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Abstract – Uncertainty analysis is a research hotspot in
the field of electromagnetic compatibility (EMC) simu-
lation. The stochastic collocation method (SCM) is con-
sidered particularly suitable for uncertainty analysis in
the EMC field because it is characterized by a high level
of computational efficiency and accuracy while requir-
ing no replacement solver. However, the post-processing
process of the SCM is too complex, which will seriously
limit its application in many industrial environments
such as real-time simulation analysis. Multi-element grid
(MEG) is a novel uncertainty analysis method recently
for successful application in another area. It is proved
that its calculation accuracy is same as the SCM, and its
post-processing process is facile. This paper introduces
the MEG to the EMC field and makes a detailed compar-
ison between it and the SCM in performance, aiming to
apply uncertainty analysis to solve more practical EMC
engineering problems.

Index Terms – Electromagnetic compatibility, uncer-
tainty analysis, stochastic collocation method, multi-
element grid.

I. INTRODUCTION
Uncertainty analysis theory has been developed and

perfected in the field of computational fluid dynamics
(CFD) [1] and introduced into the field of electromag-
netic compatibility (EMC) simulation in previous years.
Gradually, it has become a hot research issue in the field
of EMC simulation.

EMC simulation has its unique characteristics. One
is that the time of simulation is usually long due to
the frequent use of the finite element method. There-
fore, the uncertainty analysis methods with slow conver-
gence speed are not competitive, such as the Monte Carlo
method (MCM) [2, 3]. The reason is that too much time
cost is unacceptable. However, the calculation accuracy
of MCM is the highest; so its simulation results are usu-

ally used as standard data in theoretical research to verify
the accuracy of other uncertainty analysis methods, and
this paper is no exception.

Another characteristic of EMC simulation is that its
calculation needs the help of commercial simulation soft-
ware in most cases. On this premise, the uncertainty
analysis method which needs to change the previous
solver cannot be used normally, such as the perturba-
tion method [4], the stochastic Galerkin method [5, 6],
and the stochastic testing method [7]. At the same time,
there are still some uncertainty analysis methods, such as
the moment method [8] and the stochastic reduced order
models [9]. There are no restrictions in terms of applica-
tion, but their accuracy is not ideal. Thus, these methods
are also difficult to promote.

The stochastic collocation method (SCM) is an effi-
cient uncertainty analysis method based on generalized
polynomial chaos theory [10–12]. It has the advantages
of high calculation accuracy, high calculation efficiency,
and no need to change the solver. From this point of
view, the SCM is an ideal uncertainty analysis method
in the EMC field at this stage. However, the post-
processing process of the SCM is extremely complex,
resulting in the following problems in engineering appli-
cation. First, in the process of real-time simulation, very
long post-processing time will affect the response speed
of subsequent control operations. Second, the SCM has
high algorithm complexity and needs to store a large
number of sampling points information. From the per-
spective of algorithm implementation and storage, it is
not easy to write into the one-chip computer; so it is dif-
ficult to realize industrial application.

The multi-element grid (MEG) is a novel uncer-
tainty analysis method, which also has the characteristics
of high computational efficiency and no need to change
the solver [13]. It has been applied successfully in the
control area, and its outstanding advantage is that the
post-processing process is simple. This paper aims to use

Submitted On: December 31, 2021
Accepted On: May 6, 2022

https://doi.org/10.13052/2022.ACES.J.370408
1054-4887 © ACES

https://doi.org/10.13052/2022.ACES.J.370408


429 ACES JOURNAL, Vol. 37, No. 4, April 2022

this novel method to solve typical EMC simulation prob-
lems and provide a better uncertainty analysis method for
EMC field.

The remainder of this paper is organized as follows.
In Section II, the framework of the SCM is briefly intro-
duced. Section III presents the application of the MEG in
EMC simulation in detail. Section IV validates the algo-
rithm’s accuracy by using crosstalk simulation example.
Shielding effect simulation example of anechoic cham-
ber is shown in Section V. The prospect of further appli-
cation of the MEG is discussed in Section VI. Section
VII summarizes this paper.

II. OUTLINE OF THE SCM
In the actual electromagnetic environment, random-

ness and cognitive limitations are inevitable; so it is
impossible to realize accurate simulation completely
using deterministic parameter models. It is more appro-
priate to use a random variable model to describe random
events in practical engineering, shown as follows:

ξ = {ξ1,ξ2, . . . ,ξn} , (1)
where ξi represents a random variable with probability
density, and ξ is the set of all random variables.

