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Abstract ─ In this paper, the element free Galerkin 
(EFG) method and the local Petrov-Galerkin 
(MLPG) method are compared for solving the 
electromagnetic problems. The EFG method and 
MLPG method are introduced at first. Both of the 
EFG and the MLPG methods are formulated in 
detail with Poisson’s equation. Based on basic 
electromagnetic problems, the numerical results 
from the EFG method and MLPG method are 
given in this paper. The numerical results show 
that the EFG method and MLPG method both 
work well for the solution of electromagnetic 
problems. The EFG method, based on global weak 
form, needs background meshes for integration, 
and it needs more nodes to get an accurate result 
but it requires less cost in computational time. The 
MLPG method as a true meshless method doesn’t 
needs any meshes in the implementation and can 
obtain an accurate result using fewer nodes than 
EFG. However, because the MLPG Method needs 
more integration nodes and has asymmetric 
matrices, it needs more CPU time than the EFG 
method with the condition that the same number of 
nodes is used in the problem domain.  

  

Index Terms ─ electromagnetic problems, 
meshless method, the element free Galerkin 
method, the local Petrov-Galerkin method. 

 
I. INTRODUCTION 

With the development of the computational 
technologies, the modeling and simulation of 
engineering problems can be solved by the 
numerical methods. For decades, people have been 
using the finite-element method (FEM), boundary-
element method (BEM) and finite-difference 
method (FDM) to solve the partial differential 
equation of the engineering systems [1]. Among 
those methods, the finite-element method is 
mostly widely used to solve the more-challenging 
problems as they require increasing demands on 
flexibility, effectiveness and accuracy for 
challenging problems with complex geometry [2]. 
However, the FEM requires the solution domain to 
be meshed, and the accuracy of the FEM depends 
on the quality of the mesh [1], and the mesh 
generation is more time consuming and a more 
expensive task than the solution of the finite 
element equations [3]. A lot of efforts have made 
to improve the design mesh, but it is still a 
challenge for some engineering analyses such as 
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the dimensionally very small air gaps and the 
remaining electromagnetic structures. 

To avoid these problems, recently a class of 
new methods called meshless or meshfree methods 
have been developed. The meshless methods do 
not require the generation of a mesh of the 
solution domain. The only necessary information 
are sets of nodes scattered in the solution domain 
as well as sets of nodes scattered on the 
boundaries, which means no mesh generation at 
the beginning of the calculation is needed.  

There are many different types of meshless 
methods [4-8], some important examples of these 
methods include the smooth particle 
hydrodynamics (SPH) method, the diffuse-element 
method (DEM), the reproducing kernel particle 
method (RKPM), the element-free Galerkin (EFG) 
method, the meshless local Petrov-Galerkin 
(MLPG) method, the local boundary integral 
equation (LBIE) method, the hp-cloud method, the 
finite point method (FPM), and so on. 

In those methods, the element free Galerkin 
(EFG) method (Belytschko et al., 1992) is one of 
the most viable methods and has become an 
inspiration source for the latter meshless methods. 
EFG method is based on the global weak-forms, 
so it requires background cells for evaluation of 
the integrals of the weak-forms. The meshless 
local Petrov-Galerkin (MLPG) method (Atluri and 
Zhu et al, 1998) is based on the local symmetric 
weak form (LSWF). The MLPG Method does not 
need elements or meshes either for interpolation 
purposes or for integration purposes. All integrals 
in the MLPG Method are carried out only on 
spheres (in 3-D or circles in 2-D) centered at each 
point in question [3,9,10]. Based on different type 
combinations of trial and test functions, there are 
six different schemes of the MLPG method [11]. 

Both the EFG method and the MLPG1 method 
are based on the moving least squares (MLS) 
approximation for the construction of the meshless 
shape functions. There are two differences 
between the EFG method and the MLPG method 
[12]. In the first place, the trial and test function in 
EFG are taken from the same functional spaces 
while they can be different for the MLPG method. 
Second, the main difference of them is the weak 
form used. The EFG method uses the global weak 
form and needs the background cells for the 
integration, but the MLPG method is based on the 
local symmetric weak form, so it does not need the 

background cells and thus is a truly meshless 
method.  

In this paper, the EFG method and the MLPG 
method are formulated in detail and a comparison 
is made in their solution of an electromagnetic 
problem. The numerical results show that EFG 
method and MLPG method both work well for the 
electromagnetic problem. The EFG method needs 
more nodes to get an accurate result but has the 
advantage that the computation time is lower. The 
MLPG method doesn’t need any background 
meshes in its implementation and can obtain an 
accurate result using fewer nodes than EFG, but 
the MLPG method requires more CPU time.  

