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Abstract ─ An adaptive antenna array combines the 
signal of each element, using some constraints to 
produce the radiation pattern of the antenna, while 
maximizing the performance of the system. Direction of 
arrival (DOA) algorithms are applied to determine the 
directions of impinging signals, whereas beamforming 
techniques are employed to determine the appropriate 
weights for the array elements, to create the desired 
pattern. In this paper, a detailed analysis of both 
categories of algorithms is made, when a planar antenna 
array is used. Several simulation results show that it is 
possible to point an antenna array in a desired direction 
based on the DOA estimation and on the beamforming 
algorithms. A comparison of the performance in terms of 
runtime and accuracy of the used algorithms is made. 
These characteristics are dependent on the SNR of the 
incoming signal. 
 
Index Terms ─ Adaptive antenna array, beamforming, 
direction of arrival, planar array. 
 

I. INTRODUCTION 
The adaptive or smart antennas due its benefits have 

a great potential over all the future wireless 
communications. These antennas consist of arrays with 
several elements, which combines the received data from 
each element of array in such a way that improves the 
communication, suppressing interfering signals. 

The increase of the coverage, the enhancement of 
the system capacity and the ability to reduce/mitigate 
some communication impairments such as interferences 
and multipath fading are relevant features about the 
impact of this technology in the performance of the 
wireless communications. The smart antennas has the 
spatial diversity capabilities, which relies in the 
possibility to transmit simultaneously several data 
streams, exploiting the spatial multiplexing gain of 

MIMO systems, increasing the spectral efficiency and 
the data rates. 

Firstly developed for military applications, in the 
last century, took part the evolution of wireless 
communications and, nowadays, the smart antennas are 
attractive for several areas that range from the military 
applications, satellites, and mobile communications, 
especially in base stations, 4G MIMO and the emerging 
5G MIMO. 

The adaptive antennas can detect the direction of 
signals that impinge at the antenna using the direction of 
arrival estimation algorithms, and then weighting each 
array element can change the radiation pattern of the 
antenna, not only to point to a preferred zone, but also to 
place nulls in the others, to mitigate possible interfering 
signals. 

These weights (amplitude and phase) are estimated 
using the beamforming algorithms. The block diagram 
of a smart antenna procedure is presented in the Fig. 1. 
In reception mode, a sample of received signal at each 
element of the array is used through DOA algorithms to 
estimate the directions of the arriving signals. Once 
determined, the directions of interest and of the 
interfering signals are selected, by some auxiliary 
intelligence. Then, using the angular locations, the 
beamforming algorithms are used to compute the needed 
weight to apply to each element of the array, to point the 
antenna pattern as is intended. 

This paper is organized into six sections. It starts 
with an introduction, inserting the work in the smart 
antenna domain. The second section describes the 
direction of arrival estimation algorithms, with a focus in 
the two dimensional antenna arrays. The following 
section, the third, is related to beamforming, exposing 
the main algorithms applied into planar smart antennas. 
In the fourth section is made the system integration, 
combining the DOA and beamforming algorithms to 
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create an example of application, detecting signals and 
pointing the radiation pattern of a planar array antenna 
for them. Then, there is a section of results with a 
detailed examination of the performance of the 
algorithms. Finally, the paper is concluded in the section 
six, grouping the main results taken from this analysis 
and some future prospects. 
 

 
 
Fig. 1. Adaptive antenna array system. 
 

II. DIRECTION OF ARRIVAL 
The algorithms to determine the directions of arrival 

of the signals are a vital part of the adaptive antenna 
system, due to its ability to filter out the surrounding 
noise. 

Processing the electromagnetic waves that reach to 
the antenna array is possible to extract some info about 
the signal, such the direction whence is arriving to the 
antenna. Estimating the DOA’s, then is possible to 

distinguish the directions of interest to point the antenna 
and directions of intrusive signals, to reduce its effects in 
the communication. 

There are three classes of methods to do this, the 
classical, the maximum likelihood and the subspace 
methods, which differ mainly in the performance and 
computational requirements [1], [2]. The classics are based 
in the beamforming, in which the central idea is to scan 
the antenna beam over the space and the locals in which 
more power is received are the DOAs. These methods 
are theoretically simple but involve a high computational 
effort and offer a low performance. A different class is 
based on the maximum likelihood techniques, which 
present a high performance but with high computational 
requirements, due to the necessity to solve nonlinear 
multidimensional optimization problems. Finally, the 
subspace methods make use of the received signal and 
noise subspace to achieve a tradeoff between the 
performance and the computational efficiency. The 
performance of the subspace-based methods is limited 
essentially by the accuracy of distinguishing the signal 
and the noise subspaces in the presence of noise. For the 
planar uniform array the most applied algorithms are 
MUSIC and the 2D ESPRIT, that are subspace based [1]. 

