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Abstract ─ Stochastic Galerkin Method, a prevailing 

uncertainty analysis method, has been successfully used 

in today’s EMC simulation, in order to consider non-

ideality and unpredictability in actual circumstance. In 

this case, the inputs of the simulation are no longer 

certain values, but random variables with corresponding 

probability density distribution. This paper focuses on 

the arbitrary probability density cases at inputs. Two 

constructing orthogonal basis methods, the Wiener Haar 

expansion and the Stieltjes procedure, are generalized 

into the Stochastic Galerkin Method which is combined 

with the Finite Difference Time Domain analysis.  

With the help of the Feature Selective Validation, the 

quantitative precision comparison of the proposed 

methods in different cases (the probability density 

function is continuous or discontinuous) can be presented 

in detail.  

 

Index Terms ─ Arbitrary probability density, EMC 

simulation, FDTD analysis, stochastic Galerkin method, 

uncertainty analysis. 
 

I. INTRODUCTION 
Recent years, the Electromagnetic Compatibility 

(EMC) community usually takes uncertainty factors of 

input parameters into account, in order to improve the 

reliability of calculation results. The uncertainty factors 

may come from the lack of knowledge, manufacturing 

tolerance and so forth. For example, the uncertainty into 

material or excitation source is always considered, thanks 

to the complexity of the electromagnetic environment. 

Meanwhile, Finite Difference Time Domain (FDTD) 

analysis is a powerful tool in EMC simulation [1, 2]. In 

order to analyze this uncertainty in EMC simulation, 

many uncertainty analysis methods have been generalized 

into the FDTD analysis in recent studies [3-6]. 

Among the existing references, the Monte Carlo 

Method (MCM) is conventionally widely adopted [3, 4]. 

In MCM, the uncertain inputs are sampled in terms  

of their distributions. At each sampling point, a certain 

simulation will be performed. The final uncertainty 

analysis result should be the statistical characteristic of 

the results in every point. As confirmed by [3] and [4], 

MCM has been proved accurate, though its computational 

efficiency presents quite low [4]. Anyway, thanks to its 

high accuracy, the results given by the MCM are always 

treated as the reference data to evaluate the precision of 

other uncertainty analysis methods in the theoretical 

research. 

Other uncertainty analysis methods have been also 

successfully used in EMC simulation based on the FDTD 

analysis, such as Stochastic Collocation Method (SCM) 

[5], Method of Moments (MOM) [6] and Stochastic 

Galerkin Method (SGM) [7]. The SCM is based on the 

multidimensional Lagrange Interpolation theorem, and 

the interpolation errors might be brought in the results. 

Thus, the SCM can hardly guarantee high accuracy when 

the output results are not smoothness enough [5]. In 

MOM, the first order Taylor series expansion is applied 

to calculate the expectation and the standard deviation  

of the outputs. However, the precision of MOM tends to 

be very poor when the magnitude is large in inputs or 

outputs [6].  

The SGM is rooted in the generalized Polynomial 

Chaos (gPC) expansion theory, and it has been attached 

much attention to in recent research thanks to its high 

accuracy, though the realization of it is quite complex 

comparing with the SCM and the MOM [7, 8]. In 

reference [7] and reference [8], the SGM is generalized 

into the FDTD analysis to solve the stochastic Maxwell's 

equations, the shielding effectiveness analysis with 

uncertain materials and 3D sphere scattering calculation 

with uncertain geometric parameters are presented. It is 

proved that the accuracy of the SGM is highly consistent 

with that of the MCM in these calculation examples. 

In using the SGM, the uncertain inputs must be  
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modeled by the random variables with corresponding 

probability density distributions. However, in previous 

studies [7, 8], the distributions of the uncertain inputs are 

all supposed the common distributions, like the Uniform 

distributions or the Gaussian distributions. Little 

attempts in considering the arbitrary probability density 

distributions have been made, which greatly limits the 

application of the SGM. 

In this paper, the Stieltjes procedure [9, 10] and the 

Wiener Haar expansion [11] are proposed to construct 

the orthogonal basis of the SGM when considering  

the uncertain inputs with arbitrary probability density 

distributions. A published example in reference [12] is 

brought in, and the uncertain inputs are assumed the 

stochastic excitation source with arbitrary probability 

density distributions. The uncertainty analysis results 

given by the MCM are regarded as the reference data, in 

order to evaluate the accuracy of two proposed methods 

in different cases. 

