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Abstract ─ Selection of the proper frequencies that are 
able to detect civil and military aircrafts is a challenging 
issue in radar engineering. Proposed algorithm measures 
the effect of the linear polarization including H-wave 
polarization on the radar detection behavior in random 
medium, and hence, compares it with the E-wave 
polarization case. Effects of random medium properties 
on the scattered waves are analyzed. In doing this, laser 
radar cross section (LRCS) of targets is calculated using 
a boundary value method with a beam wave incidence. 
As a result, performance of the backscattering 
enhancement is studied with the object configuration 
considering the creeping waves that have an obvious 
impact, particularly in the resonance region. 
 
Index Terms ─ Airplane, beam, conducting, frequency, 
object, polarization, scattering, radar, turbulence. 
 

I. INTODUCTION 
Recently, plenty of researchers presented useful 

quantitative studies for a range of frequencies able to 
detect a variety of conducting objects such as aircrafts 
and ships [1-3]. The case where targets are embedded in 
random media produces a backscattering enhancement 
in electromagnetic waves [4-6] compared to the free 
space case. Accordingly, the double passage effect [4] is 
applied on waves backscattering from point targets 
where RCS is enhanced by a factor ranging from one to 
two (Rayleigh) to three, because of the correlation 
between the forward and backward fields in turbulence 
[6]. 

In [7], it was handled the problem of backscattering 
enhancement where authors discussed the importance of 
using a boundary value problem method to calculate the 
generated surface current, essentially the effect of the 
shadow region when the object dimensions are larger 
than the wavelength �. Over the past years, a current 
generator method (CGM) has been presented to solve the 
scattering problem as a boundary value problem [8,9]. 
This method computes reflected waves from the whole 
surface of arbitrary shape objects with reasonable  

processing time. Actually, our results are in excellent 
agreement with those assuming a cylinder with circular 
cross section in free space in [10]. Recently, CGM was 
verified using FDFD method and proved a fair 
agreement with an accuracy below 5% error rate for 
objects in random media and even less error in the free 
space [11]. In [12], it was concluded that RCS and 
accordingly the backscattering enhancement for a plane 
wave incidence depends greatly on the incident angle 
and the configuration of the target regardless of the 
incident wave polarization. However, this is not the case 
with E-beam wave incidence, particularly in the range of 
a 2 � [13]. 

In this paper, we extend our work to investigate the 
effect of beam wave incidence assuming H-polarization 
on objects having different configurations. With H-
polarization, creeping waves [14] are generated and their 
effect maximizes in the resonance region where the 
target size is close to � [15]. To improve radar imaging 
in the sense of having an accurate RCS calculation of 
objects such as aircrafts in turbulence, resonance effect 
[16] should be avoided or at least minimized to its 
minimal by controlling the incident aspects as it is 
investigated here. This is to obtain a radar system almost 
independent of the incident angle and complexity of 
aircrafts shapes. Therefore, the range of frequencies to 
detect accurately civil and military airplanes is selected 
despite of the coherence function of the surrounding 
medium, the incident wave polarization, and the 
illumination region complexity for some canonical 
examples. The time factor exp(��iwt) is assumed and 
suppressed in the following section. 
 

II. SCATTERING PROBLEM 
Geometry of the problem is shown in Fig. 1. A 

random medium is assumed as a sphere of radius L 
around a target of the mean size , and also to be 
described by the dielectric constant 0(r), the magnetic 
permeability %, and the electric conductivity 3. For 
simplicity 0(r) is expressed as: 
 0(r) = 00[1+40(r)], (1) 
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where 00 is assumed to be constant and equal to the 
permittivity of free space and 40(r) is a random function 
with: 
 540(r)6 = 0,        540(r) 40(r’)6 = B(r,r’), (2) 
and 
 77 . (3) 
Here, the angular brackets denote the ensemble average 
and B(r,r7), l(r) are the local intensity and local scale-
size of the random medium fluctuation, respectively, and 

 is the wavenumber in free space. Also μ 
and 3 are assumed to be constants; μ = μ0, 3 = 0. For 
practical turbulent media the condition (3) may be 
satisfied. Therefore, we can assume the forward 
scattering approximation and the scalar approximation 
[15]. 
 