A. Multiple signal classification - MUSIC algorithm 
This DOA algorithm is perhaps the most popular 

method and uses the fact that the steering vectors of the 
incoming signals lie in signal subspace and are 
orthogonal to the noise subspace. The MUSIC [2]-[5] 
search in the all possible steering vectors, those that are 
orthogonal to the noise subspace of the covariance 
matrix of the received data. 

Using the received information from each array 
element, the MUSIC through eigenvalue decomposition 
or singular value decomposition of the correlation matrix 
of this data, estimates the noise subspace, as exemplified 
in the diagram of Fig. 2. After the noise subspace be 
known, ,NU  the DOAs are the resulting peaks of the 
MUSIC spectrum, that is given by equation (1), that is 
function of 
  and �  through the steering vector s( , )
 � : 

 1( , ) ,
( , ) ( , )MUSIC H H

N N

P
s U U s

�
 �

 � 
 �

 (1) 

where MH represents the conjugate transpose matrix of 
M (Heremitian). When a steering vector is referring to 
one arriving signal, the product H

Ns ( , )U
 �  is equal to 
zero, ideally, and the function assumes a high value 
(peak). 
 

 
 
Fig. 2. 2D MUSIC. 
 

The MUSIC algorithm is easily understood and can 
be implemented in all antenna array geometries, 
however, computationally requires a lot of resources, 
since it should calculate the MUSIC spectrum, equation 
(1), for all possible steering vectors to estimate the 
desired peaks. The estimation error of MUSIC algorithm 
is substantially influenced by the angle grid interval in 
which the equation (1) is evaluated. 

In the presence of coherent signals, as in multipath 
environments, spatial smoothing schemes [6], [7] must 
be applied to suppress the correlations between the 
incoming signals. 
 
B. Estimation of signal parameters via rotational 
invariance techniques - 2D ESPRIT algorithm 

An additional known subspace based DOA 
algorithm is the ESPRIT [8]-[12]. This scheme solves 
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the issues of the high computational requirements of the 
MUSIC, and the resulting effects of array calibration 
errors. The ESPRIT algorithm employs the property of 
shift invariance of the antenna array, and due to this 
property is not fundamental to have a high level of 
calibration in the array. 

The computational complexity of the ESPRIT is 
reduced once this algorithm imposes some constraints on 
array structure. The ESPRIT assumes that the separation 
between equivalent elements in each sub-array is fixed, 
Fig. 3, and therefore the array presents a translational 
invariance. This translational invariance leads to a 
rotational invariance of the signal subspace that will 
allow estimating the DOAs. 
 

 
 
Fig. 3. Sub-array division (3x4) with maximum overlap. 
 

The algorithm follows three steps, the signal 
subspace estimation, the solution of the invariance 
equation and the DOA estimation. 
1) Signal subspace estimation: 
 Computation of the .SU  (2) 
2) Solve the invariance equation: 

 1 2

1 2

,
,

u s u u s

v s v v s

K U Υ K U
K U Υ K U

�
�

 (3) 

where Ku1, Ku2, Kv1 and Kv2 represent the two pairs of 
transformed selection matrices, while Yu and Yv are the 
real-valued matrices [10]. 
3) DOA estimation: 
 1iλ i d� "d "d eigenvalues of ,u vΥ jΥ
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where i
  and i�  are the DOA angular information. 
 

III. BEAMFORMING 
In fact, despite the interest and intrusive signals 

occupying the same frequency range, they are created 
from different spatial positions. Once identified the 
directions of arrival of its signals, is necessary the use of 
spatial filtering techniques, also known as beamforming 
techniques, due to deal with in the beam pattern of an 

antenna array. Based on these directions, the beamforming 
processing to control the antenna pattern is made, 
improving the performance of the communication. 

The control of the radiation pattern of the antenna 
array is achieved, as is illustrated in the Fig. 4, varying 
the relative amplitude and phase of each element of the 
array and is based on this rule that the beamforming 
techniques operate. There are several algorithms already 
developed to calculate the complex weights (amplitude 
and phase) to apply to the antenna array. 
 

 
 
Fig. 4. Beamformer system. 
 

These beamforming techniques can be classified 
according to the way on how the weights apply to the 
array are estimated, as data independent or statistically 
optimum [13], [14]. In the data independent, the weights 
are chosen to provide a desired response independently 
of the received data by the antenna, while in the 
statistically optimum the weights are estimated 
according to the statistics of the received signal in order 
to optimize its response, reducing or ideally suppressing 
the intrusive signals. 

Often, statistical information of the collected data 
from the array are not available or varies in time, 
therefore adaptive algorithms are typically useful to 
estimate the weights and are designed in order to their 
response tend to a solution statistically optimum. 
 
A. Statistically optimum beamformer 

These beamformers are applied to diminish the 
influence of the interfering signals in the communication 
while pointing the antenna pattern in the direction of 
interest signal. Some examples of statistically optimum 
algorithms present in the literature [13] are: 
' Multiple sidelobe canceller (MSC), 
' Use of reference signal, 
' Maximum SNR, 
' Linearly constrained minimum variance (LCMV). 

