ETL, ( )'SV x , 1V , and 2V  can be deduced.  
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( )1 02 cos cos ,cV h E ω α ϕ≈ −                 (33) 
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2 1 ,j kLV V e ϕ ψ−≈                       (34) 

where 2k π λ=  and cos cosxk k ϕ ψ= . From Figure 4, 
we can get  
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Referring to [27], the current ( )eI x  and scattered 

voltage ( )scV x at the x of the TL can be expressed in 

the form of Green’s function. Therefore, ( )eI x  and 
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where ' 'e e er Z Y=  is the propagation constant of the 
ETL. 1K , 2K , and 3K  are  
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0 ' 'e e eZ Z Y=  is the characteristic impedance of the 
ETL. 1eρ  and 2eρ  are the reflection coefficients at the 
two ends of the ETL, and they are 

1 0
1

1 0

,e e
e

e e

Z Z
Z Z

ρ
−

=
+                                

(42) 

2 0
2

2 0

.e e
e

e e

Z Z
Z Z

ρ
−

=
+                                

(43) 

The propagation constants er
+  and er

−  are 

cos cos ,e er r jk ϕ ψ+ = +                         (44) 
cos cos .e er r jk ϕ ψ− = −                         (45) 

The total voltage at the x of the TL is 
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B. The Voltage and Current on the Inner Conductor 

The current on the shielding layer penetrates into 
the shielded cable and generates an excitation source on 
the inner conductor. Taking the inner conductor as the 
inner transmission line (ITL), its equivalent circuit 
model is shown in Figure 5. 
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Fig. 5. The equivalent circuit of the inner conductor. 

 
Load impedances at both ends of the ITL are 1iZ  

and 2iZ . 'iZ  and 'iY  are the ITL’s unit impedance and 
unit admittance, which can be calculated using the 
shielded cable’s parameters. ( )'SiV x  and ( )'SiI x  are 
the excitation voltage source and current source on the 
ITL.  

( )' ' ,Si t eV x Z I=                               (47) 

( )' ' ,Si t eI x Y V= −                              (48) 
where 'tZ and 'tY are transfer impedance and transfer 
admittance, and their values refer to [28] and [29]. 
According to the Baum−Liu−Tesche (BLT) equation 
[30], the current and voltage at both ends of the ITL can 
be deduced as 
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Fig. 5. The equivalent circuit of the inner conductor.
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V ′x is

V ′x = j2khcE0 (ω)sinϕ

(
cosα sinϕ cosψ

+sinα sinψ

)
. (41)

Ze0 =
√

Z′e
/

Y ′e is the characteristic impedance of the
ETL. ρe1 and ρe2 are the reflection coefficients at the two
ends of the ETL, and they are

ρe1 =
Ze1−Ze0

Ze1 +Ze0
, (42)

ρe2 =
Ze2−Ze0

Ze2 +Ze0
. (43)

The propagation constants r+e and r−e are,
r+e = re + jk cosϕ cosψ, (44)
r−e = re− jk cosϕ cosψ. (45)

The total voltage at the x of the TL is

Ve (x) =Vsc (x)−
∫ hc

0
Eindz

=Vsc (x)−hcE0 (ω)cosα cosϕ. (46)

B. The voltage and current on the inner conductor
The current on the shielding layer penetrates into the

shielded cable and generates an excitation source on the
inner conductor. Taking the inner conductor as the Inner
Transmission Line (ITL), its equivalent circuit model is
shown in Figure 5.

Load impedances at both ends of the ITL are Zi1 and
Zi2. Z′i and Y ′i are the ITL’s unit impedance and unit
admittance, which can be calculated using the shielded
cable’s parameters. V ′Si (x) and I′Si (x) are the excitation
voltage source and current source on the ITL.

V ′Si (x) = Z′t Ie, (47)
I′Si (x) =−Y ′t Ve, (48)

where Z′t and Y ′t are transfer impedance and transfer ad-
mittance, and their values refer to [28] and [29]. Ac-
cording to the Baum–Liu–Tesche (BLT) equation [30],
the current and voltage at both ends of the ITL can be
deduced as[

Ii (0)
Ii (L)

]
=

1
Zi0

[
1−ρi1 0

0 1−ρi2

][
−ρi1 eriL

eriL −ρi2

]−1 [ Si1
Si2

]
,

(49)[
Vi (0)
Vi (L)