When the probability density function of the ran-
dom variable is known, the orthogonal polynomial cor-
responding to the random variable can be obtained by
three-term recurrence formula [10]

πr+1 (ξi) = (ξi−αr)πr (ξi)−βrπr−1 (ξi) , (2)
π−1 (ξi) = 0,π0 (ξi) = 1, (3)

where πr(ξi) is the orthogonal polynomial of one-
dimensional random variable ξi. The intermediate vari-
ables can be calculated by the following formula:

αr =
〈ξiπr,πr)

〈πr,πr〉
, (4)

β0 = 〈π0,π0〉 ,βr =
〈πr,πr〉
〈πr−1,πr−1〉

. (5)

The internal product calculation formula is

〈x(ξi) ,y(ξi)〉=
∫

x(ξi)y(ξi)pdf(ξi)dξi, (6)

where pdf(ξi) represents the probability density function
of the random variable ξi.

For the SCM, the collocation points correspond-
ing to the one-dimensional random variable are the zero
points of orthogonal polynomial in formula (2). In the
multidimensional case, the collocation points are the ten-
sor product of one-dimensional collocation points [11].

In SCM, the uncertainty analysis result is the sum of
orthogonal polynomials

U(ξ ) =
M

∑
r=0

crπr(ξ ), (7)

where cr is the constant to be solved.
A single deterministic EMC simulation is imple-

mented at each collocation point qi to obtain the corre-
sponding result UEMC(qi). The fitting of formula (7) is

realized based on the least square method to obtain the
constant cr. It can be seen that the result of the SCM is
in the form of a random variable polynomial. Finally, the
statistical results such as expectation, standard deviation,
and worst-case estimation are obtained by sampling the
random variables in formula (7).

Obviously, in the whole calculation process, only
deterministic simulation is required at each collocation
point; thus, the SCM has the advantage of no need to
change the original solver. At the same time, the gener-
alized polynomial chaos theory ensures the fast conver-
gence speed of the SCM, so that the required collocation
points are far lower than the collocation points required
by the MCM, which ensures that the SCM has high com-
putational efficiency [11, 12].

It is worth noting that the SCM can only obtain
statistical results after fitting and sampling calculation.
Therefore, the implementation of the SCM requires a
long post-processing process, which will have an adverse
impact on calculation efficiency and algorithm promo-
tion.

III. IMPLEMENTATION OF THE MEG IN
EMC SIMULATION

In MEG, it is also necessary to construct the orthog-
onal polynomial under the three-term recurrence for-
mula, and it is also necessary to select the zero points
of the orthogonal polynomial to ensure the fastest con-
vergence speed. At the same time, in the case of multi-
dimensional random variables, the way to select the zero
points is still in the form of a tensor product. In other
words, under the same random variables model, the col-
location points of the SCM are exactly the same as those
required by the MEG.

It is more convenient for the MEG to give uncer-
tainty statistic results. After a single deterministic EMC
simulation at each selected zero point, the expectation
result can be expressed as follows:

E(U) =
M

∑
i=1

wi×UEMC (qi) . (8)

Similarly UEMC(qi) represents the result of a single
simulation at the selected point qi. As the selected con-
figuration points are exactly the same as the SCM, the
total number M is also consistent with formula (7). wi
expresses the weight proportion of UEMC(qi), and its cal-
culation is the core idea of the MEG algorithm. When the
random variables model is one-dimensional, the weight
calculation formula is as follows:

wi =
∫

L2 (ξ ,qi)pdf(ξ )dξ , (9)

where L(ξ , pi) represents the Lagrange interpolation
polynomial constructed by each selected point and its
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single simulation results

L(ξ ,qi) = ∏
0≤k≤M

k 6=i

ξ −qk

qi−qk
. (10)

If the random variables model is multidimensional,
the weight can be directly obtained by multiplying the
one-dimensional weight in the form of a tensor product.
For example, if there are only two random variables, and
their one-dimensional weights are only three, namely w1,
w2, and w3. The results in tensor product form are as
follows: 


w1w1 w1w2 w1w3
w2w1 w2w2 w2w3
w3w1 w3w2 w3w3


 . (11)

Similarly, the variance results can be calculated in
the same way

σ(U) =
Nd

∑
i=1

wi× [UEMC (ξi)−E(U)]2 . (12)

It can be seen that the MEG also has the advan-
tage of no need to change the original solver and has the
same computational efficiency as the SCM. Meanwhile,
the MEG is more concise in the post-processing stage of
uncertainty analysis.