The MSC beamformer is composed by a main 
channel and others auxiliary channels, and the idea is to 
choose the appropriate weights to apply to the auxiliary 
channels to cancel the interference signals from the main 
channel. This procedure presents some limitations, once 
MSC doesn’t point the main beam to a desired signal, 
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and the weights must be estimated with the absence of 
the desired signal. Based on this, MSC is only effective 
when desired signals are weak relative to interferences. 
The use of a reference signal requires some knowledge 
about the desired signal, to generate a reference signal in 
order to minimize the mean square error between the 
output and the reference signal. Using the maximum 
SNR solution requires the knowledge of the covariance 
matrix of the desired signal and of the noise. 

Finally, one of the most important statistically 
optimum algorithms with higher applicability is the 
LCMV, which is described below followed by a different 
approach of its formulation known as generalized side 
lobe canceller (GSC). 
 
1) Linearly Constrained Minimum Variance 

Most of the times the desired reference signal is 
unknown or we don’t have enough information about it, 

being necessary to impose some linear constraints in the 
weight vector to minimize the variance of beamformer 
output. This is obtained using the LCMV beamformer 
[15]. The constraints impose that the desired signals 
from a known direction are preserved and the interfering 
signals influence is minimized. 

The LCMV formulation problem is to select the 
complex weights that are suitable to the multiple linearly 
independent constraints: 

 H Hmin w R w subject to C w fxw � , (5) 

where w is the vector of weights, Rx the covariance 
matrix, C is the constraint matrix and f is the response 
vector. 

The solution of the constrained minimization of 
LCMV problem can be achieved applying the method of 
Lagrange multipliers and results in [13]: 

 1 H 1W R C(C R C) fx xopt
� �� . (6) 

It is important to note the dependence of the optimal 
weight vector (6) with the data correlation matrix, and 
therefore with the statistics of the input signal. 
 
a) Generalized Sidelobe Canceller - GSC 

The generalized sidelobe canceller is a different 
approach to solve the LCMV problem, providing a 
simple implementation of the beamformer and change 
the constrained minimization problem to an 
unconstrained scheme [16], [17]. 

The GSC separates the LCMV problem into two 
components, one data independent and other data 
dependent, as is illustrated in Fig. 5. In GSC structure, 
the optimum weight vector is decomposed in two 
orthogonal components that are in the range and null 
space of C, in the manner that .o Mw w Bw� �  The array 
output is ,H H H

o My w x w B x� �  as is shown in the Fig. 5. 
 

 
 
Fig. 5. Generalized sidelobe canceller. 
 

The wo vector is the quiescent part of ,w and is used 
to constrain the weight subspace, and must satisfy the 
linear constraints [16]: 
 ´ 1( ) .H H

o oC w f w C C C f�� � �  (7) 
The wo is designed respecting the imposed 

restrictions, is independent of the data and represents the 
non-adaptive component of the LCMV solution. In 
inferior branch, the blocking matrix B and Mw will 
block the interfering signals influence, while minimizing 
the variance of the output signal y. This is the data 
dependent component. The blocking matrix B must be 
orthogonal to the constraint matrix C, so 0�BC H . 

The GSC unconstrained problem is: 

 
min ( ) ( ),

,
M

H
o M x o Mw

H

w Bw R w Bw

subject to C w f

� �

�
 (8) 

and the optimal solution is: 
 ´ 1( ) .H H

M x x ow B R B B R w��  (9) 
This implementation of beamformer has significant 
benefits, such the wo is a data independent beamformer 
and Mw is an unconstrained beamformer. 
 
B. Adaptive algorithms 

The statistically optimum beamformers uses the 
received data statistics, which often may change over the 
time or may not be available. Adaptive algorithms solve 
this issue [13]. 

The adaptation error corresponding to a weight 
vector is calculated and then is processed a new weight 
vector with a reduced error. Examples of adaptive 
algorithms are the well-known least mean square (LMS), 
the recursive least squares (RLS) or the Frost’s 
algorithm. 
 
1) Frost’s Algorithm for LCMV Beamforming 

The Frost’s algorithm  [14] belongs to the group of 
LCMV beamformers. The LCMV estimated weights are 
based on the received data information statistics (Rx), but 
in many situations the second order statistics are not 
available or are continuously changing, being necessary 
the use of adaptive algorithms. Frost’s algorithm 

solution minimizes the mean square error while  
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maintains the specified response to the desired signal. 
The weight vector starts with an initial value: 
 1( ) ,Hw C C C f��  (10) 
and in each iteration the vector will be updated on 
negative gradient direction by a factor defined by % : 

 
1 *

1

( 1) ( ) ( ( ) ( ) ( )),
( ) .