]
=

[
1+ρi1 0

0 1+ρi2

][
−ρi1 eriL

eriL −ρi2

]−1 [ Si1
Si2

]
,

(50)
where Zi0 is the characteristic impedance of the ITL. ρi1
and ρi2 are the reflection coefficients at the two ends of
the ITL. ri =

√
Z′iY

′
i is the propagation constant of the

ITL. Si1 and Si2 can be obtained by integrating V ′Si (x)
and I′Si (x), which are
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1
2
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1
2
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, (51)

Si2 =
1
2
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) e(re−ri)L−1
re− ri

−1
2

eriLK2
(
Z′t −Z′e f

) e−(ri+re)L−1
ri + re

−1
2

eriLK3

(
Z′t −Z′e f

jkx

re

)
e−(ri+ jkx)L−1

ri + jkx
, (52)

where Z′e f = jreriSs
/

ω , Z′e f = jreriSs
/

ω and kx =
k cosϕ cosψ . When ignoring the propagation loss of the
ETL and the ITL, then Z′e f = jk2Ss

/
ω . Ss is the elec-

trostatic shield leakage parameter of the shielded cable.
Through the inverse FFT transform, the current response
in the time domain can be obtained.

When the impedance of the shielded cable terminal
load is Z, its power is

PdBW = 10lg
(

ii (t)
2 ·Z
)
. (53)

If PdBW exceeds the rated power of the terminal load,
the terminal load will be disturbed or even damaged.

IV. EXPERIMENT
The TNSF can be simulated by a short-circuit

experiment, and the traction network short-circuit
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where 'ef e i sZ j r r S ω=  and cos cosxk k ϕ ψ= . When 
ignoring the propagation loss of the ETL and the ITL, 
then 2'ef sZ jk S ω= . sS  is the electrostatic shield 
leakage parameter of the shielded cable. Through the 
inverse FFT transform, the current response in the time 
domain can be obtained. 

When the impedance of the shielded cable terminal 
load is Z , its power is 

( )( )2
dBW 10lg .iP i t Z= ⋅

                      
(53) 

If dBWP  exceeds the rated power of the terminal 
load, the terminal load will be disturbed or even 
damaged.  
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experiment is realized by a short-circuit device and a
high-voltage circuit breaker. The short-circuit device is
composed of a pantograph, a high-voltage electrical cab-
inet, and a short-circuit grounding shoe. It is placed at
the short-circuit point to realize the connection between
the contact wire and the rail. The experimental site is
shown in Figure 6. The power quality analyzer (E6100)
is used to test the short-circuit current. The EMI test
receiver is used to test the current generated by the low-
frequency magnetic field, and the spectrum analyzer is
used to test the voltage generated by the high-frequency
electric field. The distance from the short-circuit point
to the substation is 30 m. The length of the shielded ca-
ble is 5 m, the height of the head is 1 m, and the vertical
distance from the rail is 2 m. The impedance of the spec-
trum analyzer is 50 Ω, and the rated power is 30 dBm.
The traction network short-circuit experiment process is
shown in Figure 7.

Based on the actual traction network parameters, we
calculate the transient current and the response of the
shielded cable through the method proposed in Sections
II and Section III. The calculated results are compared
with the experimental results. The EMI on the terminal
load is also analyzed.

A. Transient current
In the short-circuit experiment, the traction net-

work’s power supply is a direct power supply with a re-
turn line. Contact wire (CW), messenger wire (MW),
return wire (RW), and rail (R) make up the majority of
the traction network. These conductors are distributed in
parallel. Tables 1 and Table 2 show the major parame-
ters of the traction transformer and traction network con-
ductors in the experiment. Figure 8 shows the traction
network’s spatial distribution.

The parameters of the TCM in Figure 2 can be cal-
culated using the distance between the traction network
conductors and the parameters in Tables 1 and Table 2,
as shown in Table 3.

When a short-circuit fault occurs, let the initial
phase angle of us be 0◦ and the duration of the short-
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where 'ef e i sZ j r r S ω=  and cos cosxk k ϕ ψ= . When 
ignoring the propagation loss of the ETL and the ITL, 
then 2'ef sZ jk S ω= . sS  is the electrostatic shield 
leakage parameter of the shielded cable. Through the 
inverse FFT transform, the current response in the time 
domain can be obtained. 
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Table 1: Major parameters of the traction transformer
Parameters Value

Short-circuit losses 146.49 kW
Short-circuit voltage 16.48 %

Rated voltages 220/2 × 27.5 kV
Rated current 227.27/909.08 A

conductors in the experiment. Figure 8 shows the 
traction network’s spatial distribution. 