 
 
Fig. 1. Problem description of wave scattering from a 
conducting cylinder in random medium. 
 

Consider the case where a directly incident wave is 
produced by a line source f(r7) distributed uniformly 
along the y-axis. The line source is located at rt beyond 
the random medium and it is quite far from the target. An 
electromagnetic wave radiated from the source 
propagates in the random medium illuminating the target 
and induces a current on its surface. A scattered wave 
from the target is produced by the surface current and 
propagates back to the observation point that coincides 
with the source point. The target is assumed to be a 
conducting cylinder of which cross-section is expressed 
by: 
 � �1 cos3r a ) 
 �� �� � �� � , (4) 

where � is the rotation index, δ is the concavity index. 
We can deal with this scattering problem two 
dimensionally under the condition (3); therefore, we 
represent r as r = (x, z). Assuming an H-polarization of 
incident waves (H-wave incidence), we can impose the 
Neumann boundary condition for wave field u(r) on the 
cylinder surface S. That is, 
 , (5) 

where u(r) represents Ex. Here, let us designate the 
incident wave by uin(r), the scattered wave by us(r), and 
the total wave by u(r) = uin(r) + us(r). According to the 
current generator method [9] that uses the current 
generator YH and the Green’s function in random 
medium G(r|r7) and as in [12], we can express the 
surface current wave as: 
 , (6) 
where rt represents the source point location and it is 
assumed that rt = (0, z) in Section 3. Accordingly, the 
scattered wave is given as: 
 . (7) 
This can be represented as: 

 

* . 

 (8) 
Here, YH is the operator that transforms incident waves 
into surface currents on S and depends only on the 
scattering body. The current generator can be expressed 
in terms of wave functions that satisfy the Helmholtz 
equation and the radiation condition. YH is well 
formulated in [12] for H-polarization. 

The incident wave is cylindrical and becomes plane 
approximately around the target because the line source 
is very far from the target. As a result, we consider  
uin(r1|rt) to be represented as: 

*

, (9) 
where W is the beam width. The beam expression is 
approximately useful only around the cylinder. The 
average intensity of the backscattering wave for H-wave 
incidence in turbulence is given by: 
5 6

 

*  

 . (10) 
We can obtain the LRCS 3b using (10): 

 8 � . (11) 
We express  in free space as: 

 

*  

 . (12) 
We can obtain the LRCS 3b0 using (12): 

 8 � . (13) 
Final forms for (10) and (12) are derived in [16]. To  
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formulate the fourth moment of the Green’s function in 
these equations, it is needed to use the structure function 
of turbulence D, defined in [9], as was explained in [13]. 
It should be noted that equation (3) puts a condition and 
assumes that the randomness density B is quite low 
enough to the extent that the medium has a fairly small 
number of particles resulting in having large separations 
9 among particles. In [17], it was proved that D agrees 
better with the two-dimensional isotropic relation for 
larger 9 among particles than for smaller 9. It was 
concluded that random medium can be considered as a 
two-dimensional turbulence in the enstrophy inertial 
range. This was derived and compared with calculations 
based on wind data from 5754 airplane flights. As a 
result, three-dimensional problems can be analyzed two-
dimensionally under condition (3) in the absence of 
vortex stretching the nonlinear inertial force in the 
direction of y-axis of the cylinder that is aligned with the 
line source. Solving the problem two-dimensionally 
would in turn reduce greatly the calculation time of the 
scattered waves intensity in addition to minimizing the 
memory resources of the computers needed to process 
the three-dimensional problem that has been pursued in 
[11]. 

Let us assume that the coherence of waves is kept 
almost complete in propagation of a distance 2a equal to 
the mean diameter of the cylinder. This assumption is 
acceptable in practical cases under condition (3). On the 
basis of the assumption, it is important here to point out 
that we are going to present a quantitative discussion for 
the numerical results in Section 3. 