H

H H

w n C C C f P w n e n x n
P I C C C C

�

�


 � 
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� �

%
 (11) 

 
2) Least Mean Square 

Least mean square algorithm [13], [14], [18], [19] 
estimates the gradient vector and adjusts the weight 
vector in the negative gradient direction at each iteration: 

 

*

max

( ) ( 1) ( 1) ( 1),

( ) ( ) ( ) ( ),
10 ,
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d M
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� �

( (

%

%
�
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where λmax is the largest eigenvalue of the correlation 
matrix.  

The gain %  [13] (0<μ<1) is the parameter that 
controls the convergence rate. Smaller values result in 
slow convergence and good approximation, while higher 
values lead to faster convergence and the stability around 
the minimum value is not guaranteed. This is a simple 
algorithm and with a correct choice value of ,%  the 
weight vector tends to an optimum solution. 
 
3) Recursive Least Squares 

The recursive least squares [13], [14] has a high 
convergence rate, faster than the LMS; however, the 
computational complexity is higher. 

The RLS problem is: 

 
2

( ) 0
min ( ) ( ) ( ) ,

M

N
N n H
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with 0<λ<1 a constant called forgetting factor. 
The algorithm can be described as [13]: 
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where I is the identity matrix and δ a small value. 
 

IV. SYSTEM INTEGRATION 
The simulated system consists of a planar antenna 

array that receives an input signal x(t), that is a sum of 
various signals impinging in the antenna and noise, as is 
shown in the Fig. 6. The received data is after processed  

to estimate the angles of arrival of each signal. Then, 
using the beamforming algorithms, the system processes 
the group of weights to apply to each antenna array 
element to point the radiation pattern to the desired 
direction while minimizing the impact of the others 
signals considered as interferences. 
 

 
 
Fig. 6. Implemented system. 
 

Consider a NM *  uniform planar array as 
presented in the Fig. 7, with spacing between elements 
of d1 on rows and d2 on columns. There are J signals s(t) 
that collide onto the antenna array with an elevation 
angle 
  and with an azimuth angle .φ  The input signal 
at each array element (m, n) is the sum of the 
contributions of the J signals and noise n(t): 

 

1 2
2 [ ( 1) ( 1)]

1
( ) ( ) ( )

sin cos sin
1, , 1, , 1, , ,

i i
πJ j u d m v d n
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i

i i i i i

x t s t e n t
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m M n N i J
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 �

�
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� �
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�

, 1, , 1, , ,, 1, , 1, ,1, , 1,1
 
(15) 

where λ is the wavelength. 
 

 
 
Fig. 7. Planar array. 
 

It is possible to represent the received data in vector 
structure X(t) and noise vector N(t) as: 
 11 21 1 12( ) [ ( ) ( ) ( ) ( ) ( ) ] ,T

N MNX t x t x t x t x t x t� ( ) ( ) ( ) ] ,T
N MN1 12 ( )1 12( ) ( ) () (1 121 ( ))1 12  (16) 

 11 21 1 12( ) [ ( ) ( ) ( ) ( ) ( ) ] .T
N MNN t n t n t n t n t n t� ( ) ( ) ( ) ] .T
N MN1 12 ( )1 12( ) ( ) (( ) ( ) (1 121 ( ))1 12  (17) 

The steering vector of the each signal that arrives to 
the planar array contains the set of phase delays that a 
wave will take relating to each element of the array, and 
for a planar array can be represented as [20], [21]: 

DOA 
Estimation

Beamforming 
weights 

computation

),( SOISOI �

),( IntInt �
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2222� �
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 ,u vA C C� -  (20) 
where the -  is the Kronecker product, Cu and Cv are the 
steering vectors in x and y direction and A the steering 
matrix of the planar antenna array. 

So, the total input signal X(t) can be expressed in the 
following formula: 

 
1

( ) ( ) ( ).
J

i i
i

X t s t A N t
�

� 
�  (21) 

The output signal of the planar array, with 
beamforming weights W applied to each array element 
will be: 
 ( ) ( ),Hy t W X t�  (22) 
 11 21 1 12[ ].N MNW w w w w w� ].N MN1 121 121 121 12  (23) 

In this work, the signal X(t) that collides to the 
planar array antenna is generated previously. This data is 
the sum of diverse signals with different directions
� �, ,θ φ  the signal of interest, interferences and noise. 
The set of signal samples that reaches each element of 
the array is processed by a DOA algorithm to determine 
the angles of arrival and the number of signals. 

With some knowledge to distinguish the interest 
signal and interferences, one of beamforming algorithms 
is applied to achieve the correct weights to point the 
antenna array to the desired location. 

The antenna array for test presented in the Fig. 7, 
was simulated in the electromagnetic simulator HFSS 
(High Frequency Structure Simulator) [22] and consists 
of a planar microstrip array of 16 elements with a 4x4 
shape, designed for 12 GHz. 

Using as a uniform planar antenna array, that uses 
all elements feed with the same amplitude and phase 
(unitary weights), the radiation pattern of the antenna is 
perpendicular to the antenna plane, and points to the 
origin � �, (0º ,0º ).θ φ �  

In the electromagnetic simulator is possible to 
modify the relative amplitude and phase of each element 
of the array, based on this, the calculated weights with 
beamforming algorithms were tested in the simulated 
planar antenna array. 
 