IV. SIMULATION EXAMPLE OF PARALLEL
CABLE CROSSTALK

This section presents a benchmark calculating
example in [11] to verify the accuracy of the MEG. It
is a crosstalk simulation example with three uncertain
parameters as shown in Figure 1.

The first uncertain parameter is the voltage source
value, which satisfies the following formula:

Em (ξ1) = 1+0.1×ξ1. (13)
Its probability density function is supposed as fol-

lows:

pdf(ξ1) =

{ 1
2 sin( 3π

2 ξ1)+(1− 1
3π
),0≤ ξ1 ≤ 1

0, other values
.

(14)
Obviously, this probability density function satisfies

the following conditions:{
pdf(ξ1)≥ 0∫ +∞

−∞
pdf(ξ1)dξ1 = 1

. (15)

Similarly,UEMC(qi) represents the result of a sin-
gle simulation at the selected point qi. As the se-
lected configuration points are exactly the same as
the SCM, the total number M is also consistent with
formula (7). wi expresses the weight proportion of
UEMC(qi) , and its calculation is the core idea of the
MEG algorithm. When the random variables model
is one-dimensional, the weight calculation formula is
as follows.

wi =

∫
L2 (ξ, qi) pdf(ξ)dξ (9)

Where L(ξ, pi) represents the Lagrange interpola-
tion polynomial constructed by each selected point
and its single simulation results.

L (ξ, qi) =
∏

0≤k≤M
k 6=i

ξ − qk
qi − qk

(10)

If the random variables model is multidimensional,
the weight can be directly obtained by multiplying
the one-dimensional weight in the form of a tensor
product. For example, if there are only two random
variables, and their one-dimensional weights are only
three, namely w1 ,w2 and w3. The results in tensor
product form are as follows.


w1w1 w1w2 w1w3

w2w1 w2w2 w2w3

w3w1 w3w2 w3w3


 (11)

Similarly, the variance results can be calculated
in the same way.

σ(U) =

Nd∑

i=1

wi × [UEMC (ξi)− E(U)]
2

(12)

It can be seen that the MEG also has the advan-
tage of no need to change the original solver, and
has the same computational efficiency as the SCM.
Meanwhile, the MEG is more concise in the post-
processing stage of uncertainty analysis.

IV. SIMULATION EXAMPLE OF
PARALLEL CABLE CROSSTALK
This section presents a benchmark calculating

example in [11] to verify the accuracy of the MEG.
It is a crosstalk simulation example with 3 uncertain
parameters shown in Fig.1.

The first uncertain parameter is the voltage
source value, which satisfies the following formula.

Em (ξ1) = 1 + 0.1× ξ1 (13)

Its probability density function is supposed as fol-
low:

pdf(ξ1) =

{
1
2 sin( 3π

2 ξ1) + (1− 1
3π ), 0 ≤ ξ1 ≤ 1

0, other values
(14)

Obviously, this probability density function satisfies
the following conditions.

Fig. 1. Benchmark calculating example in [11]

{
pdf (ξ1) ≥ 0∫ +∞

−∞ pdf (ξ1) dξ1 = 1
(15)

The other two uncertainty parameters are the
heights of two cables, and both of them have a uni-
form distribution. Their random variable models are
shown as follows:{

h1 (ξ2) = 0.045 + 0.005× ξ2
h2 (ξ3) = 0.035 + 0.005× ξ3 (16)

Where ξ2 and ξ3 are the random variables with the
uniform distribution [−1, 1].

The longitudinal distance along the paper be-
tween the two cables is 0.05m, and the frequency
range of crosstalk results is from 1MHz to 100MHz.
The other detailed information of the model is com-
pletely consistent with [11]. For MEG, the third-
order chaotic polynomial of random variable ξ1
is ξ31 − 1.4360ξ21 + 0.5513ξ1 − 0.0465, the colloca-
tion points are {0.8546, 0.4642, 0.1172}. The third-
order chaotic polynomials of random variables ξ2
and ξ3 are ξ3i − 3

5ξi, both collocation points are{√
15
5 , 0,−

√
15
5

}
.Finally, calculate formulas (9)-(12)

respectively.
Fig.2 and Fig.3 show expectation results and

standard deviation results of the MEG in calculating
the crosstalk voltage respectively. As a comparison,
the simulation results of the MCM and the SCM are
also given.

