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Abstract − It is often necessary to terminate the 
computational domain of an FDTD calculation with an 
absorbing boundary condition (ABC). The Perfectly 
Matched Layer (PML) is an excellent ABC, but it is 
complicated and costly. Typically at least 8 layers are 
needed to give satisfactory absorption. Thus in a 1003 
domain less than 843 or 59% of the grid points are usable. 
The second-order Mur ABC requires just 2 layers, but its 
absorption is inadequate for many problems. In this 
paper we introduce an improved version of the second-
order Mur ABC based on a nonstandard finite difference 
(NSFD) model which has the same low computational 
cost but with much better absorption on a coarse grid.    
 
Keywords: Absorbing Boundary Condition, ABC, Mur 
ABC, Nonstandard Finite Difference, FDTD. 

 
I. INTRODUCTION 

 
Unless the computational domain boundary is 

periodic or the fields vanish on it, an absorbing boundary 
condition (ABC) is needed for finite difference time 
domain (FDTD) calculations.  An ideal ABC absorbs 
fields incident at all angles without reflection, and thus 
mimics an infinite computational domain. Except in one 
dimension, there is no perfect ABC. In general, the better 
the ABC, the more complicated and computationally 
costly it is. The second-order Mur ABC [1] is simple and 
economical, but it performs poorly at incidence angles 
greater than about 30  from the boundary normal. The 
PML [2] can, in principle, absorb fields at high incidence 
angles with arbitrarily low reflection, but it is 
complicated and costly to implement. Using a 
nonstandard (NS) finite difference model of the 
Engquist-Majda [3] one-way wave equations we derive 
an improved version of the Mur ABC that delivers much 
better absorption for the same computational cost.  
 

II. ENGQUIST-MAJDA ONE-WAY WAVE 
EQUATIONS 

 
The two-dimensional wave equation can be 

expressed in the form,  
 

( )2 2 2 2 2 ( , ) 0t x yv v tψ∂ − ∂ − ∂ =x             (1.1) 

where ( ),x y=x Defining 2 2 2 ,t yP v= ∂ − ∂  equation 

(1.1) can be factored into, 
 

( )( ) ( , ) 0x xP v P v tψ+ ∂ − ∂ =x               (1.2) 
 

to yield the Engquist-Majda (EM) one-way wave 
equations, 
 

( ) ( , ) 0xP v tψ± ∂ =x .  (1.3) 
 

General solutions of equation (1.3) are ( , )tϕ± =x  
ˆ( ),f vt k x where ( )ˆ cos ,sinθ θ=k  and f  an arbitrary 

function, θ  is the angle k̂  makes with the x -
axis.

xP v± ∂  absorbs waves moving in the x± -directions, 
respectively. On the domain (0 ) (0 ),x a y b≤ ≤ × ≤ ≤  
solving ( ) 0xP v ψ∂ =

 at 0,x a= , respectively gives an 
ABC on the x -axis. A y -axis ABC can be similarly 
derived.  

Since P  is ill-defined, we must express it in a more 
suitable form. Writing 2P =  ( )2 2 2 21t y tv∂ − ∂ ∂ , expanding 

2P  in a Taylor series, and retaining the first two terms 
gives P ≅ 2 21

2t y tv∂ − ∂ ∂ . Inserting into equation (1.3) 

and multiplying by t∂ , yields the second-order EM one-
way wave equations along the x -axis,   

 

     2 2 21 ( , ) 0
2t x t yv v tψ ∂ ± ∂ ∂ − ∂ = 

 
x .    (1.4) 

 
Defining W±

 to be the differential operator in 
equation (1.4), the annihilation error EMε = W ϕ ϕ± ± ±

 is   

EMε = 2
ˆ( )
ˆ( )

f vtv
f vt
′′

×
 

 

k x
k x

  (1.5) 

211 cos sin ( )
2

θ θ − − 
 

. 