V. RESULTS 
Using the MATLAB [23], the DOA and 

beamforming algorithms were implemented and its 
performance was analyzed when applied to a planar 
antenna array. The system (DOA and beamforming) 
simulation was tested using several group of angles of  

arrival of signals with excellent results. As an example 
of test, two signals with directions � �, (45º ,45º )θ φ �

and � �, (70º ,0º )θ φ �  was employed using a 4x4 planar 
antenna array with 0.5λ element spacing, as presented in 
Fig. 7. 
 
A. Direction of arrival 

With the received signal (16) from each element of 
the antenna array (that is a composite of various 
components of interest signals, interference signals and 
noise), the direction of arrival algorithms estimates the 
locals that electromagnetic signals are arriving to the 
antenna. The MUSIC and ESPRIT algorithms were 
tested. 
 
a) MUSIC 

The 2D MUSIC algorithm creates a two-
dimensional grid, in the range which the angles vary

[0, 90] [0, 360],θ φ� �  and then, evaluates the function 
PMUSIC (1) for each point of the grid. The Fig. 8 illustrates 
the result of the MUSIC algorithm, a spatial graph that 
present peaks in the position of incident signals. 

According to the Fig. 8, the function contains two 
peaks, which are evidenced. Note that there is another 
peak but is assumed to be repeated, once 0º and 360º is 
the same spatial location. To be easier to define the peaks 
of the graph, one function to detect correctly the N 
maxima values was implemented. This function only 
gives the points of zero gradient. 

The result of this function is shown in the Fig. 9, 
with the two well defined peaks. The output of the 
MUSIC algorithm is that the incident signals that arrive 
to antenna are coming from (45.3º, 44.82º) and (70.07º, 0º), 
which are very close to the initially proposed angles. 
 

 
 
Fig. 8. 2D MUSIC spectrum. 
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Fig.9. MUSIC 2D spectrum peaks. 
 
b) ESPRIT 

Using the equal received signal X(t) by each 
element of the antenna was processed the other DOA 
estimator, the ESPRIT algorithm. This algorithm doesn’t 

use a grid to evaluate a function, but the output is just the 
pair of angles � �,θ φ  estimated. 

The output of the ESPRIT algorithm estimates that 
the signals are arriving from � �, (45.02º ,45.11º )θ φ �

and � �, (69.82º ,0.03º ).θ φ �  
The DOA algorithms implemented exhibit 

estimated results very approximate to the original values. 
These algorithms only receive the signal X(t), and 
provides the spatial position of each incoming source 
which compose it. 

Once known the DOA’s of the signals, is necessary 

to apply some knowledge and choose the local to point 
the antenna and interfering directions. Assuming that the 
first pair of values � �,θ φ  is the direction of interest, and 
the following the interfering signals, the system then 
employs the beamforming algorithms to determine the 
appropriate weights to apply to each element of the 
antenna array. 
 
B. Beamforming 

The beamforming weights are a set of amplitude and 
phase delays that are applied to an antenna array, to 
combine the signals in such way that produces 
constructive interference in some locals and destructive 
in others. These weights can be displayed in an 
exponential form .jΦw A e�  

The four beamforming algorithms presented before 
were tested and the resulting weights were inserted in the 
simulated antenna of the Fig. 7 and evaluated the 
obtained radiation pattern. The locals � �,θ φ  of the 

considered signals are: signal of interest: (45º, 45º), and 
interference: (70º, 0º). 
 
a) LCMV 

The optimum solution for the LVCM problem were 
implemented, with input of the angles estimated by DOA 
algorithm, and using a response vector Hf ]01[�  to 
consider the first pair of angles the interest direction and 
the second the local of interference. 

The result of the algorithm is presented in the Table 
1, this output is composed by the complex weights 
already decomposed in terms of amplitude and phase, to 
apply directly to the corresponding element of the 4x4 
array. 
 
Table 1: Weights resulting from LCMV beamforming 
algorithm 

Optimum LCMV 
Amplitude . phase 

 1 2 3 4 
1 1.0 . 0º 1.0 . -90º 1.0 . -180º 1.0 . 90º 
2 1.0 . -90º 1.0 . 180º 1.0 . 90º 1.0 . 0º 
3 1.0 . 180º 1.0 . 89º 1.0 . 0º 1.0 . -90º 
4 1.0 . 90º 1.0 . 0º 1.0 . -91º 1.0 . 180º 

 
The resultant radiation pattern of the planar antenna 

with these weights applied is shown in the Fig. 10. It’s 
possible to observe the maximum of the radiation pattern 
pointed to the local (45º, 45º) of the signal of interest, 
with green dashed arrow, while in the direction (70º, 0º), 
with a red filled arrow, exists a low power value to 
diminish significantly the influence of the interference 
signal in the received from this direction. 
 