Taking the calculation results of the MCM
as standard data, the Feature Selective Validation
method (FSV) [14] is used to evaluate the differ-
ences between the calculation results of other un-
certainty analysis methods, so as to judge the ac-
curacy of the algorithm. The FSV value between
the MCM and the MEG in expectation results is
0.0092, and that between the MCM and the SCM is
0.0211. It presents that the accuracy of the MEG is
slightly better than the SCM, and both of them are
at an “Excellent” level. Meanwhile, the FSV value
between the MCM and the MEG in standard devi-
ation results is 0.0232, and that between the MCM

Fig. 1. Benchmark calculating example in [11].

The other two uncertainty parameters are the heights
of two cables, and both of them have a uniform dis-
tribution. Their random variable models are shown as
follows: {

h1 (ξ2) = 0.045+0.005×ξ2
h2 (ξ3) = 0.035+0.005×ξ3

, (16)

where ξ2 and ξ3 are the random variables with the uni-
form distribution [−1,1].

The longitudinal distance along the paper between
the two cables is 0.05 m, and the frequency range
of crosstalk results is from 1 to 100 MHz. The
other detailed information of the model is completely
consistent with [11]. For MEG, the third-order
chaotic polynomial of random variable ξ1 is ξ 3

1 −
1.4360ξ 2

1 +0.5513ξ1−0.0465, the collocation points are
{0.8546,0.4642,0.1172}. The third-order chaotic poly-
nomials of random variables ξ2 and ξ3 are ξ 3

i − 3
5 ξi, and

both collocation points are
{√

15
5 ,0,−

√
15
5

}
. Finally, cal-

culate formulas (9)–(12), respectively.
Figures 2 and 3 show expectation results and standard

deviation results of the MEG in calculating the crosstalk
voltage, respectively. As a comparison, the simulation
results of the MCM and the SCM are also given.

Taking the calculation results of the MCM as stan-
dard data, the feature selective validation (FSV) method
[14] is used to evaluate the differences between the cal-
culation results of other uncertainty analysis methods,
so as to judge the accuracy of the algorithm. The FSV
value between the MCM and the MEG in expectation
results is 0.0092, and that between the MCM and the
SCM is 0.0211. It presents that the accuracy of the
MEG is slightly better than the SCM, and both of them
are at an “Excellent” level. Meanwhile, the FSV value
between the MCM and the MEG in standard deviation
results is 0.0232, and that between the MCM and the
SCM is 0.0873. Similarly, the same conclusion as the
expectation results can be obtained.

Fig. 2. Expectation results of the crosstalk voltage
from 1MHz to 100MHz.

Fig. 3. Standard deviation results of the crosstalk
voltage from 1MHz to 100MHz.

and the SCM is 0.0873. Similarly, the same conclu-
sion as the expectation results can be obtained.

Table 1 provides the comparison of three un-
certainty analysis methods in simulation time. The
MCM needs 12000 deterministic simulations to en-
sure convergence, so its computational efficiency is
the lowest. With the increase of single deterministic
simulation time, the disadvantage of the low com-
putational efficiency of the MCM will become more
apparent. In contrast to the MEG and the SCM, the
convergence can be ensured by implementing deter-
ministic simulation at each configuration point, so it
only needs to be carried out 3×3×3 = 27 times. The
simulation time of this part is about 102 seconds.
However, the SCM takes much more time to imple-
ment post-processing than the MEG. Although this
time will not change with the time of deterministic
simulation, it is enough to prove that the implemen-
tation of the MEG is more convenient.

To sum up, in this calculating example, the

Table 1: Simulation time comparison of the MCM,
the MEG and the SCM

Simulation
times

Processing
time

Total time

MCM 12000 0s 12.75h
MEG 27 0.7s 1.73min
SCM 27 0.98h 1.01h

MEG is better than the SCM in computational ef-
ficiency of post-processing, and other performances
of them are consistent.

