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Abstract ─ Method of Moments (MoM) is used to 

model guided wave propagation inside a non-

penetrable wedge waveguide and the results are 

validated against analytical mode-based exact 

solutions. 
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I. INTRODUCTION 
Natural or man-made guiding environments 

are usually characterized by physical parameters 

that render the wave equation non-separable in any 

of the standard coordinate systems [1-2]. If 

separable, transverse and longitudinal 

decomposition of wave equation yields Normal 

Modes (NM) [1]. NMs are the solutions of source-

free wave equation, individually satisfy the 

transverse Boundary Conditions (BC), and 

propagate longitudinally without coupling to other 

modes. When transverse-longitudinal separability 

is only weakly perturbed, Adiabatic (local) Modes 

(AM) can be used [3-5]. AMs adapt smoothly 

without intermode coupling, to the slowly 

changing conditions, but fail in cut-off regions. 

This failure can be uniformized by Intrinsic Modes 

(IM) [6-8]. These concepts can best be explained 

by investigating the wave dynamics in a simple 

test environment: a wedge waveguide with non-

penetrable boundaries. Source-driven solutions 

may then be obtained via Green’s function (i.e., 

line-source response) based on these modes. 

Alternatively, pure numerical methods can be used 

to investigate wave propagation inside a wedge 

waveguide with non-penetrable boundaries. 

Wedge with non-penetrable (i.e., Perfectly 

Electrical Conductor, PEC) boundaries is a 

canonical structure where analytical as well as 

numerical models are derived, tested, and 

validated. It is also used to gain physical insight. 

Wedge with an exterior source serves as reference 

for understanding and solving the scattering 

phenomena [9-11]. Wedge scattering may also be 

modeled with numerical models, such as the 

Finite-Difference Time-Domain (FDTD) [12,13] 

or Method of Moments (MoM) [14-18]. 

Wedge with an interior source is canonical in 

understanding and solving guided wave 

phenomena using both analytical and numerical 

models. The Green’s function of this problem can 

be extracted using both mode summation and ray-

tracing/eigenray extraction models (see, [19,20] 

for tutorial reviews and free MATLAB-based 

virtual tools). 

In this study, propagation inside a wedge 

waveguide with PEC boundaries is modeled using 

MoM and validated against analytical exact 

solutions. The paper is organized as follows. In 

Section II, guided waves inside a wedge-type 

waveguide are summarized for the sake of 

completeness. MoM solutions of guided waves 

excited by a line source are given in Section III. 

Section IV contains numerical comparisons of 
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Green’s function and MoM solutions. Finally, the 

conclusions are presented in Section V. 

 

II. GUIDED WAVES: GREEN’S 

FUNCTION SOLUTION 
The two-dimensional wedge waveguide with 

apex angle ( ) is pictured in Fig. 1. Here, x and y 

are the longitudinal (range) and transverse (height 

above y=0) coordinates, respectively. The 

structure is infinite along z-direction ( 0/  z ). 

Note, that the problem is separable in cylindrical 

coordinates ),(   and exact solution can be built 

in terms of infinite mode summation. On the other 

hand, visualization is better in rectangular 

coordinates ),( yx . Therefore, both coordinate 

systems are used in this paper. 

 

 
 

Fig. 1. Geometry of the wedge waveguide 

problem. 

 

Under the time dependence )exp( ti , the 

Green’s function of this problem is postulated via: 
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where 00/2  k  is the free-space wave-

number, 0I  is the line current amplitude, ),( 00   

and ),(   specify the source and the observation 

points, respectively, )(  is the Dirac delta 

functions. In the case of Electromagnetic (EM) 

waves, the BCs are appropriate for the PEC wedge 

and su  represents the z-component of electric field 

intensity zE (TM), while hu  is the z-component of 

magnetic field intensity zH (TE). In the case of 

acoustic waves, these conditions refer to 

acoustically soft (TM SBC) and hard 

(TE HBC) wedges, respectively. 