The following discussion begins with the brief 
description of the moving least squares (MLS) 
approximation which is used to construct the 
shape function for both the EFG method and the 
MLPG method in Section Ⅱ.The basic numerical 
implementation of EFG method and MLPG 
method are given in Section Ⅲ. The numerical 
examples are given in Section Ⅳ. The paper ends 
with conclusions and discussions in Section Ⅴ. 

 
II.THE MOVING LEAST SQUARES 

APPROXIMATION 
The MLS method was first introduced by 

Lancaster and Salkauskas [13]. The MLS has main 
two major features: (1) the approximated field 
function is continuous and smooth in the entire 
problem domain; (2) the MLS method can produce 
an approximation with the desired order of 
consistency [2]. Those two features make the MLS 
method the most widely used method for the 
construction of the meshless shape functions. 

 
A. The MLS approximation scheme 

Consider u(x) to be the function of the field 
variable defined in the problem domain Ω . The 
approximation of u(x) is denoted ( )hu x : 

( ) ( ) ( ) ,
m

h T
j j

j
u p a= ≡∑x x x p (x)a(x)   (1) 

where m is the number of terms of monomials 
(polynomial basis), and a(x) is a vector of 
coefficients given by 

{ }0 1( ) ( ) ( ) ... ( ) ,T
mx a x a x a x=a  (2) 

which are functions of x. 
In equation (1), p(x) is a vector of complete 
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monomial basis; m is the number of the terms in 
the basis. In this paper, the linear basis is used for 
1D and 2D: 

( ) [1 ], 1 ,T x in D=p x   (3) 
( ) [1 ], 2 .T x y in D=p x  (4) 

The linear basis assures the MLS 
approximation has the linear completeness and can 
reproduce any smooth function and its first 
derivative with arbitrary accuracy [11]. The 
coefficients aj(x) can be obtained at the point x by 
minimizing a weighted discrete L2 norm as follows: 

2

1

( )[ ( ) ( ) ] ,
n

T
I I I

I
J w u

=

= − −∑ x x p x a x  (5)
 

where n is the number of nodes in the 
neighborhood of x which weight function 

( ) 0Iw − ≥x x . The uI is the value of u at x=xI. 
The neighborhood of x size is called the domain of 
influence of x. 

To obtain a(x) at an arbitrary point x, the 
minimization condition is required: 

0,J∂
=

∂a
    (6) 

which leads to the following linear equation 
system: 

( ) ( ) ( ) ,s=A x a x B x U   (7) 
where the matrices A(x), B(x) and Us are defined 
by 

( ) ( ) ( ) ( ),
n

T
I I I

I
w= −∑A x x x p x p x  (8) 

1 1 1 2 2 2( ) [ ( ) ( ), ( ) ( ), ... ,
( ) ( )],n n n

w w
w

= − −
−

B x x x p x x x p x
x x p x

(9) 

1 2[ , , ... , ].s nU U U=U  (10) 
Solving the equation (7) for a(x) we obtain: 

1( ) ( ) ( ) .s
−=a x A x B x U   (11) 

Hence, we have: 
1( ) ( )( ( ) ( ))

( ) ,

n m
h

j jI I
I j

n

I I
I

u p u

u

−=

≡

∑∑

∑

x x A x B x

xΦ

 (12) 

where the shape function is defined by: 

( ) ( )( ( ) ( )) .
m

I j jI
j

p= ∑ -1x x A x B xΦ  (13) 

The partial derivatives of ( )I xΦ can be 

obtained [3]： 

{ }, , , ,( ) ( ) ,
m

I i j i jI j i i jI
j

p p− − −= + +∑ 1 1 1A B A B A BΦ (14) 

where: 1 1 1
, ,i i
− − −= −A A A A and ( ),i denotes 

( ) / ix∂ ∂ .  
 
B. Choice of weight function 

There are many types of weight functions that 
can be chosen [2]. The following weight function 
is adopted in this paper [14]: 

2 3

2 3

2 14 4
3 2
4 4 14 4 1 ,
3 3 2
0 1

( ) ( )I

r r for r

r r r for r

for r

w w r

 − + ≤


− + − < ≤

 >


− ≡ =x x (15) 

where /I mIr d d= , I Id = −x x and mId is the 
size of the domain of influence of the thI  node. 
 