375

1054-4887 © 2009 ACES

ACES JOURNAL, VOL. 24, NO. 4, AUGUST 2009



 
 

  

 
II. SECOND-ORDER MUR ABSORBING 

BOUNDARY 
 

We now construct a difference equation model of 
equation (1.4). Taking x y h∆ = ∆ = , we discretize ,x ,y  
and t  in the form 0, , ,xx h N h= 

y = 0, , ,yh N h

 

t = 0, , 2 , .t t∆ ∆ 

 Defining the difference operators ,xd  

,td ′ and 2
xd  by 2 2( ) ( ) ( ),h h

xd f x f x f x= + − −  

( )td f t′ = ( )f t t+ ∆ ( ),f t t− −∆  2 ( )xd f x = ( )f x h+ +  
( ) 2 ( ),f x h f x− −  finite difference expressions for the 

derivatives are ( )f x′ ≅ ( ) ,xd f x h  

( ) ( ) 2 ,tf t d f t t′ ′≅ ∆ and ( )f x′′ ≅ 2 2( ) .xd f x h  
Substituting into (1.4) yields, 

 
2 2

2 2
2

1 1 ( , ) 0
2 2t x t y

v t v td d d d t
h h

ψ
 ∆ ∆′± − = 
 

x .    (2.1) 

 
To simplify the notation, denote the x -coordinate of 

the computational boundary by b , where  0b =  on the 
left, and xb N h=  on the right. Let i  be the x-coordinate 
one grid spacing inside the boundary, thus i = b h± , on 
the left and right respectively. The midpoint between b  
and i  is m = ( ) 2b i+ . Finally write ( ), ,x y tψ =

,
t
x yψ  

and ( ), ,x y t tψ ± ∆  = 1
,

t
x yψ ± . Evaluating (2.1) at x m=  

using ,
t
m yψ ≅ ( ), , 2t t

b y i yψ ψ+ , with the abbreviation 

v t h v∆ = ,  we obtain, 
 

( ) ( ) ( )2 1 1 1 1
, , , , , ,

t t t t t t
t b y i y b y i y b y i yd vψ ψ ψ ψ ψ ψ+ + − − + + − − −    

  ( )2 2
, ,

1 0
2

t t
y b y i yv d ψ ψ− + = .    (2.2) 

            
Henceforth, we call equation (2.2) the standard 

finite-difference (SFD) model of the EM equation (1.4). 
Equation (2.2) holds on both the left and right boundaries 
because ( )1 1

, ,
t t
b y i yψ ψ± ±−  has opposite signs on opposite sides. 

Expanding 2
,

t
t b yd ψ  and solving for 1

,
t
b yψ + , yields the 

second-order Mur ABC [4] the time-marching algorithm, 
( )1 1

, , , ,
t t t t
b y b y i y i yψ ψ ψ ψ+ −= + − +   (2.3) 

( ) ( )1 1
, , , ,

1
1

t t t t
b y b y i y i y

v
v

ψ ψ ψ ψ− +−   − − − +   + 
 

( )
2

2 1
, ,

1
2 1

t t
y b y i y

v d
v

ψ ψ − 
+ + 

. 

A similar expression for the y±  directions can be 
derived. Henceforth we call equation (2.3) the S 

(standard)-Mur ABC.  
Let us now evaluate how well the S-Mur ABC 

annihilates an infinite plane wave, ψ± =
( )i te ω k x , with 

propagation vector k = ˆkk = ( ),x yk k  and angular 

frequency ω = vk . Defining the left side of equation 
(2.2) as SFDM ψ , where SFDM  is a difference operator, the 

annihilation error is SFD SFDMε ψ ψ± ±= . Writing SFDε  

= ( )2
SFD 8sin 2ε ω , where tω∆ =ω , kh = k , 

,x yk h = ,x yk , 
and using the identities, 

  
( ), , ,2cos 2t t t

b y i y x m yk hψ ψ ψ+ =            (2.4a) 

 ( ), , ,2 sin 2 ,t t t
b y i y x m yi k hψ ψ ψ− =          (2.4b) 
2

, ,
t t

y x y x yd ψ ψ = ( )24sin 2yk h− ,            (2.4c) 

we find 

( ) ( )
( )SFD

sin 2
( ) cos 2

tan 2
x

x

k
k vε θ

ω
= − +

 (2.5) 

( )
( ) ( )

2
2

2

sin 21 cos 2
2 sin 2

y
x

k
v k

ω
+ .  

 
Comparing SFDε  with EMε , we see that the SFD 

model equation (2.1) is a poor approximation to the EM 
equation (1.4). We now seek a better one. 

 
III. NONSTANDARD FINITE DIFFERENCE 

VERSION 
 

The SFD model of the EM equations is not the only 
one possible. The quantities v  and 2v  in equation (2.2) 
can be regarded as independent free parameters ( 1u  and 

2
2u , respectively) that can be chosen to optimize the ABC. 