Mathematically, they are Dirichlet and Neumann 

BCs, respectively. Note, that the Green’s function 

notation ),,,( 00,, hshs gu   is used here. 

The Green’s function solution is exact in polar 

coordinates but requires infinite number of mode 

summation. The wave equation inside the wedge 

illuminated by a line source is subject to the BC: 

 0su  or 0/  nuh  on   ,0 , (2) 

satisfy radiation condition for  , and 

finiteness at 0 . Two different propagation 

scenarios are possible in this wedge waveguide 

problem. One of them is downslope propagation 

where the source is close to the apex ( 0  ). In 

this case, one-way propagation is of interest; 

waves excited by the source travel downslope 

without any back-reflections. The interesting case 

is the upslope propagation (  0 ), as shown in 

Fig. 1, where the wave fields travel in the direction 

of narrowing waveguide cross-section up to the 

cut-off (caustic) transition region, converting the 

incoming waves into reflected and evanescent 

fields on the propagating and non-propagating 

sides, respectively, of the caustic. 

Waves excited by any given source can be 

represented in terms of mode and/or ray 

summation [19]. NMs propagating upslope 

towards the tip, reaching their propagating-to-

evanescent cutoff transition point and totally 

reflect back. Their interaction yield standing 

waves before the cut-off range. On the other hand, 

they exponentially decay beyond their modal cut-

off ranges (also called turning point) (see, Fig. 2). 

In terms of rays, upslope going rays bounce back 

and forth between two boundaries and their angles 

of reflection increase each time they bounce. Rays 

totally go back once their reflection angles reach 

90°. These occur at modal cut-off ranges. 

 

 
 

Fig. 2. Longitudinal variation of a single mode. 

 

The exact total fields in polar coordinates 
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using Green’s function with SBC and HBC are 

[1]: 
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Here,  /ll  , 5.00  , 1321   . 

The solution (3) is exact and valid for all 

wedge angles. Infinite modes are required in 

representing a line source near the source region, 

but only propagating modes are enough in the far 

field. As the wedge angle increases, the number of 

propagating modes for the same parameters 

increases (see, Table 1); therefore, computations in 

terms of the exact solution take longer. This also 

determines the accuracy. One needs to take into 

account a certain number of modes in the near 

field in order to satisfy given accuracy. The source 

and observer locations determine the excited 

modes. One can eliminate even or odd modes by 

locating source or observer accordingly. Locating 

the line source near a boundary does only affect 

the number of excited modes. 

 

Table 1: The number of propagating modes vs. 

wedge angle ( m 60x , MHz 15f , source 

location; m 6000  ,  5.10 , polarization: 

horizontal) 

Apex Angle   [deg] # Of Propagating Modes 

3 5 

15 24 

30 49 

 

III. MOM SOLUTION OF GUIDED 

WAVES 
Method of Moments (MoM) is one of the 

oldest and most effective numerical EM technique 

in frequency domain for problems that cannot be 

exactly solved [14]. It has long been applied to 

scattering problems [15]. Propagation inside 

resonating structures may also be modeled with 

MoM [16,17]. It has recently been illustrated that 

MoM accurately accounts for the wedge diffracted 

fields and fringe waves [18]. 

Propagation inside a wedge waveguide with 

non-penetrable boundaries may also be modeled 

by using MoM. In this model, the faces of the 

wedge are divided into small segments (see, Fig. 

3). N segments for the top face at 0  and N 

segments for the bottom face at    are used. 

The segment lengths are very small compared to 

the wavelength so that the line-source-induced 

currents on each segment may be assumed 

constant. 

 

 
 

Fig. 3. Wedge waveguide and MoM modeling. 