 
Table 1: Major parameters of the traction transformer 

Parameters Value 
Short-circuit losses 146.49 kW 

Short-circuit voltage 16.48 % 
Rated voltages 220/2 × 27.5 kV 
Rated current 227.27/909.08 A 

 
Table 2: Major parameters of traction network 
conductors 

Conductor Type 
DC 

resistance 
(Ω/km) 

Calculate 
radius 
(cm) 

CW1/ CW2 CTS-150 0.159 0.72 

MW1/MW2 JTMH-
120 0.242 0.70 

RW1/RW2 LBGLJ-
185/25 0.145 0.945 

R1/ R2 P60 0.135 1.279 
 

(0, 0)

(71.75, 0)(-71.75, 0)

R1 (500, 0)

(571.75, 0)(428.25, 0)

R2

CW1 (0, 645)

MW1 (0, 785)

CW2 (500, 645)

MW2 (500, 785)

x

(-340, 780)

RW1

(-340, 780)

RW2

z

 
Fig. 8. Spatial distribution of traction network 
conductors (unit: cm). 
 

The parameters of the TCM in Figure 2 can be 
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circuit process be 0.15 s. Figure 9 shows the computed
and measured values of the short-circuit current in the
time domain.
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It can be seen that when a TNSF occurs, there is a
small error between the calculated value and the mea-
sured value of the short-circuit current phase and ampli-
tude. Since the actual circuit breaker has an arc extin-
guishing device, the calculated value is greater than the
measured value. However, the waveform of the short-
circuit current calculated value is in good agreement
with the measured waveform. The maximum value of
the short-circuit current is about 1644 A, the maximum
value of the transient current is about 4351 A, and the
duration of the transient process is about 0.015 s. The
transient process of short-circuiting and circuit breaker
opening produces a high-frequency current, and the fre-
quency component of the measured data is more com-
plicated due to the contingency of the arc in the actual
test.

Table 4: Major parameters of shielded cable
Parameter Value

The radius of the shield 0.37 cm
The thickness of the shield 0.127 mm

DC resistance 4.0 mΩ / m
Hole inductance 0.25 nH / m

leakage parameters 16 m /µF

Table 5: The calculated and measured value of the cur-
rent response

Frequency
(MHz)

Calculated
value (dBµA)

Measured
value (dBµA)

0.01 49.83 50.09
0.1 48.65 46.67
0.5 47.75 46.65
1 34.55 33.62
5 21.05 20.83
10 17.3 14.82
20 14.15 11.19
30 −18.66 −18.88
40 −21.69 −20.28
50 −26.60 −25.68

B. The terminal current of the shielded cable
When calculating the current response of the

shielded cable, the height of the contact wire and the dis-
tance from the shielded cable head to the short-circuit
point are the same as in the actual test experiment. The
radius of the small circle is 0.005 m. The type of the
shielded cable in the experiment is RG-214(I), and its
major parameters are shown in Table 4. Both ends of the
shielding layer are grounded through the antenna and the
instrument casing. The impedance of the inner conduc-
tor matches the characteristic impedance of the shielded
cable, which is 50 Ω.

When the incident angle, azimuth angle, and po-
larization angle of the electromagnetic field are, respec-
tively, 30◦, 0◦, and 0◦, and Dx is 10 m, the calculated and
measured values of the shielded cable terminal current
at some frequency points are shown in Table 5. It can
be seen that the calculated values are in good agreement
with the measured values, which verifies the method in
this article. The higher the frequency, the smaller the
current response. The value is larger when the current is
below 1 MHz.

C. Analysis of EMI on terminal load
The current response of the shielded cable generates

power on the shielded cable terminal load. If the power
exceeds its rated power, the terminal load will be dis-
turbed or even destroyed. We calculate the power of the
shielded cable terminal load under different conditions
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and analyze the EMI of the transient magnetic field gen-
erated by TNSF on the shielded cable terminal load.

Assume that the incident angle, azimuth angle, and
polarization angle of the electromagnetic field are 30◦,
0◦, and 0◦, respectively. When the distance between the
shielded cable head and the short-circuit point is 7 m,
8.6 m, 10 m, and 11 m, respectively, the terminal cur-
rent response of the shielded cable is shown in Figure 10
(a). The power generated by the terminal current on the
spectrum analyzer is shown in Figure 10 (b). The fluc-
tuations and discontinuities of the current waveform and
power waveform in the figure are caused by the reflection
of the current in the cable. It can be seen that when rs is
8.6 m, the terminal current reaches its maximum value
of 0.1879 A, and then the terminal current decreases as
rs increases. The maximum power can reach 32.33 dBm,When the incident angle, azimuth angle, and 

polarization angle of the electromagnetic field are, 
respectively, 30°, 0°, and 0°, and xD  is 10 m, the 
calculated and measured values of the shielded cable 
terminal current at some frequency points are shown in 
Table 5. It can be seen that the calculated values are in 
good agreement with the measured values, which 
verifies the method in this article. The higher the 
frequency, the smaller the current response. The value 
is larger when the current is below 1 MHz. 