V. SHIELDING EFFECT
SIMULATION EXAMPLE IN

ANECHOIC CHAMBER
Fig 4 shows the model of the anechoic cham-

ber, its size is 3.9 × 3.9 × 3.3 m3.The shielding ma-
terial is carbon loaded foam with low conductivity.
It is assumed that it has geometric parameter un-
certainty and material parameter uncertainty. The
height hs of the absorber cone is uniform distribu-
tion of [0.33,0.37]m. The relative dielectric constant
εr of the shielding material is uniform distribution
of [0.96,1], and the conductivity σs of the shielding
material is uniform distribution of [0.53,0.57] S/m.
The random variable models are shown as follows.



hs (ξ1) = 0.35 + 0.02× ξ1
εr (ξ2) = 0.98 + 0.02× ξ2
σs (ξ3) = 0.55 + 0.02× ξ3

(17)

ξ1, ξ2 and ξ3 are consistent with the meaning of
symbols in formula (13) and formula (15).

Fig. 4. Anechoic chamber model.

There is a biconical antenna in the center of the
darkroom, which emits 240MHz spherical wave. The
measurement position is 0.5m away from the right
wall, and the simulation output is the electric field
intensity. In order to better show the change of re-
sults, it is expressed in decibels.

Efinal = 20× log10(Enorm) (18)

Fig. 2. Expectation results of the crosstalk voltage from
1 to 100 MHz.
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Fig. 2. Expectation results of the crosstalk voltage
from 1MHz to 100MHz.

Fig. 3. Standard deviation results of the crosstalk
voltage from 1MHz to 100MHz.
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terial is carbon loaded foam with low conductivity.
It is assumed that it has geometric parameter un-
certainty and material parameter uncertainty. The
height hs of the absorber cone is uniform distribu-
tion of [0.33,0.37]m. The relative dielectric constant
εr of the shielding material is uniform distribution
of [0.96,1], and the conductivity σs of the shielding
material is uniform distribution of [0.53,0.57] S/m.
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
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Fig. 4. Anechoic chamber model.

There is a biconical antenna in the center of the
darkroom, which emits 240MHz spherical wave. The
measurement position is 0.5m away from the right
wall, and the simulation output is the electric field
intensity. In order to better show the change of re-
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Fig. 3. Standard deviation results of the crosstalk voltage
from 1 to 100 MHz.

Table 1: Simulation time comparison of the MCM, the
MEG, and the SCM

Simulation
times

Processing
time

Total time

MCM 12,000 0 s 12.75 h
MEG 27 0.7 s 1.73 min
SCM 27 0.98 h 1.01 h

Table 1 provides the comparison of three uncertainty
analysis methods in simulation time. The MCM needs
12,000 deterministic simulations to ensure convergence,
so that its computational efficiency is the lowest. With
the increase of single deterministic simulation time, the
disadvantage of the low computational efficiency of the
MCM will become more apparent. In contrast to the
MEG and the SCM, the convergence can be ensured
by implementing deterministic simulation at each con-
figuration point; so it only needs to be carried out
3×3×3 = 27 times. The simulation time of this part is
about 102 s. However, the SCM takes much more time
to implement post-processing than the MEG. Although
this time will not change with the time of deterministic
simulation, it is enough to prove that the implementation
of the MEG is more convenient.

To sum up, in this calculating example, the MEG is
better than the SCM in computational efficiency of post-
processing, and other performances of them are consis-
tent.

V. SHIELDING EFFECT SIMULATION
EXAMPLE IN ANECHOIC CHAMBER
Figure 4 shows the model of the anechoic cham-

ber, and its size is 3.9× 3.9× 3.3 m3. The shielding
material is carbon loaded foam with low conductivity.
It is assumed that it has geometric parameter uncertainty
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Fig. 3. Standard deviation results of the crosstalk
voltage from 1MHz to 100MHz.
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only needs to be carried out 3×3×3 = 27 times. The
simulation time of this part is about 102 seconds.
However, the SCM takes much more time to imple-
ment post-processing than the MEG. Although this
time will not change with the time of deterministic
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εr of the shielding material is uniform distribution
of [0.96,1], and the conductivity σs of the shielding
material is uniform distribution of [0.53,0.57] S/m.
The random variable models are shown as follows.


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Fig. 4. Anechoic chamber model.

There is a biconical antenna in the center of the
darkroom, which emits 240MHz spherical wave. The
measurement position is 0.5m away from the right
wall, and the simulation output is the electric field
intensity. In order to better show the change of re-
sults, it is expressed in decibels.