III. IMPLEMENTATION OF THE 
EFG METHOD AND THE MLPG 

METHOD 
In this section, a basic domain obeying 

Poisson’s equation function and boundary 
conditions is considered to demonstrate the 
formulation of the EFG method and the MLPG 
method. The governing equation and boundary 
conditions are expressed as: 

2 ( )( ) .u ρ
ε

∇ = − ∈Ω
xx x

 
 (16) 

The essential and the natural boundary 
conditions are respectively given by: 

0( ) ,uu u on= Γx   (17a) 
( ) ,q

u q q on∂
≡ = Γ

∂
x

n   (17b) 

where the domain is enclosed by u q∂Ω = Γ ∪Γ and 
n is the outward normal direction to the boundary. 

 
A. The EFG method formulation 

The EFG method is based on the globe weak 
form on the global problem domain Ω  and the 
essential boundary conditions can be imposed by 
the penalty method by penalty parameter. The 
equivalent weak form of Poisson’s function is: 

( )2
0

( ) 0,
u

u vd u u vdρ α
εΩ Γ

 ∇ + Ω − − Γ = 
 ∫ ∫

x (18)
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where u  is the trial function approximated by the 
MLS method, v is the test function, and 1α >>  is 
a penalty parameter used to impose the essential 
boundary conditions. 

Using the formula ( ) ( )2
, , , ,,ii i i ii

u v u v u v u v∇ = = − , 

the divergence theorem and ,i
uu ni qn
∂= ≡∂ , we 

can derive the local weak form as: 
( )

( )0 0.
u

v u v d qvd

u u vd

ρ
ε

α

Ω ∂Ω

Γ

 
∇ ⋅∇ − Ω − Γ 
 

+ − Γ =

∫ ∫

∫

x

(19) 

Imposing the natural boundary (17b), we can 
obtain: 

( )

( )
0 .

u u

q u

v u d uvd qvd

qvd u vd vd

α

ρ
α

ε

Ω Γ Γ

Γ Γ Ω

∇ ⋅∇ Ω + Γ − Γ =

Γ + Γ + Ω

∫ ∫ ∫

∫ ∫ ∫
x (20)

 

When the trial functions and test functions are 
taken from the same function space and produced 
by Eq. (12) [3], we can discretize Eq. (20) as: 

,=Ku f    (21) 
where the matrix K  and the vector f are define 
by: 

.

u

u

ij i j i j

j
i

K d d

d

α
Ω Γ

Γ

= ∇ ⋅∇ Ω + Γ

∂
− Γ

∂

∫ ∫

∫ n

Φ Φ Φ Φ

Φ
Φ

(22) 

( ) .
q u s

i i i if q d u d d
ρ

α
εΓ Γ Ω

= Γ + Γ + Ω∫ ∫ ∫
x

Φ Φ Φ (23) 

 
B. The MLPG method formulation 

The MLPG method is based on the local 
symmetric weak form over a local sub-domain sΩ , 
the local sub-domain sΩ  is entirely inside the 
global problem domainΩ . A local weak form of 
the governing equation (16) and the boundary 
conditions (17) can be written as: 

( )2
0

( ) 0,
sus

u vd u u vdρ α
εΩ Γ

 ∇ + Ω − − Γ = 
 ∫ ∫

x
(24)

 

where u , v  and 1α >> are the trial functions, test 
functions and penalty parameter respectively. 

suΓ is a part of the essential boundary uΓ . If the 
sub-domain has no intersection with the global 

essential boundary uΓ , the second part of equation 
(24) vanishes [11].  

Corresponding to the EFG formulation, the 
local weak form can be written as: 

( )

( )0 0.

s s

su

v u v d qvd

u u vd

ρ
ε

α

Ω ∂Ω

Γ

 
∇ ⋅∇ − Ω − Γ 
 

+ − Γ =

∫ ∫

∫

x

(25) 

Using the natural boundary condition (17b) we 
can obtain: 

( )

( )0 0.

s s

su sq su

L
v u vd qvd

qvd qvd u u vd

ρ
ε

α

Ω

Γ Γ Γ

 
∇ ⋅∇ − Ω − Γ 
 

− Γ − Γ + − Γ =

∫ ∫

∫ ∫ ∫

x

(26) 

where sqΓ is a part of the natural boundary of qΓ , if 
a sub-domain is totally inside the globe domain and 
has no intersection between sΩ , the s sL = ∂Ω and 

the integrals over suΓ  and sqΓ  vanish [11].  
The weight function used in the MLS 

approximation is chosen as the test function in the 
MLPG method. So the test function will vanish on 
the boundary of the local domain sΩ and the 
boundary sL . Using this function, the function (26) 
can be rewritten as: 

