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Abstract ─ We describe a space-frequency domain 
iterative algorithm to analyze the modes of planar 
optical waveguides. The one dimensional Maxwell 
equation was transformed into space-frequency domain 
by Fourier transform, and became an integral equation 
which could be solved by an iterative method. For any 
refractive index profiles, the effective index and mode 
field distribution are given simultaneously. The 
numerical result shows that this method is accurate and 
flexible for planar optical waveguides with any 
structure. 

Index Terms ─ Fourier transform, iterative method,
planar waveguide, space-frequency. 

I. INTRODUCTION 
Planar optical waveguides are the fundamental 

components in integrated optical circuits and used for 
optical amplifiers, lasers sensors and other optical
devices [1-6]. All the characteristics of planar optical 
waveguides are based on the analysis of propagating
modes which include the propagation constants and 
field distributions. The modes propagation constants
and fields can be obtained by solving Maxwell’s 

equations subject to the appropriate boundary 
conditions. However, the refractive index profile of 
planar waveguides is not only step but graded usually,
exact solutions are given for only a few class of index 
profile [7]. For the most planar waveguides, 
approximate or numerical methods are used to analyze
the modes fields. In general, the approximate methods
[8,9] such as the method of perturbation and WKB 
method, have a clear physical insight but are not very 
accurate; numerical methods [10-16] can give solutions
to the desired accuracy but require complex calculation. 
ATMM [17] is an effective and accurate tool for planar 
optical waveguides with arbitrary index profile.
Unfortunately, ATMM is difficult to expand for two

dimensional optical waveguides.
In this paper, a novel iterative algorithm in the 

space-frequency domain has been introduced to the 
analysis of planar optical waveguides. The one 
dimensional wave equation was transformed into 
space-frequency domain by Fourier transform, and 
became an integral equation which could be solved by 
an iterative method. The only complex calculation in 
the iterative operation is the convolution integral which 
could be completed by fast Fourier transform (FFT). 
For any refractive index profiles, the effective index 
and mode field distribution are given simultaneously. 
As the test calculation demonstrates that the dispersion 
curves given by our method agree extremely well with 
the exact solution. 

II. WAVE EQUATIONS IN THE 
SPACE-FREQUENCY DOMAIN 

Considering the TE mode of a planar waveguide, 
the scalar-wave equation is: 

� �
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02 ( ) 0� � �y
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d E
k n x E

dx
, (1) 

where 0k is the free-space wave number, ( )n x is the
x-dependent refractive index, and � is the propagation 
constant. It is noticeable that ( )n x is given in the form
of generalized function which include the boundary 
conditions expressly. Especially, when ( )n x is not a
continuous function of x. Given a Fourier transform, the 
scalar-wave equation (1) in the space-frequency domain 
is written as: 

2 2 2
0( ) ( ) ( ) ( ) 0y y yk E k k N k E k E k��  � � � , (2) 

where k is the space frequency, ( )yE k and ( )N k are the

Fourier transform of ( )yE x and 2 ( )n x respectively,
�  represents convolution integral. For a sample 
transpose, equation (2) changes into: 
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We define an operator Â : 
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where f (k) is an arbitrary function of k. Thus, equation 
(3) becomes a normal eigenvalue equation, i.e.:

ˆ
y yAE E�� , (4) 

where 2
01 / k� � . 

For TM modes, the scalar-wave equation is: 
� �22
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dx dx dx
��  � � , (5) 

where ( )n x is the x-dependent refractive index for the
whole region including the core and cladding. 

As doing for equation (1), in space-frequency 
domain, equation (5) could be written as a general 
eigenvalue equation: 

ˆ ˆ
y yAH BH�� , (6) 

where B̂ is an operator: 
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� �2ln ( )n xF  is the Fourier transform of 2ln ( )n x . 

III. ITERATIVE FORMULA FOR THE 
SOLUTION 

Eigenvalue equations (4) and (6) are the integral 
equations which can be solved by an iterative method. 
For the purpose of simplicity, let � represent yE or 

yH . We are on the assumption that the eigenvalues: 

1 2 3 n� � � �� � � � n� , 
correspond to these eigenvalues, the eigenfunctions are: 

1 2 3, , n� � � � n� . 
Choose an initial solver function 0x which can be

represented a: 
0 1 1 2 2 n nx a a a� � ��    n nna n�na . 

