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Abstract - In this paper, a method for the 
implementation of thin wire with the 
alternating-direction implicit finite-difference 
time-domain (ADI-FDTD) method is discussed. 
The magnetic field around the wire is modified 
according to the “standard” subcell model, which 
results in the modification to the tridiagonal 
matrix system in the ADI-FDTD. The 
perfect-electric-conductor (PEC) condition is 
directly incorporated within the tridiagonal matrix 
equation. This method is efficient, stable, and 
suitable to ADI-FDTD scheme with large time 
step size. The validity of this method is confirmed 
through numerical examples. 
 
Index Terms - ADI-FDTD method, PEC 
condition, subcell model, thin wire. 
 

I. INTRODUCTION 
The alternating-direction-implicit finite- 

difference time-domain (ADI–FDTD) method is 
an unconditionally stable alternative to the 
standard fully explicit FDTD method [1-5]. The 
main advantage of the ADI-FDTD method is that 
the Courant–Friedrich–Levy (CFL) condition that 
is always required by the conventional FDTD 
method can be totally removed. Hence, the 
ADI-FDTD method is extremely useful for 
problems where a very fine mesh is needed over a 

large geometric area. Nevertheless, from the 
implementation point of view, the ADI-FDTD 
method is more complicated than the conventional 
FDTD method. This is because the field 
components of the conventional FDTD method 
can be directly updated, but in the ADI-FDTD 
method they have to be implicitly updated by 
solving a tridiagonal matrix system. 

In many electromagnetic problems analyzed 
numerically with the FDTD method, thin wires 
need to be modeled. A wire is considered thin 
when its diameter is less than the selected mesh 
size. It is certainly possible to select a sufficiently 
small mesh, so that the wire diameter occupies 
one or more computational cells, but this approach 
often results in a very fine discretization and 
excessive computational resources. As an 
alternative, a “standard” subcel1 model which is 
based on the near-field physics can be used [6]. 
This model assumes that the circumferential 
component of the magnetic field and the radial 
component of the electric field vary as 1/r near the 
wire, where r is the radial distance from the wire 
axis. In such a case, a modification to the standard 
FDTD algorithm is easily available. However, the 
modification to the ADI-FDTD algorithm is 
complicated, due to its implicit calculation by 
solving a tridiagonal matrix system.
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  This paper presents the implementation of the 
thin wires for the ADI-FDTD method. The 
magnetic field around the wire is modified 
according to the “standard” subcell model, which 
results in the modification to the tridiagonal 
matrix system. For the perfect conductor 
boundary condition, the tangential electronic field 
component along the wire needs to be set to zero, 
which is directly incorporated within the 
tridiagonal matrix system. This method is 
unconditionally stable and has high accuracy. The 
theory proposed in this article is validated 
through numerical examples. 
 

II. FORMULATIONS 
The field components around thin wire are 

shown in Fig. 1. 0r  is the radius of the wire. 
0i and 0j denote the indices of spatial increments 

of thin wire. Indices 1 2k k k   denote the 
height of the wire.  

In the ADI-FDTD method, the calculation for 

one discrete time step is performed using two 
procedures. According to the “standard” subcell 
model [3], the numerical formulations of 
the 1 2n

zE  , 1 2n
xH   components near the thin wire 

in the first procedure for the ADI-FDTD method 
are given in eqs. (1) and (2) above. Obviously, 
updating of 1 2n

zE  component, as shown in eq. (2), 
needs the unknown 1 2n

xH   component at the 
same time; thus the 1 2n

zE  component has to be 
updated implicitly. By substituting eq. (1) into eq. 
(2), the equation for 1 2n

zE  field is given in eq. (3), 
where  1 02 lns y r  . Thus, 1 2n

zE  fields 
along a particular y-directed line ( 0i i ) are 
updated simultaneously by solving the tridiagonal 
matrix equation through eq. (4) and repeated for 
each k  ( 1 2k k k  ), where 2 24t y    , 

0

1 2
,

n
z jE  is the unknown z-direction electronic field, 

0j
r is the right side of eq. (3). For other k  value 
( 1k k or 2k k ), and other i  value ( 0i i ), 
standard ADI-FDTD formulation is applied.
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Fig. 1. Field components around a thin wire 
( 1 2k k k  ). 

 
The thin wire is often seen as perfect electric 

conductor. The tangential electronic field value zE  
along the wire must be set to zero. So in the 
matrix systems (4), the values of 

0

1 2
,

n
z jE   are not 

calculated. Then the matrix system (4) becomes (5) 
above.  

Thus, components 1 2n
zE  are updated by solving 

the modified tridiagonal matrix system through 

Eqs. (5). This ADI-FDTD method incorporates the 
PEC condition into the matrix system. It seems to 
be complicated, but it is unconditionally stable 
and has higher accuracy. If we set the tangential 
electric field values 1 2n

zE   to be zeros directly 
after solving the tridiagonal matrix system (4), the 
ADI-FDTD method is unstable, even for very 
small time step size, which is validated through 
numerical examples in the next section. 