( ) .

s su su

sq su s

s s s

s s s

w ud w ud w qd

w qd w ud w d

α

ρ
α

ε

Ω Γ Γ

Γ Γ Ω

∇ ⋅∇ Ω + Γ − Γ =

Γ + Γ + Ω

∫ ∫ ∫

∫ ∫ ∫
x (27) 

To obtain the discrete equations, substitution 
of (12) into (27), we can discretize Eq. (27) as: 

,=Ku f         (28) 

where  

,

s su

su

ij s j s j

j
s

K w d w d

w d

α
Ω Γ

Γ

= ∇ ⋅∇ Ω + Γ

∂
− Γ

∂

∫ ∫

∫ n

Φ Φ

Φ  (29a) 

and  

( ) .
sq su s

i s s sf w qd w ud w d
ρ

α
εΓ Γ Ω

= Γ + Γ + Ω∫ ∫ ∫
x

(29b) 
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IV. NUMERICAL EXPERIMENTS 
In this paper, the essential boundary 

conditions in the EFG and MLPG methods are 
both imposed by the penalty method with the 
penalty parameter α  being chosen as 106 [2,12]. 
The number of integration points is chosen to be 
three times the total number of nodes in EFG, the 
local quadrature domain sΩ  with four subdivision 
cells and 4 4× integration points in each cell is 
used in the local quadrature domain in MLPG 
method [3].  

In order to investigate the accuracy of the EFG 
and MLPG methods, a relative error is calculated 
as follows [12]: 

1

1

max
,

max

num ana
i N i i

ana
i N i

u u
Error

u
≤ ≤

≤ ≤

−
=  (30) 

where num
iu denotes the numerical solution of the 

thi  node and the ana
iu denotes the analytic 

solution of the thi  node. 
 

A. Solution of Poisson’s equation 
We first consider Poisson’s equation with the 

problem domain illustrated in Fig. 1. As shown in 
Fig. 1, the size of the problem domain is 

( ) ( )0,10 0,10Ω ≡ ×  with dielectric constant 0ε . 
The governing equation and boundary condition 
are as follows: 

2 2
2 2

1 2 1 2 0

01 1
( ) sin cos ,y x

u
a a a a

ρ
π π π

ε
∇ = − +

     
     
     

x (31) 

( ) 0 ,uu on= Γx    (32a) 
( ) 0 .q

u on∂
= Γ

∂
x

n   (32b) 

where 0ρ is the distribution density, 
2

0 100 /C mρ = − , 0ε is dielectric constant and two 
choices of a1 and a2 have been made such that 

{ }1 2, 1 , 2, 5 ,10a a ∈ . 
With different a1 and a2 the analytic solution is 

different. The analytic solution of this problem is: 

( ) 0

1 2 0

sin cos .y xu
a a

ρπ π
ε

   
=    

   
x  (33) 

The Analytical solution based on equation (33) 
is shown in Figs. 2 and 3 for different values of a1 
and a2. A comparison of the exact solution with 

numerical results from both EFG and MLPG 
methods along the line x=5 is shown in Fig. 4 and 
Fig. 5. The total number of nodes was 400 for Fig. 
4 and 2500 nodes for Fig. 5. Each Fig shows the 
results for the two different values of a1 and a2.  
 

0ε

x

y

( )0, 0

( )10,10: 0u u VΓ =

: 0u u VΓ =

( ): 0q
u∂

Γ =
∂

x
n

( ): 0q
u∂

Γ =
∂

x
n

Fig. 1. Problem domain for Poisson’s equation. 
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Fig. 2. The analytic solution of the Poisson’s 
problem with a1=5 and a2=5. 
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Fig. 3. The analytic solution of the Poisson’s 
problem with a1=2 and a2=5. 
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We can observe good agreement between 

analytical and numerical results from Fig. 4 and 
Fig. 5. And the numerical results become more 
accurate as more nodes are used in the calculation.  
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(b) a1=2 and a2=5. 

 
Fig. 4. Comparison between the analytic solution, 
EFG method and MLPG method with 400 nodes 
along x=5 . 
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(a) a1=5 and a2=5. 
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Fig. 5. Comparison between the analytic solution, 
EFG and MLPG method with 2500 nodes used 
along x=5. 