For equation (4), we give the iterative formula: 

1
ˆ 0,1,2m m mx Ax m	 � � . (7) 

Thus, 
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Fortunately, as m is increased, except the first one, the 
other terms in formula (8) converge to zero. This means 
that when m is large enough, 1mx 	�" is the

eigenfunction corresponding to the eigenvalue 1�
which is the maximum of all the eigenvalues. When 
you get the maximum of eigenvalues 1� and its
eigenfunction 1� , let � � � �1 1 1 1/� � � �� �� � # #i i ix x x ,
use the same iterative formula, the second maximum 
eigenvalues 2� will be given. 

For equation (6), define another operator Ĉ : 
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so the general eigenvalue equation (6) can be written 
as: 

� �ˆ ˆ
y yA C H H� � � . 

Like formula (7), the iterative formula is given as: 

1
ˆ ˆ( ) 0,1,2	 �  �m m m mx Ax aCx m . (9) 

Searching a when the convergent 1ma	 � , so the 

1mx 	�" is the eigenfunctions corresponding to the
eigenvalue 1 1/ m� 	$ which is the maximum of all the
eigenvalues. 

IV. NUMERICAL CALCULATION 
EXAMPLES 

Two numerical calculation examples are given for 
comparison with theoretical solutions. The first one is 
step index three layers waveguide, which structure 
parameters are following: core thickness is 2.0 ,%m index 

1 1.50,�n cladding index 2 1.40.�n The dispersion curve
of 0TE  mode is given in Fig. 1, and Fig. 2 shows the 
errors compared with analytical solution. The numerical 
results conform to the analytical solution very well. 
Except for very small value of � , the errors are all 
under 10-7. 

At Table 1, the effective index for modes TE0, TE1,
TM0 and TM1 are shown. Contrasted with analytical 
calculation results, the relative errors are about 10-7 for 
TE modes and 10-6 for TM modes. 
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Fig. 1. Dispersion curve of mode TE0. 
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Fig. 2. The errors of dispersion curve for mode TE0. 

Table 1: Effective index of mode TE and TM
This Work Analytical Relative Error

TE0 1.47429328 1.47429290 2.581×10-7

TE1 1.41395949 1.41395911 2.735×10-7

TM0 1.47239343 1.47239162 1.230×10-6

TM1 1.41221956 1.41221736 1.563×10-6

Figure 3 and Fig. 4 show the field intensity 
distribution of TE mode and TM mode. It is difficult to
distinguish the curve from the theoretical solutions. 
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Fig. 3. Field intensity for TE0 and TE1 mode in a three 
layer step index planar waveguide. 
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Fig. 4. Field intensity for TM0 and TM1 mode in a three 
layer step index planar waveguide. 

Another example is a waveguide with a graded 
index profile: 

2 2 2 2 2
2 1 2( ) ( ) / ( / )n x n n n Cosh x a�  � . (10) 

For our calculation, the parameters are taken 1 1.50,�n

2 1.40n �  and 2.0 .%�a m For TE modes, the
dispersion relation is [7]: 

2

2 2 2 2 2 2
0 2 0 1 2 2

1 1 1( )
4 2

0,1,2, ,

k n k n n m
a a

m

� �� ��  �  � � �� �� � ! !
� ,

� (11) 

but there is no analytical solution for TM modes. In 
Table 2, we can find the difference of effective index 
between our calculation and analytical solver is tiny. 
Figure 5 shows the dispersion curve of mode TE0 and 
Fig. 6 is the errors of this curve compared with theory. 
For almost all propagation constants � , the errors are less 
than 10-9. Field intensity distributions of TE and TM 
modes are given in Fig. 7 and Fig. 8.

Table 2: Effective index for mode TE and TM
This Work Analytical Relative Error

TE0 1.462148481 1.462148481 -3.60×10-11

TE1 1.410160571 1.410160572 -2.23×10-10

TM0 1.460876908 —

TM1 1.410515558 —
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Fig. 5. Dispersion curve of mode TE0. 
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Fig. 6. The errors of dispersion curve for mode TE0. 

-6 -4 -2 0 2 4 6

-1.0

-0.5

0.0

0.5

1.0

F
ie

ld
 I

nt
en

si
ty

x [%m]

 TE
0

 TE
1

 Index Profile

Fig. 7. Field intensity for TE0 and TE1 mode in a graded 
index waveguide. 
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Fig. 8. Field intensity for TM0 and TM1 mode in a
graded index waveguide.

V. CONCLUSION 
In this paper, we find that in space frequency 

domain the Maxwell’s equations for planar optical 
waveguides become an integral equation. This integral
equation is the standard form of eigenvalue problem
which can be solved by iterative algorithm. Two 
numerical calculation examples show that this method 
has a high accuracy for determining the effective index
and mode field distribution simultaneously. Especially,
this method is not only used for analysis of arbitrary
structure planar optical waveguides, but also can be 
extended to 2D for optical fibers mode solution.
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