The structure of the paper is as follows: Section II 

gives a brief introduction of the SGM mechanism 

combined with FDTD analysis. Stieltjes procedure and 

Wiener Haar expansion in constructing orthogonal basis 

of the SGM are presented respectively in Section III. The 

accuracy comparison by using FSV is demonstrated in 

Section IV. Section V provides the conclusion part of 

this paper. 

 

II. THE STOCHASTIC GALERKIN 

METHOD MECHANISM  
In the real electromagnetism environment, lack  

of knowledge or manufacturing tolerance may cause  

the uncertainty in material parameters or geometric 

parameters in EMC simulation model, and they can be 

called random events. Conventional deterministic FDTD 

analysis are not capable of dealing with this uncertainty, 

since that some input parameters are no longer certain 

values. 

The random variables can be used to model the 

random events, and they are expressed as: 

  1 2( ) ( ),  ( ),  ,  ( ) ,M         (1) 

where   represents the random events. ( )i   is a 

random variable with its own distribution depending on 

the random events. ( )   is the random variable vector, 

and M is the number of the random variables in the 

vector. 

The one-dimensional Maxwell’s equations in discrete 

version by using Finite Difference Time Domain Method 

are given as: 

   1/2 1/2( 1/ 2) ( 1/ 2) ( 1) ( ) ,n n n n

y y z zH i H i E i E i        (2) 

and 

  1 1/2 1/2( ) ( ) ( 1/ 2) ( 1/ 2) .n n n n

z z y yE i E i H i H i         (3) 

The direction of propagation is along the x axis. yH  

stands for the magnetic field intensity in y axis, and 
zE  

is the electric field intensity in z axis. Where n presents 

the Discrete-time, and i stands for the Discrete-space.  , 

  and   are the constant values which are calculated 

by material parameters, time interval and space interval. 

Suppose the position of the excitation source is 

i ks , equation (3) can be arranged as: 

 

 

1

1/2 1/2

( ) ( )

( 1/ 2) ( 1/ 2) .

n n

z z

n n

y y

E ks E ks

H ks H ks







 

 

  
 (4) 

If the excitation source is uncertain, the random 

variable vector   would be introduced into the Maxwell’s 

equations and (4) can be re-written as: 

 

 

1

1/2 1/2

( , ) ( , )

( 1/ 2, ) ( 1/ 2, ) ,

n n

z z

n n

y y

E ks E ks

H ks H ks

  

  



 

 

  
 (5) 

where 1( , )n

zE ks  and ( , )n

zE ks   are the excitation source, 

and they are uncertain inputs. Obviously, the output 

parameters 
1/2 ( 1/ 2, )n

yH ks    and 
1/2 ( 1/ 2, )n

yH ks    

would be influenced by the uncertain inputs.  

In Stochastic Galerkin Method (SGM), the 

uncertainty analysis results, namely the uncertain output 

parameters, should be expressed as the form of the 

polynomial of the random variables at first. It can be 

expressed as: 

 
1/2

0 0

1 1 2 2

( 1/ 2, ) ( 1/ 2) ( )

( 1/ 2) ( ) ( 1/ 2) ( ),

n

yH ks h ks

h ks h ks

  

   

    

  
 (6) 

and 

 
1/2

0 0

1 1 2 2

( 1/ 2, ) ( 1/ 2) ( )

( 1/ 2) ( ) ( 1/ 2) ( ),

n

yH ks h ks

h ks h ks

  

   

    

  
 (7) 

where ( )i   is the Chaos polynomial (or named 

orthogonal basis), and it is depended on the distribution 

of the random variable in (1). ( 1/ 2)ih ks   and 

( 1/ 2)ih ks   are the coefficients to be determined later. 

When these coefficients are calculated, equation (6) and 

equation (7) are the final uncertainty analysis results 

what we want. 