Efinal = 20× log10(Enorm) (18)

Fig. 4. Anechoic chamber model.

and material parameter uncertainty. The height hs of the
absorber cone is uniform distribution of [0.33,0.37] m.
The relative dielectric constant εr of the shielding mate-
rial is uniform distribution of [0.96,1], and the conductiv-
ity σs of the shielding material is uniform distribution of
[0.53,0.57] S/m. The random variable models are shown
as follows: 




hs (ξ1) = 0.35+0.02×ξ1
εr (ξ2) = 0.98+0.02×ξ2
σs (ξ3) = 0.55+0.02×ξ3

, (17)

where ξ1, ξ2, and ξ3 are consistent with the meaning of
symbols in formulas (13) and (15).

There is a biconical antenna in the center of the dark-
room, which emits 240 MHz spherical wave. The mea-
surement position is 0.5 m away from the right wall, and
the simulation output is the electric field intensity. In
order to better show the change of results, it is expressed
in decibels

Efinal = 20× log10(Enorm). (18)
Figure 5 shows the distribution of electric field

intensity value at the test point without considering the
parameter uncertainty. It can be seen that the variation
range of electric field intensity is close to 40 dBV/m, and
its change range is large. Therefore, it is more meaning-
ful to pay attention to the maximum and minimum values
when considering parameter uncertainty.

Considering the parameter uncertainty in formula
(16), the MEG and the SCM are used for simulation, and
their results are presented in Table 2. The results are the
mean value of maximum Mmax, the standard deviation of
maximum σmax, the mean value of minimum Mmin, and
the standard deviation of minimum σmin at the position to
be measured. It is shown that the accuracy of the MEG is
the same as the SCM. The mean equivalent area method
(MEAM) is an effectiveness evaluation method for EMC
uncertainty simulation results. The MEAM value of the
MEG and the SCM in maximum results is 0.9035, and
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Table 2: Simulation results comparison of the MEG
and the SCM

MEG SCM
Mmax[dBV/m] -14.4987 -14.4980
σmax [dBV/m] 0.0481 0.0460
Mmin[dBV/m] -152.5319 -152.5318
σmin[dBV/m] 0.0364 0.0361

Fig.5 shows the distribution of electric field in-
tensity value at the test point without considering
the parameter uncertainty. It can be seen that the
variation range of electric field intensity is close to
40dBV/m, and its change range is large. Therefore,
it is more meaningful to pay attention to the maxi-
mum and minimum values when considering param-
eter uncertainty.

Fig. 5. Electric field intensity at test position when
hs = 0.35, εr = 0.98 and σs = 0.55.

Considering the parameter uncertainty in for-
mula (16), the MEG and the SCM are used for sim-
ulation, and their results are presented in Table 2.
The results are the mean value of maximum Mmax,
the standard deviation of maximum σmax , the mean
value of minimum Mmin and the standard deviation
of minimum σmin at the position to be measured. It
is shown that the accuracy of the MEG is the same
as the SCM. The Mean Equivalent Area Method
(MEAM) is an effectiveness evaluation method for
EMC uncertainty simulation results. The MEAM
value of the MEG and the SCM in maximum results
is 0.9035, and that in minimum results is 0.9195. It
is also proved that the uncertainty analysis results
of the MEG and the SCM are very similar. More
details about the MEAM can be found in Reference
[15].

The number of deterministic simulations re-
quired by the MEG and the SCM is 27, and the
simulation time is 2.08 hours. For post-processing
time, the MEG takes 0.34 seconds and the SCM

takes 7.23 minutes. Therefore, the conclusion is ex-
actly the same as that in Section IV.

It is worth noting that the uncertainty analysis
results of the MCM are not given in this section,
the reason is that its estimated simulation time cost
is unacceptable. When the number of deterministic
simulations required by the MCM is still 12000, the
required simulation time is 38.5 days. More impor-
tantly, convergence may not be guaranteed under
this simulation time. The MCM, the SCM, and the
MEG are non-embedded uncertainty analysis meth-
ods, the single EMC simulation process can be seen
as a black box. Therefore, this paper proposes a
third example, the formula is as follows:

Ana(ξ) = {hs(ξ1)

1[m]
}2 + e

εr(ξ2)

1 + 2× σs(ξ3)

1[S/m]
(19)

Through the analytical value of formula (18), the
accuracy of the SCM and the MEG is verified based
on the analytical calculation results of the MCM. It
is worth noting that each variable in formula (18)
has eliminated the unit, so the abscissa in Fig.6 is
unitless. Fig.6 gives the probability density results.
According to probability theory, the closer the com-
mon area of the two curves is to 1 the more similar
the results of the uncertainty analysis. When us-
ing the calculation results of the MCM as standard
data, it can be clearly seen that both the SCM and
the MEG are valid and accurate.

