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Abstract ─ In this paper, application of an integral 
equation based domain decomposition method (DDM), 
developed for numerical solution of one-dimensional 
Fredholm integral equations of the second kind, is 
extended to electric field and mixed potential integral 
equations in two dimensions. Even though the original 
DDM was developed based on the Nyström method, 
results of the present work shows that meshfree approach 
can also be utilized. The extended DDM is employed for 
efficient meshfree analysis of planar microstrip array 
structures in the sense of reduced-size shape function and 
stiffness matrices. Results are validated by method of 
moments. 
 
Index Terms ─ Array, domain decomposition, EFIE, 
meshfree, microstrip, MPIE. 
 

I. INTRODUCTION 
The purpose of Schwarz, when developed the 

domain decomposition method (DDM), was solution of 
boundary value problems over non-canonical domains 
[1]. Currently, this method follows diverse targets which 
the most famous of them is parallel processing [2]. In this 
application, the problem is decomposed to several 
smaller size problems and each of them is passed to a 
processor of a parallel processing architecture. DDMs 
are also a mean for hybridizing different numerical 
methods, where each domain of the problem is analyzed 
by its own proper numerical method [3]. The said two 
applications of DDMs are independent of numerical 
method(s) used for discretization of the original problem 
domain. Besides, DDMs are helpful in efficient solution 
of problems by meshfree methods (MFMs), at least, from 
two aspects. First, when using radial basis functions in a 
problem with large number of nodes, application of 
DDMs leads to several small size shape function 
matrices with relatively low order of condition numbers, 

which in turn, increases the efficiency of the 
interpolation process [4]. Second, noting to intrinsic 
deficiency of meshfree methods in handling problems 
with step-wise constitutive parameters, DDMs can be 
used to decouple different media and thus, significantly 
improve the efficiency of MFMs in the sense of 
convergence [5]. Currently, DDMs are mostly developed 
for solution of partial differential equations, with some 
few ones for integral equations [6-11]. It is worth 
mentioning that domain decomposition methods, 
regardless of their application, can be implemented in 
serial or parallel, especially, when the purpose of their 
application is not parallel processing. 

In this paper, the DDM proposed in [11] is arranged 
for efficient meshfree solution of planar microstrip array 
structures in the sense of reduced-size shape function and 
stiffness matrices. This DDM is originally developed for 
numerical solution of one-dimensional Fredholm 
integral equations of the second kind based on the 
Nyström method. Results of the present work show that 
meshfree approach can also be utilized. The main claims 
of the present work are: first, the said DDM can be 
generalized to handle electric field integral equation 
(EFIE) and mixed potential integral equation (MPIE) in 
two dimensions. Second, it can be applied to the 
meshless collocation method and thus, its usage is not 
restricted to the Nyström method. It should be noted that 
this DDM is non-overlapping; therefore, it is best fitted 
to handle array structures.The results are validated by 
method of moments (MoM). 
 

II. OVERVIEW OF THE OIRIGNAL IDEA 
In this section, the DDM proposed in [11] is briefly 

introduced by considering the following IE: 
 � � � � � � � �, , ,u x u x K x x dx f x x

B
7 7 7 � �BA�  (1) 

where Ω, u, f, K and λ are, respectively, problem domain, 
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unknown function, excitation function, equation kernel 
and a scalar constant. Assume: 
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This means that the problem domain is partitioned to two 
sub-domains. In addition, assume: 
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Thus, (1) can be re-written as: 
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As well, let: 
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Therefore, solution of (1) can be obtained by 
solution of the following system of IEs [11]: 
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where: 
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which states that solution of (1) over Ω can be found by 
solution of (6) wherein, its first equation is over Ω1, only, 
and its second equations is over Ω2, only. Numerical 
solution of the (6) can be obtained iteratively by 
choosing � �0

1u  as an initial guess for u1 and evaluating its 
value at the kth iteration from: 
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for k = 1, 2, …. The solution can also be computed by 
starting from an initial guess for u2. Extension of the 
method to more sub-domains is straightforward. 
 

III. GENERALIZATION OF THE ORIGINAL 
DDM TO 2D-EFIE AND 2D-MPIE 

The formulation reported in this section is restricted 
to planar microstrip structure. Consider two equi-plane 
non-overlapping microstrip circuits as depicted in Fig. 1. 
The global domain and perimeter of the structure are Ω 
and ∂Ω, respectively (not shown in the figure). Unit 
normal vectors to Ω and ∂Ω are n (normal to the paper) 
and m, respectively. It is assumed that the structure is 
perfect electric conductor, placed on the xy plane and is 
excited by the field Ei, which induces the surface current 
density Js on the conductors. 
 

 
 
Fig. 1. Two equi-plane non-overlapping microstrip 
circuits. 
 

Equations governing Js in the EFIE and MPIE 
formulations are: 
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(10) 
where AG  and VG  are dyadic and scalar Green’s 

function of the microstrip substrate, respectively [12]. 
Following the previous section, let: 
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and 
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Thus, taking initial guess for Js1, unknown current 
densities Js1 and Js2 can be iteratively found from: 
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for k = 1, 2, …. 
 