The polynomials given in (6) and (7) are orthogonal 

to each other, and their relationship can be presented as: 

 2,  ,i j i ij     (8) 

where ij  represents the Kronecker function and satisfies: 

 
1 ( )

 .
0 ( )

ij

i j

i j



 



 (9) 

The inner product calculation . ,  .  is defined as: 

 ,  ( ) ( ) ( ) ,i j i j w d          (10) 

where ( )w   is the weight function which can be 

obtained by calculating the joint probability density of 

the random variables in (1). 
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By substituting equation (6) and (7) into equation 

(5), it can be rearranged to obtain: 

  

 

 

1

0 0 0

1 1 1

2 2 2

( , ) ( , )

( 1/ 2) ( 1/ 2) ( )

( 1/ 2) ( 1/ 2) ( )

( 1/ 2) ( 1/ 2) ( ).

n n

z zE ks E ks

h ks h ks

h ks h ks

h ks h ks

  

  

  

  

 

   

   

   

 
(11) 

The inner product calculation 0 ( ) ,  .  is performed 

on the both sides of equation (11), and we can get: 

  

 

 

1

0 0

0 0 0 0

1 1 1 0

2 2 2 0

( , ), ( ) ( , ), ( )

( 1/ 2) ( 1/ 2) ( ), ( )

( 1/ 2) ( 1/ 2) ( ), ( )

( 1/ 2) ( 1/ 2) ( ), ( ) .

n n

z zE ks E ks

h ks h ks

h ks h ks

h ks h ks

      

    

    

    

  

   

   

  

 
(12) 

According to the relationship in (8), (13) can be 

translated into: 

 

 

1

1 1

1 1

( , ), ( ) ( , ), ( )

( 1/ 2) ( 1/ 2) ,

n n

z zE ks E ks

h ks h ks

      



 

   

 
(13) 

where 1

0( , ), ( )n

zE ks    and
0( , ), ( )n

zE ks     are the 

constants that can be calculated by (10): 

 

 

1

1 1

1 1

( , ), ( ) ( , ), ( )

( 1/ 2) ( 1/ 2) ,

n n

z zE ks E ks

h ks h ks

      



 

   

 
(14) 

and 

 

 

1

2 2

2 2

( , ), ( ) ( , ), ( )

( 1/ 2) ( 1/ 2) .

n n

z zE ks E ks

h ks h ks

      



 

   

 
(15) 

The process of SGM mechanism is shown from 

equation (11) to equation (15). Obviously, the uncertain 

equation (5) is translated into three certain equations, 

namely equation (13), equation (14) and equation (15). 

Admittedly, conventional Finite Difference Time Domain 

Method can be carried out in these three equations, and 

the coefficients ( 1/ 2)ih ks   and ( 1/ 2)ih ks   in (6) and 

(7) will be obtained. Sampling the random variables in 

(6) and (7) in terms of their distributions, the statistical 

property of the results can be easily got. For example, 

expectation, variance, the worst case value, the probability 

density curve and so forth. These statistical properties 

can stand for the uncertainty analysis outputs. 

 

III. STIELTJES PROCEDURE AND WIENER 

HAAR EXPANSION 
This section shows the schemes in constructing 

orthogonal basis ( )i   in (6) or (7). It is usually the first 

step of the SGM. It is worth noting that the random 

variables in this paper are all in arbitrary probability 

density form. 

 

A. Stieltjes procedure 

The Stieltjes Procedure is firstly applied into the  

uncertainty analysis of the Computational Fluid 

Mechanics in reference [9]. For simplicity, only the 

construction of one-dimensional orthogonal basis is 

presented, since that the high-dimensional basis can be 

obtained by performing the tensor products calculation. 

The three-term recurrence relation in the Stieltjes 

Procedure is presented as: 

 1 1

0 1

( ) ( ) ( ) ( ),    0,1, ,

( ) 1,    ( ) 0,

i i i i ia b i      

   

 



   

 
 (16) 

where 
ia  and 

ib  are recurrence coefficients, which can 

be calculated by: 

 ( ), ( )
,

( ), ( )

i i

i

i i

a
   

   
  (17) 

and 

 
0 0 0

1 1

( ), ( )
( ), ( ) ,     .

( ), ( )

i i

i

i i

b b
   

   
    

   (18) 

The inner product calculation is same as the equation 

(10). The orthogonal basis in the Stieltjes Procedure is in 

form of polynomial, and it satisfies the relationship in (8). 