Defining 
NSFDM  by , 

 

NSFDM ψ = ( )2
, ,

t t
t b y i yd ψ ψ+ +  (3.1) 

( ) ( )1 1 1 1
1 , , , ,

t t t t
b y i y b y i yu ψ ψ ψ ψ+ + − − − − −  ( )2 2

2 , ,
1
2

t t
y b y i yu d ψ ψ− +  

 
we obtain a family of difference models of the EM 
equations, parameterized by 1u  and 2

2u ,   
  

NSFD 0M ψ = .     (3.2) 
 

This is an example of a nonstandard finite-difference 
(NSFD) model [4]. The SFD model is just the special 
case 1u v= , 2 2

2 .u v=  Let us now  minimize 
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NSFDε = NSFDM ψ ψ± ±  with respect to 1u  and 2
2u .  

Writing 2
NSFD NSFD 8sin ( 2) ,ε ε ω=

 
1u =  ( )1 tan 2w ω , 

( )2 2 2
2 2 sin 2u w ω= , and making the replacements 

v → 1u , and 2v  → 2
2u  in equation (2.5) we obtain, 

 
( )NSFD ( ) cos 2xkε θ = − +

  (3.3) 

( ) ( ) ( )2 2
1 2

1sin 2 sin 2 cos 2
2x y xw k w k k+ . 

 
First let us require that NSFD (0) 0ε =

. This gives, 
 

1w = ( )cot 2k .       (3.4) 

 
Next inserting equation (3.4) into equation (3.3) we 
obtain, 

NSFD ( )ε θ =

2
0 2 2

1( ) ( )
2

wδ θ δ θ+  (3.5) 

where 

( )0 ( ) cos 2xkδ θ = − +   (3.6a) 

( ) ( )co t 2 sin 2 ,xk k    

 
( ) ( )2

2 ( ) sin 2 cos 2 .y xk kδ θ =  (3.6b)  

 
Now requiring that NSFD 2( ) 0ε θ =  yields, 

  

       2 0 2
2 2

0 2

2 ( )( )
( )

w δ θθ
δ θ
−

= .  (3.7)  

 
The larger 2θ  the greater the absorption at high 

incidence angles, but the greater the reflection at 
intermediate angles, 

20 θ θ< < . We have examined 
various choices of  

2θ , and conclude that the best overall 
choice is 

2 45θ =  . When radiation is incident over a 

wide range of large angles, however, 2 60θ =   is a 
reasonable compromise. We could also require that 

NSFD 0( ) 0ε θ =  ( 0 0θ ≠ ) and NSFD 2( ) 0ε θ =  ( 2 0θ θ≠ ), and 

simultaneously solve for 1w  and 2
2w . This choice is 

suitable for special applications where most of the 
radiation in incident on the boundary over a particular 
angular band. Henceforth, unless otherwise specified we 
take 

2 45θ =  .    
Putting equations (3.4) and (3.7) into the expressions 

for 1u  and 2
2u  we have, 

( )
( )1

tan 2
tan 2

t
u

kh
ω∆

=                         (3.8a)  

 

( )2 2 0 2
2 2

2 2

( )( ) 2sin 2
( )

u t δ θθ ω
δ θ

= − ∆ .  (3.8b) 

 
Inserting the simple substitutions v → 1u  and 

2v → 2
2u  into the S-Mur ABC (2.3) with the now yields 

the NS (nonstandard)-Mur ABC, 
 

( )1 1
, , , ,

t t t t
b y b y i y i yψ ψ ψ ψ+ −= + − +   (3.9) 

( ) ( )1 11
, , , ,

1

1
1

t t t t
b y b y i y i y

u
u

ψ ψ ψ ψ− + −  − − − +   + 
 

( )
2

2 12
, ,

1

1
2 1

t t
y b y i y

u d
u

ψ ψ − 
+ + 

.  