IV. NUMERICAL RESULTS 
In this section, the generalized DDM is applied to 

three microstrip array structures. The meshfree 
collocation method proposed in [13] is used for 
discretization of the problem domains. Results obtained 
from the first two structures are compared with the 
Agilent® Momentum® 2009, and result of the last one is 
validated by FEKO® suite 5.5. Convergence curves 
corresponding to DDM are generated based on relative 
error of successive iterations, defined by: 

 � � � � � � � �1 ,k k k k
er u u u� �  (16) 

where � �1/22 .u u d
B

� BA  

 
A. Two-element array 

This structure consists of two line-fed patch 
antennas, placed vertically apart each other at distance d, 
as depicted in Fig. 2. Each array element is a line-fed 
patch antenna, similar to one introduced in [13]. The 
excited element is the element number one. For 
investigating the effect of different parameters on the 
convergence trend, the array is analyzed for two different 
vertical offsets; i.e., d = 20 and 2.5 mm. Simulated S-
parameter of the excited element at d = 20 mm is 
reported in Fig. 3. 
 

 
 
Fig. 2. Arrangement of the two-element array. 
 

 
 
Fig. 3. Two-element array: |S11| at d = 20 mm. 
 

The effect of initial guess on convergence is 
reported in Fig. 4, where analysis is performed at the 
antenna resonance frequency; i.e., 7.675 GHz. It can be 
observed that the convergence is affected by the initial 
guess. However, the overall convergence of the method 
seems to be independent of it. The zero-valued initial 
vector shows faster convergence. Thus, hereafter, all 
initial guesses will be taken to be zero. 
 

 
 
Fig. 4. Two-element array: effect of initial guess on 
DDM convergence at d = 20 mm. 
 

HONARBAKHSH, TAVAKOLI: APPLICATION OF AN IE-BASED DOMAIN DECOMPOSITION METHOD 886



The current distribution over the elements at d = 20 mm 
are reported in Fig. 5, wherein for better visualization of 
the coupling effect, it is also depicted in logarithmic 
scale. 
 

 
 (a) 

 
 (b) 
 
Fig. 5. Two-element array: current distribution at d = 20 mm: 
(a) linear scale, (b) logarithmic scale. 
 

To study the effect of element coupling on the 
convergence, the array is analyzed at 2.5 mm distance, 
which ensures considerable EM interaction. The S-
parameter of the exited element and its corresponding 
convergence curves are reported in Figs. 6 and 7, 
respectively. 
 

 
 
Fig. 6. Two-element array: |S11| at d = 2.5 mm. 
 

 
 
Fig. 7. Two-element array: effect of initial guess on 
DDM convergence at d = 2.5 mm. 
 

As can be predicted, increase in the amount of 
coupling, defers the convergence of the method. As in 
the previous case, the current distributions are depicted 
in Fig. 8. 
 

 
 (a) 

 
 (b) 
 
Fig. 8. Two-element array: current distribution at d = 2.5 mm: 
(a) linear scale, (b) logarithmic scale. 
 
B. Four-element array 

This array is composed from four line-fed patch 
antennas in a cross arrangement with d = 8 mm inter-
element spacing. Each element of this structure is a 
square patch antenna with 16 mm side length, fed by a 
microstrip line of 2.5 mm width. The transmission line is 
placed 8.5 mm apart from the corner of each patch. 
Relative electric permittivity and thickness of the 
microstrip substrate are taken to be 2.2 and 0.794 mm, 
respectively. The arrangement of the array is depicted in 
Fig. 9. The excited element is again, the element number 
one. Such a structure can be used for generation of 
circular polarized waves [14]. 
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Fig. 9. Arrangement of the four-element array. 
 

Simulated S-parameter of the excited element is 
reported in Fig. 10. Effect of frequency on convergence 
is reported in Fig. 11, wherein f = 8.4 GHz represents the 
situation which the delivered EM energy to the patch is 
negligible and f = 8.825 GHz, the antenna resonance 
frequency, is the frequency that the input EM energy is 
maximum. As can be seen, convergence of the method is 
deferred at the resonance frequency. The current 
distribution at resonance is depicted in Fig. 12. 
 

 
 
Fig. 10. Four-element array: |S11|. 
 

 
 
Fig. 11. Four-element array: effect of frequency on DDM 
convergence. 

 
 (a) 

 
 (b) 
 
Fig. 12. Four-element array: current distribution at 
resonance: (a) linear scale, (b) logarithmic scale. 
 
C. 225 element array 

The last analyzed structure is a 225 element array of 
λ/2 square patches, suspended λ/10 above an infinite 
ground plane, where λ is the working wavelength. The 
patches are placed in a 15×15 square arrangement with 
λ/2 inter-element spacing. An equivalent microstrip 
substrate for this case has unit electric permittivity and 
thus, its analysis can be performed based on the EFIE 
formulation. This array is illuminated by a plane wave at 
sixty degree angle with respect to the array normal 
direction. The corresponding normalized scattered field 
and convergence curve are depicted in Figs. 13 and 14, 
respectively. The current distributions over the nine 
central elements are depicted in Fig. 15. 
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Fig. 13. 225 element array: normalized scattered field. 
 

 
 
Fig. 14. 225 element array: DDM convergence curve. 
 

 
 
Fig. 15. 225 element array: current distribution over the 
nine central elements. 
 

V. CONCLUSION 
In this work, it is shown that the application of the 

domain decomposition method, developed for numerical 
solution of one-dimensional Fredholm integral equations 
of the second kind with Nyström discretization, can be 
extended for efficient meshfree analysis of planar 
microstrip array structures. Both of the EFIE and MPIE 
formulations are considered. The initial guess can affect 
the convergence trend, although the overall convergence 
seems to be independent of it. The increase of EM 
coupling between the elements defers the convergence 
of the method. The same behavior is observed when the 

frequency of the analysis approaches the resonance 
frequency of the structure. The results are validated by 
method of moments. 
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