 
 
Fig. 10. The radiation pattern of the planar array with 
optimum LCMV weights applied. 
 
b) Adaptive Frost’s Algorithm for LCMV Beamforming 

Another solution to solve the problem is using  
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adaptive algorithms that are a more realistic approach, 
due to the environment changes. 

With the considered pair of angles for the signal of 
interest and interference directions, was tested the 
adaptive Frost’s algorithm for LCMV beamforming. 
This algorithm was processed with a 100 samples of the 
input signal, iteratively, and the output resulting weights 
is presented in the Table 2. 
 
Table 2: Weights resulting of adaptive Frost’s algorithm 

for LCMV beamforming 
Adaptive Frost’s LCMV 

Amplitude . phase 
 1 2 3 4 

1 1.0 . 0º 1.0 . -90º 1.0 . -180º 1.0 . 90º 
2 1.0 . -90º 1.0 . -180º 1.0 . 90º 1.0 . 0º 
3 1.0 . 180º 1.0 . 90º 1.0 . 0º 1.0 . -90º 
4 1.0 . 90º 1.0 . 0º 1.0 . -90º 1.0 . -180º 

 
With these weights applied in the planar antenna, the 

new radiation pattern created is presented in the Fig. 11. 
It’s observed that the antenna points to the direction of 
interest (green dashed arrow) placing a null in the 
interference zone (red filled arrow), as is pretended. 
 

 
 
Fig. 11. The radiation pattern of the planar array with 
Frost’s algorithm beamforming weights applied. 
 
c) LMS 

The known algorithm of least mean square was also 
performed in MATLAB, for a planar antenna array and 
to point to the considered directions. The result of this 
algorithm is available in the following Table 3. 

This adaptive algorithm uses as the previous 100 
samples of the received signal X(t). The produced 
radiation pattern when inserted the LMS weights is 
illustrated in the Fig. 12. 

As is visible, the antenna points its maximum (green 
dashed arrow) in the direction (45º, 45º) and places a null  

(red filled arrow) in the (70º, 0º) zone. 
 
Table 3: Weights resulting of the adaptive LMS 
beamforming algorithm 

Adaptive LMS 
Amplitude . phase 

 1 2 3 4 
1 1.0 . 0º 1.0 . -83º 0.9 . 156º 0.6 . 83º 
2 0.7 . -83º 1.0 . 179º 1.0 . 93º 1.2 . 2º 
3 0.9 . -178º 0.9 . 61º 0.9 . 23º 0.6 . -78º 
4 0.9 . 69º 0.6 . 13º 0.6 . -59º 0.6 . -169º 

 

 
 
Fig. 12. The radiation pattern of the planar array with 
LMS algorithm beamforming weights applied. 
 
d) RLS 

The recursive least squares algorithm was also 
implemented to estimate the appropriate weights for this 
scenario. The output of this algorithm is presented in the 
Table 4, with the amplitudes and phases calculated to 
employ in the simulated antenna array. 
 
Table 4: Weights resulting of the adaptive RLS 
beamforming algorithm 

Adaptive RLS 
Amplitude . phase 

 1 2 3 4 
1 1.0 . 0º 0.7 . -104º 0.5 . -161º 0.9 . 102º 
2 1.2 . -92º 1.2 . 175º 0.8 . 107º 0.9 . -34º 
3 0.8 . -163º 0.3 . 127º 0.8 . -100º 0.8 . -73º 
4 0.4 . 101º 0.6 . -4º 0.7 . -114º 0.5 . -128º 

 
With this set of weights applied in the array, leads 

to the resulting radiation pattern that is shown in the Fig. 
13. 

As expected, the antenna will move its radiation 
pattern in the direction of interest (45º, 45º) indicated by 
green dashed arrow, becoming profitable the 
communication with a signal from this direction. 
 

Signal of interest
Interference

Signal of interest

Interference
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Fig. 13. The radiation pattern of the planar array with 
RLS algorithm beamforming weights applied. 
 

After the estimation of the arrival directions of the 
impinging signals to the antenna and the calculation of 
the weights to steer the radiation pattern, using various 
algorithms, it is imperative a comparative description 
about their performance. 
 
C. System performance 

The system that consists of DOA estimation and 
computation of the beamforming weights was evaluated. 
The performance can be evaluated in terms of running 
time for all algorithms, the changeability of its results 
when the noise level alters and in terms of estimation 
errors. 

Varying the signal to noise ratio (SNR), the runtime 
of the all algorithms was analyzed, applying 
beamforming and DOA estimation algorithms. The 
estimation error was also calculated, and the results are 
presented in Tables 5-8. 

In accordance with Table 5, the runtime of LCMV 
algorithm is less significant than any of the direction of 
arrival algorithms (MUSIC or ESPRIT), and a variation 
with SNR is not significantly noted when SNR changes 
from 10 to 15 dB, although approximately doubles when 
SNR reduces from 10 to 5 dB. The MUSIC estimation 
algorithm is temporally extremely heavier than the 
ESPRIT. Note that the execution times don’t have a 
marked variation with noise, despite the τESPRIT tends to 
diminish when the SNR increase. 