 
B. Solution of Helmholtz equation 

Next, let us consider a problem domain which 
is governed by the Helmholtz equation [8]: 

2 2 0 ( , ) ,z zE k E for x y∇ + = ∈Ω  (34) 

( , ) ( , ) ( , ) .zE x y f x y for x y= ∈∂Ω  (35) 
The problem domain along with the associated 

boundary conditions is illustrated in Fig. 6. 
 

x

y

( )0, 0

( )1,1( )sinzE m xπ=

0zE =

( )sinzE m xπ=

0zE =

 
Fig. 6. Example of Helmholtz equation. 
 

Consider the case for which 
2 1
k
πλ = = . The 

analytic solutions of this problem with two 
different choices of m in boundary conditions are 
shown in Figs. 7 and 8. 
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Fig. 7. The analytic solution of the Helmholtz 
equation with m=1. 
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Fig. 8. The analytic solution of the Helmholtz 
equation with m=3. 

A comparison of the exact solution with 
numerical results from both EFG and MLPG 
methods along the line y=0.5 is shown in Fig. 9 
and Fig. 10. The total number of nodes was 400 
for Fig. 9 and 2500 nodes for Fig. 10. 
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Fig. 9. Comparison between the analytic solution, 
EFG method and MLPG method with 400 nodes 
along y=0.5. 
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 (a) The analytic and numerical solutions with m=1. 
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m=3. 
 

Fig. 10. Comparison between the analytic solution, 
EFG method and MLPG method with 2500 nodes 
along y=0.5.  
 

According to the results shown in Fig. 9 and 
Fig. 10, it can be concluded that both the EFG 
method and MLPG method work well for the 
Helmholtz problem. In addition, more nodes used 
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in the model, more accurate of the results, this is 
the same as that in the example of Poisson’s 
problem. 

Based on the analytic solutions with different 
a1 and a2 in Poisson’s problem, the relative error 
and computational efficiency of EFG and MLPG 
method are investigated.  

In order to discuss the relationship of the 
relative error, the total number of nodes with 
different problems (different a1 and a2), a relative 
error with different number of nodes in EFG 
method and MLPG method is given in Fig. 11. 
Figure 11 shows the MLPG method is more 
accurate than EFG with the same number of nodes, 
especially when the total number of nodes is 
substantially lower. With the increase of total 
number of nodes used, the relative error of both 
EFG method and MLPG method are getting close 
to zero. 

For the case where a1=2 and a2=5, the analytic 
electric potential is much more complex than the 
case where a1=a2=5, more nodes are required to 
get an exact answer.  

To investigate the computational efficiency of 
the two methods, the average processing time 
required as a function of the total number of nodes 
is obtained and plotted in Fig. 12. It should be 
noted that he computation was done with the same 
Lenovo computer.  
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Fig. 11. Relative error with the total number of 
nodes in EFG and MLPG method. 

 
It can be found that, the MLPG method needs 

more processing time than the EFG method. It is 
mainly due to the following two reasons: At first, 
the MLPG method requires more integration 
points than the EFG method in the computation. 
Both of the EFG method and the MLPG method 
need to integrate over the domain. The EFG 
method needs shadow meshes to set integration 

points over the entire domain of the problem. The 
MLPG method doesn’t need elements or meshes 
for integration, all the integrals are carried out on 
spheres centered at each node in the domain, so 
the MLPG method can be referred to as a “real” 
meshless method or at least close to the ideal 
mesh-free method. But because of the complexity 
of the integrand that results from the Petrov-
Galerkin formulation, the integration difficulty is 
more severe than EFG. The MLPG method needs 
to be divided into small cells and more Gaussian 
quadrature points should be used for the 
integration [15]. The second reason for the 
increased processing time is that the system 
matrices produced by the MLPG method are 
asymmetric and those that are produced by the 
EFG methods are symmetric. The asymmetric 
matrices require more CPU time for their solution. 
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Fig. 12. Comparison of the proceeding time with 
different total number of nodes of EFG and MLPG 
method. 

 
V. CONCLUSIONS 

Implementations of the element free galerkin 
method (EFG) and the meshless local Petrov-
Galerkin method have been presented in this 
paper. Both of the methods are formulated in 
detail for a basic problem governed by Poisson’s 
equation. Problem domains governed by Poisson’s 
and Helmholtz’s equations have been considered 
and the numerical results are compared with the 
analytic solutions to investigate the accuracy and 
computational efficiency of the EFG method and 
the MLPG method. The results show that the 
MLPG method needs more CPU time but can 
obtain a more accurate result using fewer nodes 
than the EFG method. The reasons the MLPG 
method needs more processing time are that the 
MLPG method needs more integration points and 
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the solution of the asymmetric matrices require 
more CPU time. 
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