 
IV. NUMERICAL STABILITY 

 
Consider a two-step FD algorithm of the form, 
  

( )t tψ + ∆ = ( ) 2 ( )a t t b tψ ψ−∆ +  (4.1) 
 

where a and b are constants. Taking t tτ= ∆ , 0,1, 2,τ = 

 
and writing ( )t τψ ψ= ,  equation (4.1) becomes, 
 

1 1 2a bτ τ τψ ψ ψ+ −= + .     (4.2) 
 

Postulating a solution to equation (4.2) of the form 
,τ τψ η= yields the equation 2 2 0b aη η− − = , which 

has the solutions, 
 

2b b aη± = ± + .                     (4.3) 
 

The general solution of equation (4.2) is therefore, 
 

τ τ τψ α η α η+ + − −= +                    (4.4) 
 

where the constants α±
 are determined by the initial 

values (0)ψ  and ( )tψ ∆ . Since the fields on the 
boundary cannot rise exponentially with time, we require 
that,  

1η± ≤ .   (4.5) 
 

Condition (4.5) is a form of the CFL (Courant, 
Friedrich, Levy) [5] stability condition.  
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Suppose that 1η+ ≤  and 1η− > . If 0α− =  in 
equation (4.4) it might seem that lim τ

τ
ψ

→∞
 is finite. In 

principle it is, but after a large number of iterations ( N ), 
computer round-off error gives rise to a small η−  

component, and Nψ =  Na η δη+ + −+ . Thus ψ  diverges 
with further iteration.   

Let us now analyze the numerical stability of the 
NSFD model (3.2). Assuming an infinite plane wave, the 
spatial derivatives and averages can be expressed using 
equation (2.4). Equation (3.2) becomes, 

 

( )1 1
. . .2t t t

x m y m y m yc ψ ψ ψ+ −+ − +   (4.6) 

( )1 1 2 2
1 . . 2 .2 0t t t

x m y m y x y m yiu s c s uψ ψ ψ+ −− + = , 

 
where xs = ( )sin 2xk h , xc = ( )cos 2xk h , ys = ( )sin 2yk h . 

Writing α = 1x xc iu s+ , and β = 2 2
21 ys u− , we can cast 

equation (4.6) into the form of equation (4.2) with 
a α α∗= −  and xb cβ α=  in equation (4.2). The 
solution of equation (4.6) is thus, 
 

22 21
x xc cη β β α

α±
 = ± −  

.           (4.7)  

 
If 22 2

xcβ α≤  equation (4.7) becomes, 
 

2 2 21
x xc i cη β α β

α±
 = ± −  

              (4.8) 

 
whence 2 1η± = . On the other hand if 22 2

xcβ α> , it 

can be shown that either 1η+ >  or 1η− > .  The CFL 

condition is thus 22 2
xcβ α≤ , which can be rewritten as, 

 

( )
( )

22 2
2

2 2 2
1

1

1
y

x x

s u

u s c

−

+
1≤ .  (4.9) 

 
Because the denominator is 1≥  and 2

ys 1≤ , 
equation (4.9) reduces to,   

     
 2

2 2( )u θ 2≤ .    (4.10)  
 

For the S-Mur ABC, ( )22
2u v t h= ∆  and equation 

(4.9) gives the stability condition 2v t h∆ ≤ . For the 
NS-Mur ABC, putting equation (3.8) into equation (4.9) 

and using kv vkω ω= ⇒ = , the stability condition 
becomes,  

( )2 2 2

0 2

( )sin 2
( )

vk δ θ
δ θ

− ≤ .      (4.11) 

 
Since the maximum spacing between the grid points 

is 2h , the Nyquist sampling condition requires that we 
choose 2 2 0 2h kλ π> ⇒ < < . We now seek the 
maximum value, c , of v v t h= ∆  such that equation 
(4.11) is satisfied. Numerically solving equation (4.11) 
gives 1.31c =  for 2 45θ =  , and 1.22c =  2 60θ =  . The 
NS-Mur stability condition can now be expressed in the 
form,  

2( )v t c
h

θ∆
≤ .  (4.12) 

 
These stability constraints are looser than that of the 

FDTD algorithm used to compute the fields in the 
interior of the computational domain. In the standard (S) 
FDTD (Yee) algorithm, the CFL stability condition is 

2 2v t h∆ ≤  0.70≅ , but the nonstandard (NS) FDTD 
algorithm [6,7] is stable for 0.84v t h∆ ≤  in two 
dimensions. We used the NS-FDTD algorithm to 
calculate the electromagnetic fields in the interior of the 
computational domain in the results shown below.    

The above analysis applies to an infinite plane wave 
impinging at arbitrary angle on an infinite computational 
boundary. A difficulty common to all ABCs is the 
indeterminacy of the corner points. At the corners the 
stability analysis is extremely difficult so it is best 
verified numerically. We have found that computing the 
ABC at the corner points with either the left-right (x-
axis) ABC or the top-bottom (y-axis) ABC yields 
excellent stability. Some authors take the average of the 
left-right and top-bottom ABCs. While the resultant ABC 
is stable, it does not increase the absorption.      
 