In terms of errors in the angle of arrival estimation
� �, ,θ φ  this error tends to reduce with increasing of 
SNR. Using the ESPRIT algorithm is observed the 
reduction of the errors; however, using the MUSIC 
algorithm the error is constant. This regular value is a 
consequence of the choice of the evaluation angle grid of 
the function PMUSIC, as will see after, whereby must be a 
compromise between execution time and estimation 
error. 
 

Table 5: Variation of the runtime and estimation error 
with SNR using LCMV algorithm 

 SNR (dB) 

LC
M

V
 

MUSIC 

 5 10 15 
MUSIC/ (s) 5.92 6.03 5.34 

LCMV/ (s) 0.0199 0.00089 0.00098 


0 (degrees) 0.302 0.302 0.302 

�0 (degrees) 0.305 0.305 0.305 

ESPRIT 

ESPRIT/ (s) 0.052 0.038 0.013 
LCMV/ (s) 0.0013 0.0011 0.0009 


0 (degrees) 0.08 0.04 0.02 

�0 (degrees) 0.167 0.141 0.0275 
 

Using the Frost’s algorithm, as it is adaptive, it has 
a runtime which diminishes with the SNR, Table 6. The 
DOA algorithm’s performance remained with 
characteristics already described about the execution 
time. The estimation errors in the case of MUSIC 
continue mainly affected due to the selection of interval 
in the grid angle to evaluate the equation (1), while in 
ESPRIT is visible an error reduction with the increasing 
of SNR. 
 
Table 6: Variation of the runtime and estimation error 
with SNR using Frost’s algorithm 

 SNR (dB) 

F
R

O
S

T
’s 

MUSIC 

 5 10 15 
MUSIC/ (s) 5.67 5.15 5.53 

sFrost '/ (s) 0.0118 0.0047 0.0007 


0 (degrees) 0.302 0.302 0.302 

�0 (degrees) 0.305 0.305 0.305 

ESPRIT 

ESPRIT/ (s) 0.015 0.0018 0.0077 
sFrost '/ (s) 0.013 0.001 0.00086 


0 (degrees) 0.140 0.042 0.042 

�0 (degrees) 0.0188 0.014 0.010 
 

With the LMS algorithm, according to the Table 7, 
the execution time reduces while the value of SNR 
increases, whereas the MUSIC and ESPRIT algorithms 
keep on with similar characteristics to the preceding 
cases. The error also shows a reduction with the increase 
of SNR. 

Finally, the Table 8 shows the analysis of the 
performance using the RLS algorithm. It is possible to 
see a pronounced reduction of the runtime when SNR 
changes from 5 dB to 10 dB. The error follows the 
expected behavior, with a reduction of its value when the 
DOA ESPRIT algorithm is employed, with the increase  

Interference
Signal of interest
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of SNR. When the MUSIC algorithm is used, the error 
remains constant. 
 
Table 7: Variation of the runtime and estimation error 
with SNR using LMS algorithm 

 SNR 

LM
S 

MUSIC 

 5 10 15 
MUSIC/ (s) 5.35 5.37 5.46 

LMS/ (s) 0.020 0.007 0.002 


0 (degrees) 0.302 0.302 0.302 

�0 (degrees) 0.305 0.305 0.305 

ESPRIT 

ESPRIT/ (s) 0.0095 0.0012 0.0011 
LMS/ (s) 0.0054 0.0050 0.0046 


0 (degrees) 0.203 0.042 0.02 

�0 (degrees) 0.090 0.045 0.024 
 
Table 8: Variation of the runtime and estimation error 
with SNR using the RLS algorithm 

 SNR 

R
LS 

MUSIC 

 5 10 15 
MUSIC/ (s) 5.82 5.75 5.71 

RLS/ (s) 0.0163 0.0070 0.0161 


0 (degrees) 0.302 0.302 0.302 

�0 (degrees) 0.305 0.305 0.305 

ESPRIT 

ESPRIT/ (s) 0.00181 0.00180 0.0015 
RLS/ (s) 0.0101 0.01 0.01 


0 (degrees) 0.2294 0.0378 0.0972 

�0 (degrees) 0.156 0.031 0.01 
 

Globally, is noted that the tendency related to 
beamforming algorithms is the increase of its execution 
times from the statistically optimum to each of the 
adaptive ones. The DOA algorithms present consistent 
results, with a reduction of estimation error with the 
increase of SNR, taking into account that with MUSIC 
algorithm a compromise between error and runtime must 
be done. 

Using a considerable number of experiments, a 
statistical analysis of this performance of each algorithm 
can be done. This estimate was based on a sequence of 
50 experiments, and the graphical analysis is performed 
in the next figures. 