The calculation of scattering data has been restricted 
to the interval 0.1 � ka � 30. It is quite difficult to exceed 
this ka limit since greater ka requires a large M which 
consequently increases the calculation time dramatically. 
 

III. NUMERICAL RESULTS 
Although some of the incident wave rays become 

sufficiently incoherent in the propagation through 
random medium particles, we should pay attention to the 
spatial coherence length (SCL) of incident waves around 
the target. The degree of spatial coherence is defined as: 

 � �
� � � �

� �

*
1 2

2
0

| |
,

|

r r r r

r r

t t

t

G G
z

G
9: � , (14) 

where r1 = (ρ, 0), r2 = (−ρ, 0), r0 = (0, 0), and rt = (0, z). 
In the following calculations, we assume B(r, r7) = B0 
and kB0L = 3π; therefore the coherence attenuation index 
α defined as k2B0Ll/4 given in [9] is 15π2, 44π2, and 59π2 
for kl = 20π, 58π, and 118π, respectively, which means 
that the incident wave becomes sufficiently incoherent. 
The SCL is defined as the 2kρ at which |Γ| = e-1 0.37. 
In [13], a simplified form of the Γ function in random 
medium is formulated. Figure 2 shows a relation 
between SCL and kl in this case and that the SCL is equal 

to 3, 5.2, and 7.5. We use the SCL to represent one of the 
random medium effects on the LRCS. 

In the following, we conduct numerical results for 
normalized LRCS (NLRCS), defined as 3b expressed in 
(11) to 3b0 expressed in (13). 
 

 
 
Fig. 2. The degree of spatial coherence of an incident 
wave about the cylinder. 
 
A. Backscattering enhancement 

Airplanes have models where their fuselages have 
different curvature slopes with the wings. In the 
numerical results we assume contours of cylinders with 
different cross section complexities shown in Fig. 3. 
Intensity of scattered waves varies with the illumination 
region complexity of such models and the random 
medium coherence function SCL, so we present results 
in Figs. 4 to 6 showing effects of these cases on the 
NLRCS. That is, when waves are scattered from fuselage 
only, we assume that ) = 0 where the cross-section is 
circular. While waves scattering from other locations in 
the neighborhood of the fuselage attachment with the 
wings requires other values for ) such as Q-170 and X-47A 
airplane () ; 0.1), F16 and F117 airplane () ; 0.18�0.2) 
[13]. 
 

 
 
Fig. 3. Contours of cylinders with different cross section 
complexities. 
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 (a) 
 

 
 (b) 
 

 
 (c) 
 
Fig. 4. Normalized LRCS vs. target size at different ) for 
kW = 2 where: (a) SCL = 3, (b) SCL = 5.2, (c) SCL = 7.5, 
and 3b, 30 are LRCS in random media and in free space, 
respectively. 
 

At ka ; 0, NLRCS is two owing to the double 
passage effect. As ka is getting greater, NLRCS 

undergoes a substantial oscillating behavior due to the 
random medium fluctuations. NLRCS is closer to two 
when having a greater SCL which represents a less 
medium randomness around the object. At the low ka 
band, target complexity has a less effect on the scattered 
waves and, therefore, NLRCS is almost invariant and 
does not change much with different ). On the other 
hand, in the high frequency range where ka 2 20, or 
alternatively at a 2 3�, NLRCS changes relatively more 
than with the low ka case but yet limitedly with ). As ka 
enlarges, as the number of inflection points and 
accordingly their scattering contributions increase which 
in turn augments NLRCS. This behavior contradicts with 
the case of E-wave incidence where NLRCS does not 
differ with ) within the range a 2 � irrespective of the 
illumination region [13]. Also, we can notice that, the 
intensity of the NLRCS fluctuations is greater with H-
wave incidence than with the E-wave incidence. This is 
due to the coupling between the direct waves and the 
creeping waves. NLRCS have anomaly increases in the 
resonance region [16] where the mean target size a is 
close to � [15]. In addition NLRCS is closer to two with 
reducing the intensity of the oscillations when the SCL is 
wide enough around the object. 