V. IMPLEMENTATION 
 

The implementation of the ABC depends upon the 
details of the FDTD algorithm used to compute the 
electromagnetic fields, such as the placement of the 
electromagnetic fields on the numerical grid. For 
example, if the magnetic field ( H ) is updated first in the 
TE mode ( 0x y zH H E= = = ) with periodic FD 

operators, the ABC need be applied only to zH      
because the electric field ( E ) depends only                    
on .zH  If xd  is periodic on 0, , ,xx h N h= 

                              
then ( ) (0) ( ),x x xd f N h f f N h h= − − and (0)xd f  

( ) ( ).xf h f N h= −   
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incident S-Mur NS-Mur

(a) (b) (c)

incident S-Mur NS-Murincident S-Mur NS-Mur

(a) (b) (c)

   vs.  r θ

 10log   vs.  r θ

 10log   vs.  ρ θ

VI. COMPARISONS AND PERFORMANCE TESTS 
 

To test the effectiveness of our ABC we used a 
modification of the test described in [2] (equation (6.46), 
p. 258) and [8]. Expressing equation (6.46) of [2] in the 
space domain we have, 

   

( )1
0 3

1( ) 10 15cos
32 pp x k x= −

  (6.1) 

( )2
36 cosp pk x k x+ − 

. 

 
We center the pulse at 0x =  by defining, 
  

( )p x ( )3
0 2 pp x λ= −             (6.2) 

 
where 2p pkλ π= , equation (6.2) defines a smooth 
pulse of half-width pλ . To suppress periodicity we add 

the condition ( ) 0p x =  for px λ> . In [2] 40 3p hλ = , 
but we take 2pλ λ= , and use (6.2) to construct a square 
incident pulse envelope for a signal of wavenumber 

2k π λ=  as depicted in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. (a) Incident pulse ( 50  from normal) reflects from 
the right boundary where (b) the S-Mur ABC or (c) the 
NS-Mur ABC is enforced.  
 

Figure 1 depicts a typical calculation.  Using the NS-
FDTD algorithm, the input pulse (Fig. 1(a)) is 
propagated onto the right boundary, where either the S-
Mur ABC (Fig. 1(b)), or the NS-Mur ABC (Fig. 1(c)) is 
enforced (

2 45θ =  ). Incident intensity 0I , is the mean 
intensity of the incident pulse within the box (outlined in 
black, Fig. 1(a)). The reflected pulse is propagated away 
from the boundary, and the reflected intensity ( rI ), mean 
intensity within the box, is recorded. The intensity 
reflection coefficient is 

r 0r I I= . Note that the reflected 
pulse is not exactly centered within the box. Box position 
is computed under the assumption that the angle of 
reflection equals the angle of incidence, and that pulse 

group velocity equals phase velocity.  
We also investigated the total energy absorption, 

by comparing total incident energy ( 0E ) with total 
reflected energy ( rE ). Total energy is the local intensity 
summed over all grid points in the computational domain 
interior. The total energy reflection coefficient is 

r 0E Eρ = . Before reflection, the energy is concentrated 
about the pulse center, but afterwards some of the energy 
remains near the boundary and propagates along it (lower 
right of Figs. 1(a) and (b)). Thus r  and ρ  are somewhat 
different. For 

2 45θ =   in equation (3.7) for the NS-Mur 
ABC, the difference is very small, but for 2 60θ =  , ρ  is 
much greater than r . For this reason we take 2 45θ =  . 
In all that follows “NS-Mur ABC” means 

2 45θ =  .    
Figures 2 and 3 show plots of the intensity reflection 

coefficient ( r ) as a function of incidence angle (θ ) for 
the S-Mur, and NS-Mur ABCs. In Fig. 4  ρ  is similarly 
plotted. 
 
 
 
 
 
 
 
 
 
Fig. 2. Intensity reflection coefficient ( r ) vs. incidence 
angle (θ ) for the S-Mur ABC (S), and NS-Mur_ABC 
(NS); 8,hλ =  0.84.v t h∆ =   
 
 
 
 
 
 
 
 
 
Fig. 3.  Same data as Fig. 2, 10log r  versus θ .  
 