The Fig. 14 shows the runtime of the LCMV 
algorithm over the number of the n experiments. Despite 
a couple of experiments presents a more accentuated 
variation, the mean execution time is about 4102.6 �*
seconds (0.62 msec). 

The Frost’s algorithm execution time is displayed in  

the Fig. 15. This algorithm presents a mean value of the 
4105 �*  seconds (0.5 msec), that although is an adaptive 

algorithm presents a better result than the previous one. 
 

 
 
Fig. 14. Execution time of LCMV algorithm. 
 

 
 
Fig. 15. Execution time of Frost’s algorithm. 
 

Using the LMS and RLS algorithms, the used 
runtime over the experiences are indicated in the Fig. 16 
and Fig. 17. The execution times are respectively 

3108.2 �*  seconds (2.8 msec) and 3106.7 �*  seconds (7.6 
msec). 

Along the n experiences, the runtimes of the two 
DOA estimation algorithms are displayed in graphical 
form in the Fig. 18. The upper part includes the values 
relating to the MUSIC algorithm, while the lower part is 
concerning to the ESPRIT algorithm. In both the graphs 
are identified the line of the average time of the various  
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samples. 
Immediately, it is possible to note the huge 

difference in the time it takes to perform the MUSIC 
algorithm compared with the ESPRIT. The MUSIC 
algorithm takes n samples during 5 to 6 seconds each 
one, presenting an average execution time of 5.54 
seconds as shown in Fig. 18. Much less time requires the 
ESPRIT algorithm, ranging between 1 and 2 milliseconds 
as the figure shows, with an only sample with a peak 
reaching 3.5 msec, and the overall average execution 
time 1.57 msec. 

The last parameter that is possible to examine is the 
estimation error, between the real coordinates � �,θ φ  of 
the incoming waves, and the estimated position 
determined by the two dimensional DOA algorithms, 
MUSIC and ESPRIT. 

In the Fig. 19, there are exposed the evolution of the 
estimating error over the n experiences. The superior 
graph is relating to the coordinate ,
  while the bottom 
is about the .φ In each parts are present the error using 
the two algorithms of DOA, and further the line of mean 
of the error. As is possible to see, using the MUSIC 
algorithm the estimation error have a constant effect, 
with a mean error of 0.302º in theta and 0.3052º in phi. 
The ESPRIT algorithm present mean errors much lower, 
of 0.037º in theta and 0.015º in phi coordinates. 

The ESPRIT error is due to the mathematical 
process and the noise added to the signal. On the other 
hand, the MUSIC error is strongly due the evaluation 
interval, as explained in the Fig. 20. The accuracy 
depends on the number of points on its angle grid, more 
points lead to longer computations. This is the main issue 
of MUSIC, and the number of points must be a 
compromise depending on the required accuracy and 
computational load. 
 

 
 
Fig. 16. Execution time of LMS algorithm. 

 
 
Fig. 17. Execution time of RLS algorithm. 
 

 
 
Fig. 18. Execution time evolution of DOA algorithms 
over n samples. 
 

 
 
Fig. 19. Estimation error in theta and phi coordinates 
using each one of DOA algorithms (MUSIC and 
ESPRIT). 
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Fig. 20. Evaluation grid of MUSIC algorithm. 
 

VI. DISCUSSION AND FUTURE 
PROSPECTS 

In this paper, the analysis of the main 2D algorithms 
that are vital in a planar adaptive antenna system, the 
direction of arrival and the beamforming algorithms, was 
made. 

The developed function to extract the peaks of the 
MUSIC spectrum is very effective, allowing a correct 
definition of the maxima values, and the corresponding 
DOAs. In this work, the weights resulting of the 
beamforming algorithms, in terms of amplitude and 
phase, were tested in a simulated array. The intention 
was to verify that the achieved radiation patterns in 
electromagnetic simulator present the desired radiation 
characteristics. About the performance of the algorithms, 
the runtime of the DOA MUSIC is much higher than 
ESPRIT, since the MUSIC algorithm must evaluate the 
MUSIC function to each possible steering vector. 

Also about estimating errors, the MUSIC presents 
some limitations, since the accuracy of the angle results 
of the interval of evaluating the function. A compromise 
between the accuracy and the processing time is needed. 
This fact is something important that is not addressed in 
[24], so it’s a tradeoff to consider. In both DOA 
algorithms, this error reduces with the increasing of the 
SNR. The runtime of the beamforming algorithms 
increases more in the adaptive due to the number of 
snapshots processed. 

The trends involve the use of new, and more 
complex array topologies, such as three-dimensional 
arrays, investing in the research of new techniques for 
determining the DOA’s, adapted to them, such as in [25]. 
Furthermore, advances in beamforming techniques for 
randomly distributed planar arrays [26], [27] have showed 
an increased interest, with several applications, either in 
small satellites or in arrays of sensors, with a non-
uniform distribution. Also, is expected the use of smart 

antennas in the 5th generation of mobile wireless systems 
(5G) using MIMO, in the millimeter wave frequencies. 
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