 
Table 5: The calculated and measured value of the 
current response 

Frequency 
(MHz) 

Calculated 
value 

(dBμA) 

Measured 
value (dBμA) 

0.01 49.83 50.09 
0.1  48.65 46.67 
0.5  47.75 46.65 
1  34.55 33.62 
5  21.05 20.83 

10  17.3 14.82 
20  14.15 11.19 
30  −18.66 −18.88 
40 −21.69 −20.28 
50 −26.60 −25.68 
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When the incident angle, azimuth angle, and 
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frequency, the smaller the current response. The value 
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Measured 
value (dBμA) 
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1  34.55 33.62 
5  21.05 20.83 

10  17.3 14.82 
20  14.15 11.19 
30  −18.66 −18.88 
40 −21.69 −20.28 
50 −26.60 −25.68 
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which exceeds the rated power of the spectrum analyzer.
According to equation (26), the horizontal distance be-
tween the shielded cable head and the short-circuit point
must be more than 6 m to avoid damaging the spectrum
analyzer.

If the distance between the shielded cable head and
the short-circuit point is 8.6 m, the azimuth angle and the
polarization angle are both 0◦. When the incident angles
are 0◦, 45◦, 60◦, and 90◦, the power of the spectrum ana-
lyzer is shown in Figure 11. It can be seen that the larger
the incident angle, the smaller the terminal load power.
When the incident angle is 45◦, the power is 30.58 dBm,
which exceeds the rated power of the spectrum analyzer.
In order to avoid damage to the spectrometer, the inci-
dent angle should be greater than 45◦.

If the distance between the shielded cable head and
the short-circuit point is 8.6 m, the incident angle is 30◦,
and the polarization angle is 0◦. When the azimuth an-
gles are 0◦, 45◦, 60◦, and 90◦, the power of the spec-
trum analyzer is shown in Figure 12. The maximum
power can reach 33.55 dBm, which also exceeds the
rated power of the spectrum analyzer. The azimuth angle
has less influence on the terminal load power. But when
amplifying a part of the power waveform, it can be seen
that the larger the azimuth angle, the smaller the power
generated on the terminal load.

If the distance between the shielded cable head and
the short-circuit point is 8.6 m, the incident angle is 30◦,
and the azimuth angle is 0◦. When the polarization an-
gles are 0◦ and 90◦, the spectrum analyzer power gen-
erated by the terminal current is shown in Figure 13. It
can be seen that, compared with the vertical polarization
mode, the terminal load power in the horizontal polariza-
tion mode is smaller.
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Let the polarization angle be 0◦, the azimuth angle
be less than 90◦, and the incident angle be less than 45◦.
We changed the relative position of the shielded cable
and the short-circuit point to conduct many experiments.
When the horizontal distance between the shielded cable
head and the short-circuit point is about 5.3 m, the power
generated by the terminal current of the shielded cable
on the spectrum analyzer exceeds its rated power, which
damages the RF input port of the spectrum analyzer. As
shown in Figure 14.

V. CONCLUSION
1) This paper proposed a TCM for the short-circuit

traction network to calculate the transient current.
The model is validated by comparing the calculated
and measured short-circuit current. The maximum
value of transient current is about 4351 A, while the
short-circuit current peaks at roughly 1644 A, and
the transient process lasts about 0.015 s.

2) The TEMF was formed by the TCP caused by
the TNSF. The current response of the TEMF on
the shielded cable is calculated using transmission
lineTL theory and verified by experiments. The
horizontal distance between the shielded cable head
and the short-circuit point should be greater than 6
m to avoid damaging the terminal load.

3) The change in the relative location of the shielded
cable and the contact wire will cause the TEMF an-
gle to shift. The larger the incident angle and the
azimuth angle, the smaller the terminal load power
will be. The azimuth angle has little effect on the
terminal load power. When the polarization angle is
0◦, greater power is generated on the terminal load.
Therefore, to avoid damage to the terminal load, the
incident angle should be greater than 45◦.
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