If the order of the polynomial is higher, the results 

will be more accurate, but the simulation time will  

be longer. Furthermore, it is worth mentioned that  

the number of high-dimensional orthogonal basis is 

exponential times of that of one-dimensional orthogonal 

basis. Thus, although the Stieltjes Procedure can be 

performed infinitely, the order is usually less than 10. 
 

B. Wiener Haar expansion 

The Wiener Haar Expansion is another orthogonal 

basis constructing method. Similarly, the high-

dimensional basis is tensor products of one-dimensional 

basis, so only one-dimensional case is presented. 

Considering the one-dimensional random variable 

 , the relationship between probability density function 

( )pdf   and distribution function ( )p   are shown as: 

 
( )

0      ( , )
( ) ,

0                   ( , )

dp
A B

dpdf

A B









  

 
  

 
(19) 

where A and B are the boundary of random variable. 

The distribution function ( )p   satisfies the character 

as: 

 1( ) [0,1] ( ) [ , ].y p p y A B        (20) 

It indicates that the distribution function value is one-to-

one correspondence with the interval [0, 1]. 

The Haar wavelet function can implement the 

orthogonal decomposition in the interval [0, 1]. Using 

this particular character, the orthogonal basis can be 

obtained as: 

 
2 1

0 0,0 , ,

0 0

( [ , ]) ( ( )) ( ( )),

j

j k j k

j k

X A B X p X p    
 

 

    (21) 

where ( [ , ])X A B   represents the output parameters  
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under solved, like 
1/2 ( 1/ 2, )n

yH ks    in (5). 0,0 ( ( ))p   

is the orthogonal basis which is structured by Haar 

Father Wavelet, and , ( ( ))j k p   is the orthogonal  

basis given by Haar Mother Wavelet. 
0X  and 

,j kX  are 

coefficients like ( 1/ 2)ih ks   in (6), and they can be 

calculated by 

 

1

0 0,0
0

[ , ]

( ) ( ( )) ( )

( ) ( ) ,
A B

X X p dp

X pdf d

   

  









 
(22) 

and 

 

1

, ,
0

,
[ , ]

( ) ( ( )) ( )

( ) ( ( )) ( ) .

j k j k

j k
A B

X X p dp

X p pdf d

   

    









 
(23) 

It is obviously seen that the orthogonal basis of the 

Wiener Haar Expansion is in the form of Haar Wavelet 

function. Thus, the convergence rate of the Wiener Haar 

Expansion must be different from that of the Stieltjes 

Procedure in different cases. For example, if the PDF 

function of the random variable is smooth enough, and 

the Stieltjes Procedure will perform better due to its 

polynomial decomposition. On the contrary, the Wiener 

Haar Expansion is more suitable for the PDF function 

with some transient peaks or some gaps, thanks to the 

nature of the Haar Wavelet function. 

In next section, the performance of Stieltjes 

Procedure and Wiener Haar Expansion using in SGM is 

presented, taking the MCM results as the reference data. 

 

IV. ACCURACY COMPARISON BY USING 

FEATURE SELECTIVE VALIDATION 
In this example, a Gaussian pulse with uncertain 

parameters is introduced into a one dimensional problem 

space. The example comes from a calculation model in 

reference [12], and it is electromagnetic wave propagation 

problem. 

Only one dielectric slab is contained in the model, 

and Fig. 1 represents the geometry construction of this 

model. The length of the space is 1m, and the location  

of the slab is from 0.1mx   to 0.2mx  . The relative 

permittivity of the slab is supposed 4r  , and other 

spaces are supposed full of vacuum. The output result  

is the absolute value of the frequency response of the 

electric field component, which is recorded at 0.5mx  . 

A Gaussian pulse is simulated from the point 0.7mx   

in the space, and it is a probably 1 V/m uncertain input 

excitation. The input excitation should be 

 
2

0
0 2

( )
( 0.7, ) ( )exp( ),

2
z

t t
E x t E 



 
   (24) 

where 0 ( )E   is the maximum amplitude of the pulse, 

and it is an uncertain input parameter which is modeled 

by the random variable  . 
0t  stands for the onset time 

delay of the pulse, t  represents the time and   is the 

width of the pulse at half its maximum height.  
 