 

Necessary MoM equations in this procedure 

are formed with the source excited incident fields 

on BC: 
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by using distance ( nd ) between line source and 

each segment, 
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2
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where 000 cosx , 000 siny . The impedance 

matrix is obtained: 
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where l  is the segment length,  1200   is the 

intrinsic impedance of free space, )1(
0H  and )1(

1H  

are the first kind Hankel functions with order zero 

and one, respectively, 781.1  is the exponential 

of the Euler constant, mn̂  denotes the unit normal 

vector of the segment at mρ , and mnρ̂  is the unit 

vector in the direction from source mρ  to the 

receiving element nρ . 
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First, the source-excited segment fields are 

calculated by using the two-dimensional free-

space Green’s function (4). Then, the impedance 

matrix is formed by (6). The unknown segment 

currents are derived by the solution of 2N×2N 

matrix system      VZI
1

 . Once they are 

calculated, the scattered fields at the observer are 

obtained as: 
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and the segment-scattered fields at the observer 

are accumulated. Finally, the direct wave from the 

source to the observer is added and the total fields 

are obtained. 

 

IV. NUMERICAL EXAMPLES AND 

COMPARISONS 
Waves inside a non-penetrable wedge 

waveguide obtained with the Green’s function and 

MoM approaches are compared in this section. 

Both models are run with various scenarios under 

different sets of parameters. A few results are 

presented in Figs. 4-10. Infinite wedge faces are 

truncated in 100λ and the segment lengths are 

chosen λ/20 (i.e., total of 4000 segments on both 

faces which necessitate the solution of 4000 by 

4000 system of equations). Note, that the finite 

length of the wedge faces must extend several 

dozen wavelengths beyond the source and the 

observer on both sides; therefore, the number of 

segments may significantly differ. As observed, 

very good agreement is obtained between 

analytical and numerical models. 

Field vs. radial range at mid-angle (  5.7 ) 

inside a 15  wedge waveguide obtained with 

the analytical and numerical models is shown in 

Fig. 4. The frequency is 15 MHz. Horizontal 

polarization (TM/SBC case) is taken into account. 

The source location is at m 5000   and  5.70 . 

The first three modal cutoff ranges obtained from 

 /5.0 ll   are 38.2 m, 76.4 m, and 114.6 m. As 

observed, propagation-to-evanescent cut-off 

transition ranges of the first and third modes at 

38.2 m and 114.6 m are visible, but the second 

mode at 76.4 m is invisible. This is merely 

because of the location of the source in this 

example. Only odd-order modes are excited if the 

source is located at mid-angle, which is the null-

angle for these modes. As observed, the agreement 

between the two models is almost perfect even for 

these highly oscillatory variations. 

 

 
 

Fig. 4. Field vs. radial range at mid-angle inside 

the wedge; solid: Green’s function, dashed: MoM 

(TM/SBC case, 15 , MHz 15f , m 5000  ). 

 

Field vs. height inside the same wedge waveguide 

at three different ranges is plotted in Fig. 5. These 

are the ranges with only one, two, and three 

propagating modes, respectively. Note, that these 

are not angular variations and the height is along 

y-direction. On the left, only the dominant mode is 

shown. At the given range in the middle, two 

modes are propagating. On the right, there are 

three propagating modes, but only two of them are 

excited. 

 

 
 

Fig. 5. Field vs. height (along y) inside the wedge 

at three different ranges; solid: Green’s function, 

dashed: MoM (SBC case, 15 , MHz 15f , 

m 5000  ). 
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The other two examples plotted in Figs. 6 and 

7 belong to the same wedge waveguide but for 

different polarizations. Field vs. height at 900 m 

inside the same wedge waveguide for both TM 

and TE polarizations are plotted in Fig. 6. The line 

source is at m 10000 x  and m 1350 y . For the 

same source location, field vs. range (along x-

direction) at 110 m inside the same wedge 

waveguide for both TM and TE polarizations are 

plotted in Fig. 7. As observed, the agreement 

between two models is impressive. 

 

 
 

Fig. 6. Field vs. height (along y at m 900x  

range) inside the wedge; solid: MoM, dashed: 

Green’s function (Left) TM/SBC case, (Right) 

TE/HBC case ( 15 , MHz 15f , m 10000 x , 

m 1350 y ). 