Fig. 6. Probability density result of the analytical
value of formula (18).

Furthermore, the SCM has been proved many
times to have high calculation accuracy, so the calcu-
lation accuracy verification of the MEG in shielding
effect simulation example in Fig.4 is guaranteed.

VI. COMPARISON OF THE MEG
AND THE SCM IN INDUSTRIAL

APPLICATION
First, the required storage space is compared.

In crosstalk simulation example, storage space re-

Fig. 5. Electric field intensity at test position when hs =
0.35, εr = 0.98, and σs = 0.55.

Table 2: Simulation results comparison of the MEG and
the SCM

MEG SCM
Mmax[dBV/m] -14.4987 -14.4980
σmax [dBV/m] 0.0481 0.0460
Mmin[dBV/m] -152.5319 -152.5318
σmin[dBV/m] 0.0364 0.0361

that in minimum results is 0.9195. It is also proved that
the uncertainty analysis results of the MEG and the SCM
are very similar. More details about the MEAM can be
found in [15].

The number of deterministic simulations required by
the MEG and the SCM is 27, and the simulation time is
2.08 h. For post-processing time, the MEG takes 0.34 s
and the SCM takes 7.23 min. Therefore, the conclusion
is exactly the same as that in Section IV.

It is worth noting that the uncertainty analysis results
of the MCM are not given in this section; the reason is
that its estimated simulation time cost is unacceptable.
When the number of deterministic simulations required
by the MCM is still 12,000, the required simulation time
is 38.5 days. More importantly, convergence may not
be guaranteed under this simulation time. The MCM,
the SCM, and the MEG are non-embedded uncertainty
analysis methods, and the single EMC simulation pro-
cess can be seen as a black box. Therefore, this paper
proposes a third example, and the formula is as follows:

Ana(ξ ) = {hs(ξ1)

1[m]
}2 + e

εr(ξ2)
1 +2× σs(ξ3)

1[S
/
m]

. (19)

Through the analytical value of formula (18), the accu-
racy of the SCM and the MEG is verified based on the
analytical calculation results of the MCM. It is worth
noting that each variable in formula (18) has eliminated
the unit; so the abscissa in Figure 6 is unitless. Figure 6
gives the probability density results. According to prob-
ability theory, the closer the common area of the two

Table 2: Simulation results comparison of the MEG
and the SCM

MEG SCM
Mmax[dBV/m] -14.4987 -14.4980
σmax [dBV/m] 0.0481 0.0460
Mmin[dBV/m] -152.5319 -152.5318
σmin[dBV/m] 0.0364 0.0361

Fig.5 shows the distribution of electric field in-
tensity value at the test point without considering
the parameter uncertainty. It can be seen that the
variation range of electric field intensity is close to
40dBV/m, and its change range is large. Therefore,
it is more meaningful to pay attention to the maxi-
mum and minimum values when considering param-
eter uncertainty.

Fig. 5. Electric field intensity at test position when
hs = 0.35, εr = 0.98 and σs = 0.55.

Considering the parameter uncertainty in for-
mula (16), the MEG and the SCM are used for sim-
ulation, and their results are presented in Table 2.
The results are the mean value of maximum Mmax,
the standard deviation of maximum σmax , the mean
value of minimum Mmin and the standard deviation
of minimum σmin at the position to be measured. It
is shown that the accuracy of the MEG is the same
as the SCM. The Mean Equivalent Area Method
(MEAM) is an effectiveness evaluation method for
EMC uncertainty simulation results. The MEAM
value of the MEG and the SCM in maximum results
is 0.9035, and that in minimum results is 0.9195. It
is also proved that the uncertainty analysis results
of the MEG and the SCM are very similar. More
details about the MEAM can be found in Reference
[15].

The number of deterministic simulations re-
quired by the MEG and the SCM is 27, and the
simulation time is 2.08 hours. For post-processing
time, the MEG takes 0.34 seconds and the SCM

takes 7.23 minutes. Therefore, the conclusion is ex-
actly the same as that in Section IV.