 
 

Fig. 1. The model of one dimensional problem space 

[12]. 

 

In this simulation, the Finite Difference Time 

Domain (FDTD) method is proposed to calculate the 

outputs. The FDTD cell size is 0.005mx  , and the 

FDTD time step is supposed 8.33pst  . Meanwhile, 

0 40t t  and the duration is 5 2 t   . This excitation 

is a broad Gaussian pulse, and it guarantees that the 

electric field can be calculated over a broad frequency 

range. The time response of the electric field is recorded 

from 0 to 41.67ns.  

The uncertain input 
0 ( )E   satisfies: 

 
0 ( ) (0.5 0.5 ) ,mE E     (25) 

where 
mE  is the electric field intensity, 1V/mmE  .   

is the random variable with arbitrary probability density, 

which will be given in different cases in the following 

texts. 

 

A. Continuous probability density case 

In this case, the continuous PDF of the random 

variable is given as: 

 
1 3 1

sin( ) (1 ),     0 1
( ) .2 2 3

0,                                       others
cPDF


 

 


   

 



 (26) 

We call it continuous thanks to the values are 

concentrated near only one place, 0.5. Figure 2 presents 

this continuous PDF curve. 

Stochastic Galerkin Method with Stieltjes procedure 

(SP-SGM), Stochastic Galerkin Method with Wiener 

Haar expansion (WHE-SGM) and Monte Carlo Method 

(MCM) are proposed to perform the uncertainty analysis. 

The results given by MCM are regarded as the reference 

data to test the precision of the other two methods. 20000 

times samplings of MCM have been done in order to 

make sure that the MCM has reached the convergence. 

Figure 3 shows the expectation of uncertainty 

analysis results, and Fig. 4 gives the standard deviation 

information. 

Feature Selective Validation (FSV) has proved its 

successful applications in credibility evaluation of CEM 

results [13, 14]. By using FSV, the difference between 

the simulation results under evaluated and the reference 

data can be quantified. Total-GDM, a key value in FSV, 
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reflects the quantitative description of validity evaluation. 

Total-GDM value is lower, and it means that the 

simulation results perform better. Table 1 presents a  

one-to-one correspondence between Total-GDM and the 

qualitative description. More details about the FSV can 

be found in [14]. 

 

 
 

Fig. 2. Continuous PDF curve. 

 

 
 

Fig. 3. The expectation results in continuous probability 

density case. 

 

 
 

Fig. 4. The standard deviation results in continuous 

probability density case. 

 

The Total-GDM results of SP-SGM and WHE-

SGM in Fig. 3 and Fig. 4 are given in Table 2. It is shown 

that all the values in Table 2 are less than 0.1. Thus,  

it indicates that all the results are “Excellent” match  

with the results given by MCM according to Table 1. 

Furthermore, it indicates the conclusion that both SP-

SGM and WHE-SGM can be as good as the MCM in this 

continuous probability density case. 
 

Table 1: Relationship between Total-GDM and 

Quantitative Description [14] 

Total-GDM 

(Quantitative) 

FSV Interpretation 

(Qualitative) 

Less than 0.1 Excellent 

Between 0.1 and 0.2 Very Good 

Between 0.2 and 0.4 Good 

Between 0.4 and 0.8 Fair 

Between 0.8 and 1.6 Poor 

Greater than 1.6 Very Poor 

 

Table 2: The Total-GDM values in continuous probability 

density case 

 SP-SGM WHE-SGM 

Expectation 33.32 10  
46.47 10  

Standard deviation 0.026 0.027 

 

The simulation time of the MCM is 1.35 hours,  

SP-SGM takes 1.14 minutes, and WHE-SGM uses  

2.32 minutes. Thus, it is proved that the computational 

efficiencies of SP-SGM and WHE-SGM are much 

higher than that of MCM. The reason is that MCM needs 

thousands of times of the FDTD analysis, in order to 

make sure the calculation is converged. In this example, 

2000 times are used. SP-SGM or WHE-SGM only needs 

one augmented FDTD analysis, so the simulation time is 

the several times of one common FDTD analysis. Thus, 

SP-SGM and WHE-SGM are in high computational 

efficiency. 