 

 
 

Fig. 7. Field vs. range (along x at m 110y  

height) inside the wedge; solid: MoM, dashed: 

Green’s function (Top) TM/SBC case, (Bottom) 

TE/HBC case ( 15 , MHz 15f , m 10000 x , 

m 1350 y ). 

The next two examples plotted in Figs. 8 and 9 

belong to a wider wedge waveguide at the same 

frequency for different polarizations. Field vs. 

height at 300 m inside the same wedge waveguide 

for both TM and TE polarizations are plotted in 

Fig. 8. The line source is at 0x 500 m and 

0y 15 m. For the same source location, field vs. 

range at 10 m inside the same wedge waveguide 

for both TM and TE polarizations are plotted in 

Fig. 9. 

 

 
 

Fig. 8. Field vs. height (along y at 300 m range) 

inside the wedge; solid: MoM, dashed: Green’s 

function (Left) TM/SBC case, (Right) TE/HBC 

case (  30 , MHz 15f , m 5000 x , 

m 150 y ). 

 

 
 

Fig. 9. Field vs. range (along x at y=10 m height) 

inside the wedge; solid: MoM, dashed: Green’s 

function (Top) TM/SBC case, (Bottom) TE/HBC 

case (  30 , MHz 15f , m 5000 x , 

m 150 y ). 
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Note, that two MatLab algorithms are 

developed and computations are performed. A 

kind of accuracy test is used in both Green’s 

function and MoM algorithms. Both propagating 

and evanescent modes are taken into account in 

the analytic model. The contribution of each mode 

is controlled and higher order modes with 

contributions less than 10-12 are neglected. In 

MoM, the number of segments per wavelength is 

tested once and optimum segmentation is 

specified. 

Table 2 shows the result of this test using 

relative L2-error norm: 

 
A

NA

u

uu
error


100 , (8) 

where Au  is the analytical result, Nu  is the 

numerical result. As observed, HBC polarization 

needs more segments. 

 

Table 2: Relative L2-error norm analysis at 

m 3y , 1000 points are used between x=20 m and 

x=250 m,( 15 , MHz 15f . Source: m 2500 x , 

m 330 y ) 

Segment Length 

(m) 

Error % 

(SBC) 

Error % 

(HBC) 

λ/10 10.22 22.85 

λ/20 5.36 10.79 

λ/40 2.69 6.12 

λ/80 1.32 3.98 

 

The last example belongs to three dimensional 

comparisons. Figure 10 shows field vs. 

range/height as three dimensional color-plots. The 

dashed arcs show modal cut-offs. A line source is 

located at mid-angle of a 20  non-penetrable 

wedge. The exact location of the source is 

m 2000 x , m 32.260 y . The frequency is 15 

MHz. The number of propagating modes at the 

source distance is 7. Not only the odd-numbered 

modes are excited with this source location but 

also the transverse interference is observed for the 

downslope/one-way propagation (i.e., for the 

observer ranges greater than 200 m). On the other 

hand, both the transverse and the longitudinal 

interaction is observed for upslope/two-way 

propagation (i.e., for the observer distance less 

than 200 m). As observed, very good agreement is 

obtained in this example, too. 

 

 
 

 

Fig. 10. The three dimensional color plots of field 

vs. range-height variations inside the wedge 

waveguide: (Top) Exact, (Bottom) MoM, 

TM/SBC case, (  20 , MHz 15f , m 2000 x , 

m 32.260 y , 20/l , m 1x , m 1y ).  

 

V. CONCLUSION 
A Method of Moments (MoM) based 

procedure is introduced for the simulation of 

guided waves excited by a line source inside the 

wedge with perfectly conducting boundaries. Tests 

and comparisons are performed against the 

Green’s function solution based on Normal Mode 

(NM) summation. The results show that MoM is 

also successful in accurate modeling of guided 

waves inside wedge waveguide. 
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