 In the second procedure, components 1n
zE  , 

1n
yH   can similarly be treated as 1 2n

zE  and 
1 2n

xH   in the first procedure, which is not shown 
here due to space limitation. 

 
III. NUMERICAL VALIDATION 

To validate the theory presented in this paper, a 
simple numerical simulation is studied. A thin 
wire of length 10 cm and radius of 1 mm is 
embedded in a shielding enclosure, as shown in 
Fig. 2. The physical dimension of the enclosure 
is 15 15 15cm cm cm  . In the middle of the 
enclosure, a small current source is applied along 
the z direction. The time dependence of the 
excitation function is: 

2
0( ) exp[ ( ) ]g t t t             (6)           
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where   and 0t  are constants, and equal to 
1.261010 s-2 and 1.010-9 s, respectively. In such 
a case, the highest frequency of interest is 2 GHz. 

The space increments used in the FDTD 
simulation are 5 .x y z mm      The total 
mesh size is 30 30 30  . Observation point A 
is 5 cells diagonally far from the source. We 
apply the ADI-FDTD technique to compute the 
time domain electric field at the observation 
point. The time step is 

     2 2 21 1 1 1t c x y z        9.62ps, which 
is the maximum time step to satisfy the limitation 
of the 3D CFL condition in the conventional 
FDTD method. For simplicity, both the thin wire 
and the enclosure are perfect electric conductors. 

 
Fig. 2. Geometric configuration of the numerical 
simulation. 
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Fig. 3. The electric field component zE  at 
observation point A calculated by different 
methods. 

 
To ensure the ADI-FDTD method be 

symmetric up to the numerical noise level, the 
excitation field should be directly incorporated 
within the tridiagonal matrix and the time 
discretization of the source is done appropriately 
within each full time step [7]. 

Figure 3 gives the results of the electric field 
component zE  at observation point A calculated 
by ADI-FDTD- 2 methods for large number of time 
steps. 
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Fig. 4. The electric field component zE  at 
observation point A calculated by ADI-FDTD-2 
methods for large number of time steps. 
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Fig. 5. The electric field component zE  at 
observation point calculated by ADI-FDTD -1 
methods for large number of time steps. 
  

The ADI-FDTD-1 denotes the method that 
incorporates the PEC condition into the matrix 
system. The ADI-FDTD-2 denotes the method 
that set the tangential electric field values zE  to 
be zeros directly after solving the tridiagonal 
matrix system. For comparison, the result 
obtained by the conventional FDTD method is 
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also plotted in this figure. In all the methods, the 
time step sizes are 9.62ps. It can be seen from this 
figure that the results calculated by ADI-FDTD-1 
agree well with the results obtained by the 
conventional FDTD, which shows that the 
ADI-FDTD-1 method has higher accuracy. The 
value calculated by ADI-FDTD-2 deviate from 
that of conventional FDTD significantly. It is 
apparent that ADI-FDTD-2 can’t obtain correct 
results. 

To confirm the stability of these two methods, 
the ADI-FDTD program is tested for a long time 
history. Figure 4 shows the result of the electric 
field component zE  at observation point A 
calculated by ADI-FDTD-2 method for large 
number of time steps, the time step size is 9.62ps. 
It can be seen from this figure that the result of 
method 2 starts to be unstable after 6,000 time 
steps. To confirm the stability of method 1, the 
ADI-FDTD program is tested for 10,000 time 
steps with time step size 384.80ps which is 40 
times as that of conventional FDTD method. No 
instability problem is observed. This illustrates 
that the ADI-FDTD scheme based on the method 
that incorporates the PEC condition into the 
matrix system is unconditionally stable, and the 
programs based on the method that set the 
tangential electric field values zE  to be zeros 
directly are not stable, even for small number of 
time steps. 
 

IV. CONCLUSION 
Based on the assumption of a 1/r dependence of 

the magnitude of local fields with radial distance r 
from the wire center, the magnetic field around 
the thin wire is modified, which results in the 
modification to the tridiagonal matrix system in 
the ADI-FDTD method. Meanwhile, due to the 
implicit calculation of the ADI-FDTD method, the 
perfect conductor boundary condition must be 
incorporated within the tridiagonal matrix system. 
The matrix needs to cross out the rows and 
columns for which the value doesn’t need to be 
calculated. This method is unconditionally stable 
and has higher accuracy, which is validated 
through numerical examples. It needs to be noted 
that the stability of the ADI-FDTD-1 method is 
numerically verified rather than theoretically 
proven. The theoretical analysis of the stability is 

under research and will be reported in a future 
publication. 

This unconditionally stable subcell model can 
be used to calculate the induced currents on the 
coupled wires in cavity, simulate the inner 
conductor of the coaxial feed, and analyze the 
radiation from the shielding cable, thus it has 
important effects on the electromagnetic 
numerical simulations. 
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