Furthermore, the computational efficiency of SP-

SGM is a little better than WHE-SGM. The reason is that 

SP-SGM needs less chaotic polynomials than WHE-

SGM. Thus, the augmented FDTD analysis of the SP-

SGM is easier than that of the WHE-SGM. 
 

B. Discontinuous probability density case 

The discontinuous PDF of the random variable 

should be: 

 
2

( )

4,                                                       1 1.2

0.075 [ 2( 17) 8( 17) 6],   18 20.

0,                                                              others

uncPDF 



  



 


       



 

(27) 

In contrast to the continuous case in (26), the values  

are dispersed in two places. One is near the value 1.1, 

and the other is near the value 19. Figure 5 shows the 

discontinuous PDF curve. In some cases, if a material 

parameter is uncertain due to the lack of knowledge and 
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it has two kinds of inherent discrete states, the random 

variable can be presented by such discontinuous PDF 

since that we cannot judge which state it should be. Thus, 

the discontinuous PDF form is also frequently appeared 

in uncertainty analysis. 
 

 
 

Fig. 5. The discontinuous PDF curve. 
 

In the similar way, MCM, SP-SGM and WHE-SGM 

are undertaken for the uncertainty analysis. Fig. 6 and 

Fig. 7 give the expectation results and the standard 

deviation results in discontinuous probability density 

case. 
 

 
 

Fig. 6. The expectation results in discontinuous 

probability density case. 
 

 
 

Fig. 7. The standard deviation results in discontinuous 

probability density case. 

The Total-GDM results in Fig. 6 and Fig. 7 are 

presented in Table 3. As to the expectation results,  

the SP-SGM receives a “Very good” evaluation and  

the WHE-SGM has an “Excellent” result. It indicates  

that the WHE-SGM does better than the SP-SGM in 

expectation results in discontinuous probability density 

case. Considering the standard deviation results, the SP-

SGM is an “Excellent” match with the MCM. On the 

contrary, the WHE-SGM only presents a “Very good” 

match. Consequently, the SP-SGM does better in standard 

deviation calculation. 

It is worth noting that the expectation is the basic 

results of the uncertainty analysis results. Admittedly, 

the importance of the expectation results outweighs  

that of the standard deviation results. As a whole, the 

WHE-SGM performs better in discontinuous probability 

density case. 

No matter SP-SGM or WHE-SGM, the simulation 

results in the discontinuous case are not good enough  

as that in the continuous case. The reason is that the 

discontinuous PDF leads the more complex uncertainty 

analysis outputs, so the truncation of the chaotic 

polynomials may cause a little bigger error.  

 

Table 3: The Total-GDM values in discontinuous 

probability density case 

 SP-SGM WHE-SGM 

Expectation 0.122 0.027 

Standard deviation 0.069 0.112 

 
The simulation time of the MCM is 1.59 hours, SP-

SGM takes 1.47 minutes, and WHE-SGM uses 2.89 

minutes. Thus, it would give the same conclusion with 

the continuous case in computational efficiency. 

 

V. CONCLUSION 
In this paper, two constructing orthogonal basis 

methods, Stieltjes procedure and Wiener Haar expansion, 

are applied into the Stochastic Galerkin Method (SGM) 

in order to perform uncertainty analysis with the 

arbitrary probability density inputs in Electromagnetic 

Compatibility simulation based on the Finite Difference 

Time Domain analysis. By simulating an electromagnetic 

wave propagation example with stochastic excitation 

source included, the following conclusions can be 

obtained according to the Feature Selective Validation 

results. 

Firstly, when Probability Density Function is 

continuous, both Stochastic Galerkin Method with 

Stieltjes procedure (SP-SGM) and Stochastic Galerkin 

Method with Wiener Haar expansion (WHE-SGM) can 

provide the accurate results like the Monte Carlo Method 

(MCM). But the computational efficiency of the SP-

SGM is a little better than that of the WHE-SGM. 

Secondly, when Probability Density Function is 

discontinuous, the WHE-SGM does better in calculating 
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the expectation of the uncertainty analysis results, and 

the SP-SGM can give more accurate in the variance 

information. To sum up, the WHE-SGM performs better 

than the SP-SGM in this case. 

Finally, it also indicates that the computational 

efficiencies of both SP-SGM and WHE-SGM are much 

better than that of MCM. 
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