It is worth noting that the uncertainty analysis
results of the MCM are not given in this section,
the reason is that its estimated simulation time cost
is unacceptable. When the number of deterministic
simulations required by the MCM is still 12000, the
required simulation time is 38.5 days. More impor-
tantly, convergence may not be guaranteed under
this simulation time. The MCM, the SCM, and the
MEG are non-embedded uncertainty analysis meth-
ods, the single EMC simulation process can be seen
as a black box. Therefore, this paper proposes a
third example, the formula is as follows:

Ana(ξ) = {hs(ξ1)

1[m]
}2 + e

εr(ξ2)

1 + 2× σs(ξ3)

1[S/m]
(19)

Through the analytical value of formula (18), the
accuracy of the SCM and the MEG is verified based
on the analytical calculation results of the MCM. It
is worth noting that each variable in formula (18)
has eliminated the unit, so the abscissa in Fig.6 is
unitless. Fig.6 gives the probability density results.
According to probability theory, the closer the com-
mon area of the two curves is to 1 the more similar
the results of the uncertainty analysis. When us-
ing the calculation results of the MCM as standard
data, it can be clearly seen that both the SCM and
the MEG are valid and accurate.

Fig. 6. Probability density result of the analytical
value of formula (18).

Furthermore, the SCM has been proved many
times to have high calculation accuracy, so the calcu-
lation accuracy verification of the MEG in shielding
effect simulation example in Fig.4 is guaranteed.

VI. COMPARISON OF THE MEG
AND THE SCM IN INDUSTRIAL

APPLICATION
First, the required storage space is compared.

In crosstalk simulation example, storage space re-

Fig. 6. Probability density result of the analytical value
of formula (18).

curves is to 1, the more similar the results of the uncer-
tainty analysis. When using the calculation results of the
MCM as standard data, it can be clearly seen that both
the SCM and the MEG are valid and accurate.

Furthermore, the SCM has been proved many times
to have high calculation accuracy; so the calculation
accuracy verification of the MEG in shielding effect sim-
ulation example in Figure 4 is guaranteed.

VI. COMPARISON OF THE MEG AND THE
SCM IN INDUSTRIAL APPLICATION
First, the required storage space is compared. In

crosstalk simulation example, storage space required by
the MEG is 100 (Frequency number) × 27 (Number of
matching points formed by tensor product) × 16 (Num-
ber of bytes required for real storage) + 9 (Weight values
calculated in advance) × 16 (Number of bytes required
for real storage) = 42.33 KB. Storage space required
by the SCM is 100 (Frequency number) × 3200 (Num-
ber of collocation points) × 36 (9 calculated values of
multidimensional Lagrange interpolation + 27 matching
points formed by tensor product)× 16 (Number of bytes
required for real storage) = 175.27 MB. In shielding
effect simulation example, storage space required by the
MEG is 2 (Maximum and minimum) × 27 (Number of
matching points formed by tensor product) × 16(Num-
ber of bytes required for real storage) + 9 (Weight values
calculated in advance) × 16 (Number of bytes required
for real storage) = 0.98 KB. Storage space required by
the SCM is 2 (Maximum and minimum) × 1600 (Num-
ber of collocation points) × 36 (9 calculated values of
multidimensional Lagrange interpolation + 27 matching
points formed by tensor product)× 16 (Number of bytes
required for real storage) = 1.76 MB.

Obviously, the MEG needs less storage space, and it
is easier to use one-chip computer to store information,
so as to further realize industrial application.
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Second, in order to generate uniformly distributed
collocation points satisfying ξ2 and ξ3, the post-
processing stage of the SCM needs to use the rand func-
tion, which can be completed by one-chip computer
under specific conditions. To obtain collocation points
satisfying ξ1, a more complex function is needed, and
even the cumulative probability density equation needs
to be solved by inverse solution. In this case, one-chip
computer is obviously unable to complete.

Therefore, the MEG is easier to realize industrial
application than the SCM in terms of algorithm imple-
mentation and storage implementation.

VII. CONCLUSION
In this paper, a novel uncertainty analysis method

called MEG is introduced to solve the problem of EMC
simulation. It verifies that the MEG is as good as the
SCM in both calculation accuracy and calculation effi-
ciency by two typical EMC calculating example. Finally,
through quantitative calculation, it is verified that the
MEG is easier to be realized in one-chip computer, so
as to complete industrial application scenarios such as
online real-time prediction.
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