 

 
 
 
 
 
 
 
Fig. 4. Total energy reflection coefficient ( ρ ) vs. 
incidence angle (θ ) for the S-Mur ABC (S), and NS-
Mur_ABC (NS), 8,hλ =  0.84.v t h∆ =  
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 Intensity ( ) vs. I x
 10log  vs. I x

 x λ →

The NS-Mur ABC has the lowest values of both r  
and ρ  over the range 0 45θ≤ ≤  , except in the narrow 
band 25 30θ≤ ≤  , where the S-Mur ABC is slightly 
lower. For 30θ >  , S-ABC reflection rises rapidly and is 
always much higher than NS-ABC reflection.  

We investigated the “global” energy absorption due 
to a pulsed point source centered in a λ λ×  
computational domain. Using equation (6.1) in the time 
domain (

02p pk ω ω→ = ) to modulate a source of angular 

frequency 0ω , we plot the signal decay as a function of 
time step in Fig. 5.  

  
 
 
 
 
 
 
 
 
 
 
Fig. 5. Total energy (veritcal)  vs. time step  for the S-
Mur ABC (S), and NS-Mur_ABC (NS); 8.hλ =  Right 
figure shows magnified scale.  
 

As Fig. 5 shows, not only is the global energy 
absorption higher for the NS-Mur ABC, but also the 
signal decays more quickly. This faster decay is probably 
because the signal requires fewer “bounces” off the 
boundary to be absorbed.  

Since the NS-Mur ABC is optimized to absorb a 
particular angular frequency, 0ω , it is interesting to 
investigate in greater detail how well it absorbs pulses. 
Fig. 6 depicts a normally incident pulse, and its S-Mur 
ABC and NS-Mur ABC intensity reflections.  
 
 
 
 
 
 
 
Fig. 6. Normally Incident and reflected pulses with the S-
Mur and NS-Mur ABCs.  
 
 
 
 
 
 
 
Fig. 7. Intensity profile of pulses in Fig. 6. Left: incident 
pulse; right: reflected pulses.  

Where the pulse rises and falls 0ω ω≠  frequency 
components are large but the NS-Mur ABC reflected 
intensity is still less than 110−  that of the S-Mur ABC. In 
pulse center the NS-Mur ABC reflected intensity is less 
than 310−  that the S-Mur ABC, as shown in Fig. 7.  

To compute propagation in a photonic crystal 
consisting of vacuum holes in a dielectric substrate of 
refractive index s ,n  we set 0 0.84v t h c∆ = =  in the 
vacuum, and take 0 sv t h c n∆ =  in the substrate. The 
total energy reflection ( ρ ) using both the S-Mur and NS-
Mur ABC is little affected by the value of v t h∆  but the 
intensity reflection ( r ) decreases somewhat for 55θ >  . 
This is, however, probably due to pulse spreading. We 
also examined the sensitivity of r  and ρ  to the value of 

hλ , but found little effect.  
 

VII.  SUMMARY AND CONCLUSIONS 
 

The NSFD version of the second-order Mur ABC is 
obtained with the simple replacements v → 1u , and 

2v → 2
2u . We found that the best ABC for general use is 

the choice 
2 45θ =   in equation (3.7). Existing computer 

codes can be easily modified to give much better 
absorption for the same computational cost. Although the 
NS-Mur ABC is optimized for monochromatic radiation, 
it also absorbs moderately broad pulses effectively. The 
data of Figs. 2 to 5 are taken with bandwidth 

0 0 4ω ω∆ 

 about the central frequency, 0ω . The 
performance of the S-Mur ABC is also frequency 
dependent, and its performance deteriorates as hλ  
decreases.  On the other hand the NS-Mur ABC is 
optimized to grid spacing, and does well on a coarse grid.  
As Figs. 2-5 show, both the S-Mur ABC and NS-Mur 
ABC give low reflection up to incidence angles (θ ) of 
about 30 , but the NS-Mur ABC is much better than the 
S-Mur ABC for 30θ >  . 

The NS-Mur ABC is still fundamentally a second-
order ABC. For wide-band absorption at high incidence 
angles a more sophisticated ABC, such as PML, must be 
used with its concomitant complexity and high 
computational cost.  

This work greatly expands the utility of the simple, 
low-cost second-order Mur ABC. The foregoing 
developments have been extended to three dimensions. 
In three dimensions where there are line corners and 
point corners, special care must be taken to correctly join 
the Mur ABC with the FDTD algorithm.   
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