In Fig. 5, we investigate the effect of the 
illumination region curvature for both concave and 
convex portions where the incident angle represented in 
ϕ of Fig. 1 is 0 and �, respectively. It is important to refer 
to [16], where the illumination region was focused only 
on the convex portion (ϕ = �) of concave-to-convex 
objects. It is apparent that the performance of NLRCS 
with ) discussed above is opposite to its performance 
with ϕ in Fig. 5. In other words, NLRCS is obviously 
different with the illumination region curvature at the 
low ka up to a certain value regardless of the kW limit. 
That is, NLRCS is different with ϕ at about a � 3� and 
vice versa. In Fig. 6, this observation is valid with  
SCL = 30. While this range is nearly indifferent with kW 
with the H-wave incidence, the NLRCS performance is, 
however, different in the case of E-wave incidence 
where kW would be a factor to determine this certain 
value of wavelength. This is also attributed to the effect 
of creeping waves coupling. 

From this discussion, we can accept to consider a 2 3� 
to be the range where NLRCS would not change 
obviously with the airplanes dimensions including 
wingspan and fuselage diameters that can be represented 
by 2a as in Fig. 1. Also within this range, NLRCS can be 
considered almost invariant with the incident angle, and 
accordingly with the illumination region complexity, and 
also with the incident wave polarization.  Furthermore, 
NLRCS avoids having great peaks in the resonance 
region assuming this range. 

As the wingspan is usually greater than the fuselage 
diameter, then we consider the wingspan to calculate the 
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proper frequency range for radar system that would 
reduce and minimizes the error rate of the radar detection 
system accuracy. Also, it should be noted that the 
wingspan for civil and military planes are quite different. 
For example, the wingspan for F16 and X-47A are 10 m 
and 8.465 m, respectively, which equals to the diameter 
2a of the cylinder. As a result, for both models we can 
accept � � 1.7 m and � � 1.41 m for F16 and X-47A, 
respectively, and accordingly the frequency can be about 
290 MHz or above. For the civil plane, we can consider 
the Boeing 777 where the wingspan is about 60 m. 
Therefore, � � 10 m, and accordingly the frequency can 
be about 30 MHz or above. Having frequencies above 
these ranges would reduce the radar error rate and, 
therefore, maximizes the radar accuracy. As a result, the 
range of frequencies that can detect the military airplanes 
can also detect the civil planes, but not necessarily vice 
versa. 
 

 
 (a) 
 

 
 (b) 
 
Fig. 5. Normalized LRCS vs. target size at ) = 0.1 for 
SCL = 3 where: (a) kW = 1.5, (b) kW = 2, and 3b, 30 are 
LRCS in random media and in free space, respectively. 
 

 
 (a) 
 

 
 (b) 
 
Fig. 6. As Fig. 5, but for SCL = 30. 
 

IV. CONCLUSION 
In this paper, we aim at selecting the range of 

frequencies that would enhance the capability of radar 
system to detect airplanes in random medium such as 
turbulence accurately. In doing this, we investigate the 
performance of the backscattering enhancement assuming 
an H-beam wave incidence and compare with the E-beam 
wave incidence. To maximize the efficiency of a radar 
system, the normalized laser RCS (NLRCS) should tend 
to two where the double passage is the only effect for a 
point target in random medium. This can be achieved 
with wider SCL and/or wider kW and that would also 
minimize the strength of the peak-to-peak oscillating 
behavior of NLRCS. On the other hand, NLRCS should 
be independent of the incident angle and incident wave 
polarization. Also, the radar frequencies should 
guarantee that NLRCS avoids having anomaly increases 
particularly in the resonance region with the convex 
illumination region. 

The range of a 2 3� can fulfill these requirements,  
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and hence, the frequencies of 290 MHz or above can be 
used to detect the arbitrary examples of military and civil 
airplanes assumed in this paper. Higher frequency 
spectrum minimizes the error rate of the radar system. It 
should be noted that less frequencies can detect only civil 
aircrafts but not military ones. 
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